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Abstract

Assembly lines commonly run for dozens of years before being decommissioned. As product

families may evolve several times per year by following the needs of sales and marketing, pro-

cess engineers reconfigure the lines several dozens of times throughout their life cycle. If the

line is not flexible enough, these reconfigurations may be costly, and they can lead to poor ef-

ficiency. The present work investigates the possibility of designing a line while accounting for

product evolution throughout the life cycle of the line. The evolution of the product family is

unknown and we consider a robust optimization approach. We study a mixed-model assem-

bly line, where each station contains a worker/robot and its equipment. The line produces

different product models from the same family, and a reconfiguration occurs when a new

product model replaces one of the current variants in the product family. Reconfiguration

re-arranges resources and equipment pieces, and it can re-assign some tasks. In this study,

we formulate a novel Mixed-Integer Linear Programming (MILP ) that minimizes the total

cost of the initial design and future reconfigurations of the line over some future product

family evolution for the worst case. We consider the worst-case among different scenarios
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that represent possible production requirements of the new product model. An adversarial

approach is also developed to solve large-size instances. We perform computational experi-

ments on the benchmark data from the literature. The results show the proposed adversarial

approach performs well, and the proposed robust model significantly reduces the design and

reconfiguration costs when compared to the classical approach that designs and reconfigures

by accounting only for the current product family.

Keywords: Robust optimization, Mixed model assembly line, Reconfigurability, Product

family evolutions, Adversarial approach

1. Introduction

Nowadays, manufacturing companies are facing an increasing demand for product cus-

tomization, and high-frequency market changes (Schuh et al., 2017; Rahman, 2020). As a

result, assembly lines evolve frequently throughout their life cycle to adapt to changes in

customer requirements, product requirements, and processing technologies (AlGeddawy and

ElMaraghy, 2012). In this context, companies must create assembly lines that are easy to

upgrade, where the integration of new technologies or functions is seamless (Molina et al.,

2005). In particular, such manufacturing systems must handle quick changes caused by the

frequent introduction of new product variants.

This work is aligned to the ASSISTANT (LeArning and robuSt deciSIon SupporT sys-

tems for agile mANufacTuring environments) project funded by the European Commission

which aims to create an Artificial Intelligence (AI)-based software by developing digital twins

for management and decision aid of the production planning and control of adaptive man-

ufacturing environments (Castañé et al., 2022). The project involves several academic and

industrial partners, such as producers of automotive and industrial equipment. Discussions

with our industrial partners in the project highlighted the importance of our current work

in practice and that changes in product variants are a challenge for production line design-
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ers. In such a sense, a small change in a product may have a large impact on the structure

and efficiency of an assembly line. In this paper, we investigate the possibility of foreseeing

changes in product variants in the design of an assembly, and we evaluate the impact of

prescriptive actions to smooth the reconfigurations. The objective is to plan the evolution

of the manufacturing systems to deal with the changing requirements. For instance, if the

manufacturer foresees that the workload to assemble a specific part may increase, it might

be worth leaving an empty station in the line. This empty station can perform additional

tasks associated with the new product variant without disturbing other stations.

Our work also falls in the line of research related to Reconfigurable Manufacturing Systems

(RMS). Koren et al. (1999) introduced the RMS paradigm to efficiently cope with market

changes, customized products, and volatile demand (Singh et al., 2017; Khettabi et al., 2021;

Wang and Koren, 2012). One of the properties of RMS is their ability to evolve with the

product families cost-effectively and efficiently (Koren et al., 1999). However, the design

of an RMS able to reconfigure to face all product variants in a family remains a challenge

(e.g., Altemeier et al., 2010). As optimization models for the design of manufacturing and

assembly lines are similar, the present work is also applicable in the context of RMS.

We focus on the reconