
HAL Id: hal-04615832
https://hal.science/hal-04615832

Submitted on 18 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Test Suite Augmentation using Language Models
-Applying RAG to Improve Robustness Verification

Adam Mackay

To cite this version:
Adam Mackay. Test Suite Augmentation using Language Models -Applying RAG to Improve Robust-
ness Verification. ERTS2024, ERTS2024, Jun 2024, Toulouse, France. �hal-04615832�

https://hal.science/hal-04615832
https://hal.archives-ouvertes.fr

Test Suite Augmentation using Language Models - Applying

RAG to Improve Robustness Verification

Adam Mackay MEng (QA-Systems)

Abstract—This paper presents a novel approach to

test suite augmentation using large language models and

retrieval augmented generation (RAG) techniques. By

leveraging the power of GPT-4 and a customised RAG

framework, we show the effectiveness of automating test

case generation to improve robustness verification in

safety-critical embedded software systems. Our method

involves indexing and retrieving relevant information

from the entire software repository, including design

documents, requirement specifications, prior test cases,

and source code. The generated test cases are then

integrated into the Cantata test framework, targeting

key areas such as invalid values, overflow scenarios,

timeout conditions, and improper state transitions. We

applied our approach to two open-source projects, PX4

Autopilot and Apollo Auto, and achieved promising

results in terms of increased test coverage, defect

detection, and compliance with industry standards like

DO-178C and ISO 26262. Compared to human-authored

test suites, our method generated a larger volume of tests,

exposed a broader array of test scenarios, and unveiled

additional high-severity defects. The results validate the

potential of advanced language models and RAG

techniques in enhancing software reliability and safety

through automated testing. Future work aims to refine

these techniques further and expand their applications in

the software development lifecycle.

I. INTRODUCTION

Robustness testing is crucial for safety-critical embedded

software like aviation and medical systems, ensuring they

manage errors gracefully and recover from unexpected

situations effectively. This methodical approach validates

key capabilities such as error detection, fault tolerance, and

overload handling, elements required to align with

recognised standards like DO-178C.

Manual test case authoring, particularly for

requirements-based testing, demands considerable effort and

is often fraught with risks of misinterpretations or oversight

of corner cases. The evolving nature of software further

complicates this, requiring continual test adaptation across

versions and functionalities.

Retrieval augmented generation (RAG) offers a

promising approach here. It combines language models with

an information retrieval system, enhancing automatically

generated content with contextually relevant data extracted

from documentation and prior tests. This enables an adaptive

response from the system, producing text or code that is both

coherent and contextually informed. This approach is driven

by requirements, ensuring generated tests trace directly to

specific functional needs.

In harnessing the generative capabilities of GPT-4 and

the assistance of automated agents, we employ RAG across

the software repository, integrating code, existing tests, and

documentation to autonomously generate test cases. These

cases scrutinise the software’s robustness across various

conditions, such as invalid values, overflow scenarios, and

abnormal conditions, enabling a comprehensive inspection

that mitigates the risks associated with manual testing.

Additionally, a human-in-the-loop approach is employed,

wherein generated tests are manually reviewed to further

refine their effectiveness and efficiency, ensuring that the

automation does not inadvertently overlook vulnerabilities.

This paper will present our methodologies, share the

preliminary results from applying these methods to real-

world embedded software projects, and discuss forthcoming

work aimed at further refining and expanding these

approaches. Our contributions extend beyond the

application of RAG and language models to robustness

testing; we also provide insights and data about their

efficacy, offering a resourceful guide and a benchmark for

future explorations and enhancements in automated testing

in embedded software realms.

II. RELATED WORK

Our work builds upon the growing body of research on

retrieval-augmented generation (RAG) and its applications

in various domains. The seminal paper by Lewis et al. [1]

introduced the concept of RAG, demonstrating its

effectiveness in knowledge-intensive NLP tasks such as

open-domain question answering. They showed that by

augmenting language models with retrieved information,

RAG could significantly improve performance compared to

purely parametric approaches. Our work extends this idea to

the domain of software testing, leveraging RAG to generate

high-quality test cases.

GPT-4 and Large Language Models

We leveraged GPT-4, a distinguished multimodal

language model developed by OpenAI, which excels in

natural language generation, reasoning, and coding tasks.

Renowned for its competence in single-shot and few-shot

tasks, GPT-4, when coupled with refined prompting

methods, emerges as an ideal model for benchmarking new

applications of large language models (LLMs) in innovative

manners. Consequently, GPT-4 was instrumental in

automating the generation of our test cases, demonstrating

its applicability and efficiency in novel use-cases.

Retrieval Augmented Generation (RAG)

The paper "Retrieval-Augmented Generation for

Knowledge-Intensive NLP Tasks" by Lewis et al. [1]

provides an overview of the RAG process. As they explain,

"RAG works by adding a step to this basic process. Namely,

a retrieval step is performed where, based on the user's

prompt, the relevant information is extracted from an

external knowledge base and injected into the prompt before

being passed to the LLM." They note the three key elements

are Retrieval, Generation, and Augmentation. This aligns

with the RAG framework we employ in our study.

Additionally, the survey paper "Retrieval-Augmented

Generation for Large Language Models: A Survey" by Gao

et al. [3] categorises RAG research into three types: Naïve

RAG, Advanced RAG, and Modular RAG. Our approach

falls under the Advanced RAG paradigm, as we incorporate

techniques like query rewriting and prompt summarisation

to enhance the base RAG process.

During our research, we also explored the potential of

Graph RAG, a recent advancement introduced by Microsoft

Research [15]. Graph RAG aims to improve upon baseline

RAG by utilising LLM-generated knowledge graphs to

enhance retrieval performance, particularly in situations

involving complex problems on private datasets. However,

after careful consideration, we determined that Graph RAG

was not well-suited to our specific use case, which primarily

involves working with code and documentation fragments.

The knowledge graph approach employed by Graph RAG

did not align with the structure and relationships found in

our software repository. As a result, we opted to develop our

own custom RAG system that could better handle the unique

characteristics of our dataset and generate more relevant test

cases.

Recent advancements in RAG have focused on

improving retrieval strategies and enhancing the interaction

between the retriever and generator components. The survey

by Gao et al. [3] provides a comprehensive overview of these

developments, categorising RAG approaches into Naïve

RAG, Advanced RAG, and Modular RAG. Our method

aligns with the Advanced RAG paradigm, as we incorporate

techniques such as query rewriting and prompt

summarisation to optimise the retrieval process. This builds

upon the work of Wang et al. [6] and Shao et al. [7], who

showed the benefits of iterative retrieval and generation for

knowledge-intensive tasks.

In the context of software engineering, there has been

growing interest in leveraging large language models

(LLMs) for various tasks, including code generation, bug

detection, and test case generation. The work by Chen et al.

[9] and Nijkamp et al. [10] showcased the potential of LLMs

for generating high-quality code snippets and assisting

developers in programming tasks. Our work extends this line

of research by focusing specifically on test case generation,

a critical aspect of software verification and validation.

While existing approaches to test case generation often

rely on traditional techniques, such as symbolic execution,

model-based testing, and search-based algorithms, our

RAG-based approach offers a novel perspective. By

leveraging the vast knowledge captured in LLMs and

augmenting it with project-specific information, we can

generate test cases that are more closely aligned with real-

world requirements and specifications. This complements

the work of Kang et al. [11] and Li et al. [12], who explored

the integration of domain-specific knowledge into language

models for improved performance in specialised tasks.

Furthermore, our human-in-the-loop approach sets our

work apart from fully automated (algorithmic) test case

generation methods. The iterative feedback process,

involving experienced testers, allows for the refinement and

optimisation of generated test cases based on domain

expertise and project-specific considerations. This aligns

with the findings of Trivedi et al. [13] and Guo et al. [14],

who emphasised the importance of human involvement in

guiding and validating the outputs of language models in

complex tasks.

There have been noteworthy developments in the

automation of unit test generation within integrated

development environments (IDEs) recently. For instance,

Visual Studio Code (VSCode) offers a built-in solution for

generating unit tests based on the code under development

[22]. This feature leverages static analysis techniques and

predefined templates to create test stubs and assertions,

streamlining the process of writing unit tests. However,

these IDE-based solutions often rely on heuristics and lack

the deep understanding of project-specific requirements and

domain knowledge that our RAG-based approach

incorporates. By combining the power of large language

models with retrieval augmentation and human expertise,

our method goes beyond the capabilities of IDE-based test

generation, enabling the creation of more comprehensive

and context-aware test cases.

Several other tools and techniques have been developed

for automatic test case generation across different

programming languages. EvoSuite [23] is a search-based

tool that generates unit tests for Java classes using

evolutionary computation, aiming to maximize code

coverage. Randoop [24] is another Java-based tool that

generates tests by randomly selecting method sequences and

constructing test cases based on the observed behaviour. In

the .NET ecosystem, Pex [25] employs dynamic symbolic

execution to generate test inputs that achieve high code

coverage. For C and C++ programs, KLEE [26] is a

symbolic execution engine that automatically generates test

cases by exploring different program paths using constraint

solving techniques.

Cantata AutoTest, [16] a feature of the commercial

testing framework used in our case studies, utilises advanced

code parsing powered by the EDG parser to generate test

cases for C/C++ code. The EDG parser provides a deep

understanding of the code structure and enables Cantata

AutoTest to create more targeted and effective test cases.

While these tools have proven effective in their respective

domains, they often rely on predefined strategies and lack

the adaptability and context-awareness that our RAG-based

approach provides. In contrast, our approach leverages the

power of large language models and retrieval augmentation

to generate test cases that are more closely aligned with real-

world requirements and project-specific contexts.

Existing Tools for Code Indexing and Retrieval

To effectively index and chunk the various artifacts, we

leveraged open-source code indexing systems commonly

used to help IDEs navigate code and documentation.

Specifically, we employed ctags [19] and cscope [20] to

build a comprehensive index of the codebase. ctags is a

programming tool that generates an index file of names

found in source and header files of various programming

languages, aiding code comprehension. It can index

functions, variables, class members, macros, and more,

depending on the language. On the other hand, cscope is a

text-based source browsing tool that allows programmers to

search source code for symbols, definitions, functions,

regular expressions, and more.

Emerging Large Language Models

GPT-4 has been a robust tool for our research. However,

our next steps will leverage Llama 2 (and its variants),

announced by Meta in partnership with Microsoft in July

2023. Llama 2 is a open source LLM with the benefit of

running locally on secure systems and is available in sizes of

7, 13, and 70 billion parameters. Llama 2, while maintaining

a similar architecture to its predecessor, is trained on 40%

more data, offering enhancements in code generation and

model training flexibility.

Overall, our research contributes to the growing body of

literature on RAG and its applications in software

engineering. By demonstrating the effectiveness of RAG in

test case generation and highlighting the benefits of human-

in-the-loop collaboration, we provide new insights and

directions for leveraging LLMs in the verification and

validation process. Our work also opens up avenues for

future research on the integration of RAG with other

software engineering tasks and the development of more

advanced retrieval and generation strategies tailored to the

unique challenges of the software development lifecycle.

III. TECHNIQUES

Introduction to the RAG implementation

In our project, we applied RAG across the entire software

repository, encompassing design documents, requirement

specifications, prior test cases, and source code. This

comprehensive approach ensured that the generator was

provided with a broad context, enhancing the relevance and

accuracy of the generated test cases. To facilitate this

process, we developed custom tools and integrated them

with the Cantata test framework.

It is important to note that we developed our own custom

RAG system specifically tailored for working with code and

documentation fragments. While we investigated various

existing RAG implementations, such as Graph RAG [15],

we found that they were not well-suited to our specific use

case. Our custom RAG system allowed us to effectively

integrate and process the diverse range of artifacts found in

the software repository, enabling the generation of highly

relevant and context-aware test cases.

Indexing and retrieval system

To effectively index and retrieve relevant information

from the software repository, we developed a custom

indexing and retrieval system. This system leverages the

capabilities of ctags [19], cscope [20], and CodeQuery [21].

ctags and cscope are well-established tools used by IDEs for

navigating code and documentation. ctags generates an

index file of names found in source and header files, while

cscope allows programmers to search source code for

symbols, definitions, functions, and more.

We integrated these tools to create a robust foundation

for our RAG implementation. CodeQuery further enhances

the indexing process by building upon the databases of ctags

and cscope to create a SQLite database. This database can

be efficiently queried to retrieve relevant code snippets and

documentation based on specific criteria.

To complement these existing tools, we developed a

custom suite of tools called Magrathea. The Magrathea suite

includes functions for extracting relevant fragments of code,

documentation, and comments, which are then used to

populate the context window of the language model. Some

of the key functions in the Magrathea suite are:

- find_function_end: Reads a file from a specified

start line until the end of the function is found,

extracting the complete function body.

- find_preceding_comments: Retrieves any

comment block found directly before a specified

function.

- find_macros_for_function: Identifies macros used

within specific functions in a source file, along

with their definitions if there are non-unique

values.

- find_unique_calls: Finds unique function calls

made from functions in a given source file.

By integrating ctags, cscope, CodeQuery, and the

Magrathea suite, we created a comprehensive indexing and

retrieval system that allowed us to effectively apply RAG

across the entire software repository.

This approach ensured that the language model had

access to a rich context window containing highly relevant

code snippets, documentation, and comments, enabling the

generation of more precise and contextually informed test

cases.

The indexing process was performed as a pre-processing

step, allowing for efficient retrieval of relevant information

during the test generation phase. The SQLite database

created by CodeQuery served as a central repository for

querying and retrieving the necessary artifacts based on

specific criteria, such as function names, symbols, or

keywords. This optimised retrieval process contributed to

the overall efficiency and effectiveness of our RAG

implementation in the context of automated test case

generation.

Test generation process

The test generation process follows a structured

workflow (figure 1) that leverages the RAG implementation

and human expertise. The key steps in this process are:

1. Querying the RAG API: We query the RAG API

with a code snippet and an engineered prompt that

specifically requests the generation of tests.

2. Retrieval of relevant documents: RAG retrieves

relevant documents and prior tests from the

customised corpus based on the query.

3. Generation of initial test cases: The language

model (LLM) generates an initial set of raw test

cases based on the retrieved context.

4. Iterative refinement through human review: The

generated test cases undergo an iterative refinement

process, where human testers review and provide

feedback on the tests' relevance, uniqueness, and

potential effectiveness.

5. The framework was then manually prompted for

refinements including:

- Rewriting tests for improved clarity

- Eliminating redundant or duplicative tests

- Adding preconditions for clarity

- Correcting any functional inaccuracies

This review was crucial for boosting precision and

overall quality.

Figure 1 - Test generation workflow using Retrieval Augmented

Generation (RAG) and human-in-the-loop review

This interaction shows the collaborative nature of the test

generation workflow, involving the user, RAG, LLM,

testing platform, and human examiner. Each component

plays a crucial role in producing high-quality, context-aware

test cases that thoroughly exercise the software under test.

Integration with Cantata

The generated test cases are integrated into the Cantata

test framework [16], a commercial platform that provides a

stable environment for test execution and result reporting.

Cantata supports standard coverage metrics, such as

statement coverage, decision coverage, and Modified

Condition/Decision Coverage (MC/DC), which are essential

for compliance with industry standards like DO-178C.

To enable the execution of robustness test cases, Cantata

offers targeted error injection methods:

• Invalid values are introduced by leveraging white-

box instrumentation to override variables with

out-of-range inputs based on their data types and

semantic context.

• Overflow conditions are induced by injecting

custom code to provide inputs exceeding

maximum buffer sizes defined in requirements

specifications.

• Timeout testing is accomplished through code

wrapping techniques that artificially increase

processing time in the test harness beyond

thresholds specified in design documents.

• Invalid state transitions are triggered by

programmatically sequencing calls in an incorrect

order relative to the expected state machine flow

defined in the architecture.

Cantata's flexible error injection features, including

white-box instrumentation, custom code injection, and code

wrapping, enabled the wide array of automatically generated

robustness test cases targeting key areas like invalid values,

overflow, timeouts, and improper state transitions.

Experiment Setup

To evaluate the effectiveness of our RAG-based

approach for test case generation, we conducted a series of

experiments using a diverse set of embedded software

projects. Our preliminary dataset consisted of two open-

source projects: PX4 Autopilot [17] and Apollo Auto [18].

These projects were selected based on their complexity,

availability of source code and documentation, and

relevance to the domain of safety-critical embedded

systems.

For each project, we applied our RAG-based approach to

generate test cases targeting various aspects of robustness,

such as invalid inputs, boundary conditions, and resource

constraints. We evaluated the generated test cases using

several metrics, including code coverage, defect detection

rate, and compliance with industry standards like DO-178C

and ISO 26262.

To assess the efficiency of our approach, we compared

the time and effort required to generate test cases using our

RAG-based method with the time and effort required for

manual test case creation. We also conducted a qualitative

analysis of the generated test cases, involving domain

experts who reviewed the tests for relevance, effectiveness,

and alignment with project requirements.

Our experiments were designed to answer the following

research questions:

1. How does the RAG-based approach compare to

manual test case creation in terms of coverage, defect

detection, and compliance with industry standards?

2. What is the impact of incorporating human feedback

in the test case generation process on the quality and

effectiveness of the resulting tests?

3. How does the choice of LLM and RAG configuration

affect the performance of the test case generation

system?

To ensure the reliability and validity of our results, we

conducted multiple runs of each experiment, using different

prompting and cross-validation techniques where

Figure 2 - Architectural overview of the interaction between the user, RAG system, LLM, testing platform,

and human examiner in the test generation process.

applicable. We also documented the specific versions of the

software tools, libraries, and models used in our experiments

to facilitate reproducibility.

Optimisation and configuration

To optimise the RAG process for test case generation, we

conducted several iterations, experimenting with various

parameters and settings. One critical aspect was determining

the optimal size of the context window, which determines

the amount of relevant information provided to the model

during the generation process. We tested context window

sizes ranging from 256 to 1024 tokens and found that a size

of 512 tokens struck a balance between providing sufficient

context and maintaining computational efficiency.

We also explored different versions of GPT-4, including

GPT-4-turbo, which offers faster generation speeds. The

sampling temperature, which controls the randomness of the

generated output, was varied between 0.5 and 1.0. The top_p

parameter, also known as nucleus sampling, was set between

0.7 and 0.9, ensuring that the model considered only the

most likely tokens during generation. Additionally, we

adjusted the frequency_penalty and presence_penalty

parameters to discourage the model from repeating the same

output tokens too frequently.

Through these iterations, we identified the optimal

configuration for our RAG implementation, which included

a 512-token context window, GPT-4 with a sampling

temperature of 0.7, top_p of 0.8, and frequency and presence

penalties of 0.2.

Furthermore, we discovered that the precise wording of

the system prompt played a crucial role in guiding the model

to generate relevant and effective test cases. By carefully

crafting the prompt to include specific instructions and

requirements, we could steer the model towards generating

tests that aligned with the project's goals.

Lastly, we employed a multi-shot RAG knowledge

injection method, where the model was provided with

multiple rounds of context and generated outputs. This

approach allowed the model to progressively refine its

understanding of the project and generate more targeted test

cases based on the accumulated knowledge.

In this early proof-of-concept study, the primary focus

was on assessing the code coverage achieved by the

generated test cases. While selected cases, particularly those

involving failure scenarios, were reviewed for accuracy, a

more comprehensive examination of the test cases will be

conducted in future stages of the research. The iterative

refinement phase involving human examiners played a

supportive role, with the team providing feedback on the

generated tests based on their domain expertise. This

feedback loop allowed for the identification of potential

improvements and ensured that the generated tests aligned

with the project's requirements. As this study aimed to

establish the feasibility of the underlying method, a more

rigorous and time-intensive review process will be

incorporated in subsequent research phases to further

validate the quality and effectiveness of the generated test

cases.

IV. CASE STUDIES

We applied our technique to two different open source

embedded C/C++ projects with the aim to validate to the

stringent DO-178C Level A standards.

PX4 Autopilot (PX4)

PX4 [17] is an open-source flight control software for

drones and other unmanned vehicles. It provides a flexible

platform for users who need to control any kind of vehicle

from a computing board. The platform contains everything

needed for a full UAV system: flight stack, middleware to

communicate between processors, and developer APIs to

enhance existing functionalities. The combination of PX4’s

open-source nature, broad applicability, and mature, reliable

ecosystem made it a compelling choice for applying this

research.

- Size and Test Generation: A subset of the codebase,

comprising around 35,000 Lines of Code (LOC), was

subjected to our method, yielding 378 generated test

cases. These tests emphasised robustness verification,

exploring conditions like invalid values and overflow

situations.

- Comparison to Human-Authored Tests: Compared to a

suite of 265 tests written by developers, our method

provided a significantly denser set of tests.

- Code Coverage: The tests achieved excellent code

coverage, addressing 98% statement, 95% decision, and

90% MC/DC coverage, and were evaluated using

Cantata. With further refinement of our methods we are

confident of satisfying the DO-178C requirements for

structural coverage analysis.

- Defect Discovery: Interestingly, these tests brought 14

new defects to light. Predominantly related to overflow

issues, two defects impacted the function of calculating

the optimal flight path and were categorised as medium

severity according to code experts.

Apollo Auto (AA)

Apollo [18] is an open autonomous driving platform that

aims to provide a comprehensive, safe, and reliable solution

for autonomous driving. The project encompasses various

technologies related to autonomous driving, such as

perception, planning, control, and end-to-end deep learning,

to enable vehicles to navigate in various environments and

scenarios. The project was selected due to its open codebase,

comprehensive documentation and robust coding practices.

- Size and Test Generation: On a larger section of this

codebase of 50,000 LOC, our method generated 512 test

cases, which also zeroed in on robustness aspects.

- Comparison to Human-Authored Tests: A traditional,

developer-written test suite for Project B consisted of

342 tests, indicating a robust enhancement in test

comprehensiveness through our technique.

- Code Coverage: A good level of code coverage was

achieved, encapsulating 88% statement, 85% decision,

and 80% MC/DC coverage, verified via Cantata. With

further refinement of our methods we are confident of

satisfying all the structural coverage requirements of ISO

26262

- Defect Discovery: Additionally, 9 new defects were

discovered, mainly pertaining to validating invalid

inputs, of which 3 were linked to the functionality of

alerting the driver of potential hazards and were of high

severity according to code experts.

Method/ Tool

P
ro

je
ct

S
ta

te
m

en
t

C
o
v
.
(%

)

D
ec

is
io

n

C
o
v
e

(%
)

M
C

/D
C

C
o
v
.
(%

)

T
es

t

F
a
il

u
re

s

D
ef

ec
ts

F
o
u

n
d

RAG-based

Approach

PX4 98% 95% 90% 378 14

RAG-based

Approach

AA 88% 85% 80% 512 9

Algorithmic

Test generation

PX4 85% 80% 75% 0 0

Algorithmic

Test generation

AA 80% 75% 70% 0 0

Manual Testing PX4 90% 85% 80% 265 0

Manual Testing AA 85% 80% 75% 342 0

Table 1 – Summary of initial results

To provide a clear overview of the performance of our RAG-

based approach compared to other tools and manual testing,

we present a summary of the results in Table 1. The table

includes the statement coverage, decision coverage, MC/DC

coverage, number of failure tests, and number of defects

found for each method/tool and project. As clear from the

table, our RAG-based approach consistently achieves higher

coverage metrics and detects more defects compared to the

other tools and manual testing across both projects.

Insights and Unveiling Additional Defects

Our RAG-based approach generated a diverse range of

test cases targeting various aspects of robustness, with code

coverage being a key driver in achieving a comprehensive

set of tests. The generated tests encompassed scenarios such

as:

Boundary value testing: Tests were generated to validate

the system's behaviour when inputs approached or exceeded

the defined limits, such as maximum and minimum values

for numeric inputs or edge cases for string inputs. This

included testing with values just inside and outside the valid

ranges to ensure proper handling of boundary conditions.

Invalid input testing: Tests were created to assess the

system's response to invalid, malformed, or unexpected

input data, including null pointers, out-of-range values, and

data types inconsistent with the expected format. These tests

aimed to verify the system's ability to gracefully handle and

recover from invalid inputs without crashing or exhibiting

undefined behaviour.

Resource management testing: Tests were designed to

evaluate the system's performance and stability under

resource-constrained conditions, such as limited memory,

high CPU utilisation, or low power scenarios. These tests

helped identify potential memory leaks, resource exhaustion

issues, and other performance bottlenecks.

Interrupt handling testing: Tests were generated to verify

the correct handling of interrupts and the system's ability to

prioritise and manage multiple interrupt sources. These tests

ensured that the embedded software could respond to real-

time events and maintain deterministic behaviour.

Error handling and recovery testing: Tests were

generated to assess the system's ability to detect, isolate, and

recover from errors, such as communication failures, sensor

malfunctions, or unexpected resets. These tests verified the

effectiveness of error handling mechanisms and the system's

Figure 3 - The iterative process of RAG, LLM and review

capacity to maintain a safe state or initiate appropriate

recovery procedures.

Included in the Annex are sample prompts used to

generate various types of test.

Code comments and documentation fragments played a

crucial role in informing the scope of the generated tests. By

supplementing the code with context-relevant requirements

and the developers' intentions, parsed from comments, our

approach unlocked a performant set of tests. This contextual

information guided the generation of test cases that aligned

with the specific functionality and constraints of each code

module, resulting in more targeted and effective testing.

The generated tests were executed dynamically, allowing

for the validation of the system's behaviour under various

conditions and the identification of any defects or

vulnerabilities that could compromise the reliability and

stability of the embedded software. By leveraging code

coverage metrics, we ensured that the generated tests

thoroughly exercised the codebase, reaching critical paths

and uncovering potential issues that might have been missed

by manual test creation efforts.

The human effort involved in generating additional

robustness tests was significantly reduced compared to

manual test creation. The RAG-based approach

autonomously generated a comprehensive set of initial test

cases, which were then reviewed and refined by human

testers.

This review process (figure 3) typically involved:

1. Assessing the relevance and coverage of the generated

tests

2. Identifying any missing critical scenarios or edge

cases

3. Providing domain-specific insights and context to

enhance the tests

4. Optimising the test data and expected outcomes

5. Ensuring alignment with project requirements and

quality standards

On average, the human effort required for reviewing and

refining the generated tests was approximately 30% of the

time that would have been needed to create the tests from

scratch manually. This highlights the efficiency gains

achieved through the RAG-based approach.

By leveraging RAG to generate a wide range of robust

test cases and incorporating human expertise to refine them

further, our approach effectively identified defects and

coding oversights that were previously undetected. This

highlights the value of combining generative AI techniques

with human domain knowledge to enhance software quality

and reliability.

Comparison with Other Validation Tools

Compared to traditional validation tools, our RAG-based

approach offers several distinct advantages. One key

strength lies in its adaptability and scalability across diverse

software projects. While many existing tools are tailored to

specific programming languages, frameworks, or domains,

our method leverages the language-agnostic nature of

LLMs. By training on a vast corpus of natural language and

code, LLMs can effectively generate test cases for a wide

range of software systems, regardless of their underlying

technologies. This flexibility enables seamless integration

into various development workflows and reduces the need

for specialised validation tools for each project.

Another significant advantage of our approach is its

ability to generate test cases that are grounded in real-world

requirements and specifications. Traditional validation tools

often rely on predefined templates, heuristics, or static

analysis techniques, which may not fully capture the nuances

and complexities of a given software project. In contrast, our

RAG framework actively retrieves and incorporates relevant

information from project documentation, user stories, and

domain-specific guidelines. By combining this contextual

knowledge with the generative capabilities of LLMs, we can

produce test cases that are more closely aligned with the

intended functionality and user expectations.

Furthermore, our RAG approach excels in generating

test cases for complex, multi-component systems. Many

existing validation tools struggle to handle the intricacies of

interconnected modules, asynchronous operations, and

distributed architectures. However, the retrieval component

of our framework enables the LLM to gather and synthesise

information from multiple sources, allowing it to generate

test cases that span across system boundaries. This holistic

perspective is particularly valuable in identifying integration

points, data flow issues, and potential performance

bottlenecks.

Lastly, the human-in-the-loop aspect of our approach

sets it apart from fully automated validation tools. While

automation is crucial for efficiency, the involvement of

human experts adds a layer of qualitative assessment and

domain-specific insights. The iterative feedback process

allows for the refinement of test cases based on the unique

requirements and priorities of each software project. This

collaborative approach ensures that the generated test cases

are not only technically sound but also aligned with the

broader goals and constraints of the development team.

It is important to note that many of the other validation

tools discussed in the "Related Work" section, such as

EvoSuite, Randoop, Pex, and KLEE, are algorithmic in

nature and focus on specific programming languages. While

their approaches to test case generation can be compared and

contrasted with our RAG-based method, these tools could

not be directly applied to the case study projects, which

primarily involve embedded C/C++ code.

The only tool that could be directly applied to the case

study projects was the existing algorithmic AutoTest

generation feature of Cantata, the commercial test

framework used in our experiments. Cantata's AutoTest

feature employs a combination of static analysis and path

analysis to generate test cases based on the structure of the

code under test.

In summary, our RAG-based approach offers several

advantages over traditional validation tools:

- Adaptability and scalability across diverse software

projects, regardless of the programming language or

domain

- Ability to generate test cases grounded in real-world

requirements and specifications by leveraging the

knowledge captured in LLMs and project-specific

documentation

- Effectiveness in generating test cases for complex,

multi-component systems by synthesising information

from multiple sources and considering system-wide

interactions

- The value of human-in-the-loop collaboration in

refining test cases, ensuring their alignment with

project goals and constraints

While algorithmic tools like Cantata's AutoTest feature

can be useful in certain scenarios, our RAG-based approach

provides a comprehensive and flexible solution for test case

generation in the context of safety-critical embedded

systems.

V. CONCLUSIONS

Observations and Achievements

- Increased Test Generation: The approach not only

produced a larger volume of tests compared to human-

authored ones but also exposed a broader array of test

scenarios.

- Compliance with Stringent Standards: The automated

generation of tests did not compromise the ability to achieve

high code coverage, ensuring adherence to vital industry

standards like DO-178C. and ISO 26262

- Unveiling of Hidden Defects: Notably, our approach

unveiled additional, including high-severity, defects, which

eluded detection by human-authored test suites.

Future Pathways

- Exploring Llama 2 and other emerging LLMs: While

GPT-4 has been instrumental in our research, we plan to

explore the potential of other emerging LLMs, such as

Llama 2, for test case generation. As discussed in the

"Related Work" section, Llama 2 offers several advantages,

including the ability to run locally on secure systems and its

enhanced training data. By leveraging these new LLMs, we

aim to further improve the efficiency and effectiveness of

our RAG-based approach.

- Optimising Llama 2 for Embedded Projects: This

involves calibrating Llama 2 with various software

documentation, adapting the model to the domain-specific

language and patterns of embedded systems, and enhancing

its performance with embedded system code.

- Broadening RAG Applications: Our future efforts will

look towards employing RAG earlier in the software

development process. This involves deriving test cases

directly from requirements, co-developing test cases and

code, and establishing a feedback mechanism beneficial for

system designers.

Our preliminary results validate this approach and instil

confidence in utilising advanced language models for

robustness testing in safety-critical domains. The next

phases of this research will further refine techniques and

expand test generation capabilities to bolster automated

testing for safety-critical systems. This ongoing pursuit aims

to enhance software reliability and safety where flawless

operation is indispensable. By integrating generative models

with retrieval augmentation and rigorous human review, a

pathway emerges to achieve robust and nuanced automated

testing. Through iterative refinement of these synergistic

techniques, the journey towards more reliable, resilient, and

efficient testing methodologies continue.

ACKNOWLEDGMENTS

I would like to express my gratitude to QA Systems for

supporting this research as part of an internal project aimed

at exploring future pathways for their commercial testing

product, Cantata. This work would not have been possible

without their commitment to pushing the boundaries of

software testing and their dedication to enhancing the

reliability and quality of safety-critical systems.

I acknowledge that certain commercially sensitive

details regarding the implementation of this research have

been omitted from this paper to protect QA Systems'

intellectual property. I respect their need for confidentiality

and appreciate their trust in allowing me to share the broader

insights and methodologies developed during this project.

I am grateful for the collaboration and support provided

by the QA Systems team throughout this research. Their

expertise in software testing, particularly in the domain of

safety-critical embedded systems, has been invaluable in

shaping my approach and refining my techniques. I look

forward to continued collaboration with QA Systems as I

further develop and apply these advanced testing

methodologies to real-world projects.

REFERENCES

[1] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio

Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich

Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel,

Sebastian Riedel, Douwe Kiela. Retrieval-Augmented

Generation for Knowledge-Intensive NLP Tasks, 12

Apr 2021

[2] Jiawei Chen, Hongyu Lin1, Xianpei Han, Le Sun.

Benchmarking Large Language Models in Retrieval-

Augmented Generation, 20 Dec 2023

[3] Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,

Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Qianyu Guo,

Meng Wang, Haofen Wang. Retrieval-Augmented

Generation for Large Language Models: A Survey, 5

Jan 2024

[4] Yu He Ke, Liyuan Jin, Kabilan Elangovan, Hairil Rizal

Abdullah, Nan Liu, Alex Tiong Heng Sia, Chai Rick

Soh, Joshua Yi Min Tung, Jasmine Chiat Ling Ong,

Daniel Shu Wei Ting. Development and Testing of

Retrieval Augmented Generation in Large Language

Models - A Case Study Report. 29 Jan 2024

[5] Shervin Minaee, Tomas Mikolov, Narjes Nikzad,

Meysam Chenaghlu, Richard Socher, Xavier

Amatriain, Jianfeng Gao. Large Language Models: A

Survey. 20 Feb 2024

[6] Xintao Wang, Qianwen Yang, Yongting Qiu, Jiaqing

Liang, Qianyu He, Zhouhong Gu, Yanghua Xiao, and

Wei Wang. Knowledgpt: Enhancing large language

models with retrieval and storage access on knowledge

bases. 17 Aug 2023

[7] Zhihong Shao, Yeyun Gong, Yelong Shen, Minlie

Huang, Nan Duan, and Weizhu Chen. Enhancing

retrieval-augmented large language models with

iterative retrieval-generation synergy.23 Oct 2023

[8] Ran Elgedawy, John Sadik, Senjuti Dutta, Anuj

Gautam, Konstantinos Georgiou, Farzin Gholamrezae,

Fujiao Ji, Kyungchan Lim, Qian Liu, Scott Ruoti.

Ocassionally Secure: A Comparative Analysis of Code

Generation Assistants. 1 Feb 2024

[9] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,

Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri

Edwards, Yuri Burda, Nicholas Joseph, Greg

Brockman, Evaluating large language models trained

on code. 14 Jul 2021

[10] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu,

Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming

Xiong. CodeGen: An Open Large Language Model for

Code with Multi-Turn Program Synthesis.27 Feb 2023

[11] Minki Kang, Jin Myung Kwak, Jinheon Baek, and Sung

Ju Hwang. Knowledge graph-augmented language

models for knowledge-grounded dialogue generation.

30 May 2023

[12] Xingxuan Li, Ruochen Zhao, Yew Ken Chia, Bosheng

Ding, Lidong Bing, Shafiq Joty, and Soujanya Poria.

Chain of knowledge: A framework for grounding large

language models with structured knowledge bases. 21

Feb 2024

[13] Harsh Trivedi, Niranjan Balasubramanian, Tushar

Khot, and Ashish Sabharwal. Interleaving retrieval

with chain-of-thought reasoning for knowledge-

intensive multi-step questions. 23 Jun 2023

[14] Zhicheng Guo, Sijie Cheng, Yile Wang, Peng Li, Yang

Liu. Prompt-guided retrieval augmentation for non-

knowledge-intensive tasks. 28 May 2023

[15] Jonathan Larson, Steven Truitt , GraphRAG:

Unlocking LLM discovery on narrative private data 13

Feb 2024

[16] Cantata, QA-Systems

https://www.qa-systems.com/tools/cantata/

[17] PX4 Autopilot

https://px4.io/

[18] Apollo Auto

https://www.apollo.auto/

[19] Universal Ctags

https://github.com/universal-ctags/ctags

[20] Cscope

https://cscope.sourceforge.net/

[21] CodeQuery

https://github.com/ruben2020/codequery

[22] Visual Studio Code. Generate Unit Tests for your code.

https://code.visualstudio.com/docs/python/testing#_ge

nerating-tests

[23] Gordon Fraser and Andrea Arcuri. EvoSuite: Automatic

Test Suite Generation for Object-Oriented Software.

Proceedings of the 19th ACM SIGSOFT Symposium

and the 13th European Conference on Foundations of

Software Engineering, 2011.

[24] Carlos Pacheco and Michael D. Ernst. Randoop:

Feedback-Directed Random Testing for Java.

Companion to the 22nd ACM SIGPLAN Conference

on Object-Oriented Programming Systems and

Applications Companion, 2007.

[25] Nikolai Tillmann and Jonathan de Halleux. Pex–White

Box Test Generation for .NET. Tests and Proofs, 2008.

[26] Cristian Cadar, Daniel Dunbar, and Dawson Engler.

KLEE: Unassisted and Automatic Generation of High-

Coverage Tests for Complex Systems Programs.

Proceedings of the 8th USENIX Conference on

Operating Systems Design and Implementation, 2008.

ANNEXE

Prompting – example flow

This JSON-formatted example of a RAG interaction

demonstrates how the user query combined with retrieved

documents drives the LLM's generation of test cases. This

illustrates the interplay between the user, RAG system,

LLM, and human examiner in an iterative process to refine

the test cases, as outlined in our test generation workflow.

{
 "prompt": {
 "model": "gpt-4",
 "messages": [
 { "role": "system",
 "content": "You are an expert C and
C++ unit test writer. Write tests to exercise boundary
values, equivalence classes, every statement, every
decision true and false. Write tests that call every
boolean condition both true and false. Write suitable
robustness tests. Return valid json."},
 { "role": "user",
 "content": "We are only using the
Cantata test harness to perform checks on the return
values when calling the software under test.

Along with the name and description of the test, we
require a block of code achieving the following:
- setting up any input data required for the test
- calling the entry point to the test
- if the function returns, set a variable to hold the
return value
- performing a Cantata CHECK on any return

We also require a string of expected calls to onward
functions. This string needs to be a comma seporated
list exactly in the order the calls are made and of
the format:

<function_name_1>,<function_name_2>,

etc. Where <function_name> is the name of the function
that we expect to be called during the test. We could
be expecting one or more calls to:
low_pressure_check
get_systolic
get_diastolic
high_pressure_check
sound_alarm
" },
 { "role": "assistant",
 "content": "I understand. Please
provide the code to generate tests for."},
 { "role": "user",
 "content": "Here is the code to test:
<truncated>},
 { "role": "assistant",
 "content": "Thanks for this piece of
code, I will generate some small unit tests for this
code. Please specify the entry point function to drive
our first batch of tests."},
 { "role": "user",
 "content": "Our entry point is:
pressure_check"},
 { "role": "assistant",
 "content": "OK."},
 { "role": "user",
 "content": "Provide a list of function
calls with expected returns and expected calls."}
],
 "functions": [
 { "name": "test_it",
 "description": "input to drive the
creation of unit tests",
 "parameters": "<truncated>}
],
 "function_call": {

https://www.qa-systems.com/tools/cantata/
https://px4.io/
https://www.apollo.auto/
https://github.com/universal-ctags/ctags
https://cscope.sourceforge.net/
https://github.com/ruben2020/codequery
https://code.visualstudio.com/docs/python/testing#_generating-tests
https://code.visualstudio.com/docs/python/testing#_generating-tests

 "name": "test_it"
 },
 "temperature": 1,
 "max_tokens": 2000,
 "top_p": 1,
 "frequency_penalty": 0,
 "presence_penalty": 0,
 "stream": false
 },
 "response": {
 "id": "xxx",
 "choices": [
 {
 "finish_reason": "stop",
 "index": 0,
 "logprobs": null,
 "message": {
 "content": null,
 "role": "assistant",
 "function_call": {
 "arguments": "{
 "tests": [
 {
 "test_name":
"Test_pressure_check_with_monitor_OK",
 "test_description": "Test the pressure_check
function when monitorStatus is MONITOR_OK",
 "test_code": "
#define MONITOR_OK 1
extern int monitorStatus;
extern int systolic;
extern int diastolic;

void Test_pressure_check_with_monitor_OK()
{
 int retVal;

 // setup
 monitorStatus = MONITOR_OK;

 // exercise
 retVal = pressure_check();

 // verify
 CHECK_INT(retVal, 1);
 CHECK_INT(systolic, 120); // The expected return
from get_systolic
 CHECK_INT(diastolic, 80); // The expected return
from get_diastolic
}",
 "call_list": "get_systolic,get_diastolic"
 },
 {
 "test_name":
"Test_pressure_check_with_monitor_NOT_OK",
 "test_description": "Test the pressure_check
function when monitorStatus is NOT MONITOR_OK",
 "test_code": "
#define MONITOR_OK 1
extern int monitorStatus;
extern int systolic;
extern int diastolic;

void Test_pressure_check_with_monitor_NOT_OK()
{
 int retVal;

 // setup
 monitorStatus = !MONITOR_OK;

 // exercise
 retVal = pressure_check();

 // verify
 CHECK_INT(retVal, 0);
 CHECK_INT(systolic, -1);
 CHECK_INT(diastolic, -1);
}",
 "call_list": ""
 }

]
}",
 "name": "test_it"
 },
 "tool_calls": null
 }
 }
],
 "created": xxx,
 "model": "gpt-4-0613",
 "object": "chat.completion",
 "system_fingerprint": null,
 "usage": {
 "completion_tokens": 330,
 "prompt_tokens": 684,
 "total_tokens": 1014
 }
 }
}

In this example the part underlined and bold is the key

element to direct the system to generate tests of a specific

type. Here we are looking for boundary and robustness

tests.

Expanded Prompt Examples

 "content": "You are an expert C and C++ unit test
writer. Write tests to exercise boundary values,
equivalence classes, every statement, every decision
true and false. Write tests that call every boolean
condition both true and false. Write suitable robustness
tests. Return valid json. This includes creating
scenarios where edge cases are tested, such as the
smallest or largest possible values, values on either
side of a boundary, and common robustness challenges in
system behavior."

In this example we instruct the LLM to focus on

generating specific types of unit tests, namely boundary

value tests, equivalence class tests, and robustness tests for

C/C++ code. These tests are crucial for ensuring that the

software behaves as expected under various edge conditions

and stress scenarios.

This approach emphasizes comprehensive testing by

ensuring all paths and conditions are evaluated, enhancing

the software's reliability and performance.

Variations for Different Testing Scenarios

1. Invalid Input Testing

 "content": "As a specialist in C and C++
testing, generate unit tests that deliberately use
invalid, unexpected, or outlier inputs. Verify that the
software gracefully handles these inputs by either
rejecting them with appropriate error messages or by
ensuring no system instability. Return valid json."

This prompt directs the LLM to create unit tests that

focus on how the application handles inputs that are

incorrect or out of the expected range, which is essential for

validating input validation and error management in the

software.

2. Resource Management Testing

 "content": "Create unit tests for C and C++
applications that assess the software's management of

system resources. These tests should include scenarios
where resources are limited, such as low memory
availability, and ensure the application releases all
resources after use. Return valid json."

This prompt focuses on testing the software's ability to

handle and efficiently manage system resources, crucial for

applications that operate in resource-constrained

environments or require high reliability.

3. Interrupt Handling Testing

 "content": "Develop unit tests that simulate
various interrupt conditions in C and C++ programs.
Ensure that the software correctly handles and recovers
from these interrupts, maintaining data integrity and
proper operational state. Return valid json."

The tests generated from this prompt should ensure that

the software can handle unexpected interruptions,

maintaining stability and data integrity, which is vital for

real-time and critical systems.

4. Error Handling and Recovery Testing

 "content": "Generate unit tests for error
handling and recovery mechanisms in C and C++ code. The
tests should force the software into error states and
evaluate the recovery procedures to return to a normal
operating state. Return valid json."

This prompt instructs the LLM to create tests that assess

the effectiveness of the software's error handling and

recovery processes, critical for applications where uptime

and reliability are essential.

	Test Suite Augmentation using Language Models - Applying RAG to Improve Robustness Verification Adam Mackay MEng (QA-Systems)
	I. Introduction
	II. Related Work
	III. Techniques
	IV. Case Studies
	PX4 Autopilot (PX4)
	Apollo Auto (AA)
	Insights and Unveiling Additional Defects
	Comparison with Other Validation Tools

	V. Conclusions
	Observations and Achievements
	Future Pathways

	Acknowledgments
	References
	Annexe
	Prompting – example flow
	Expanded Prompt Examples
	Variations for Different Testing Scenarios

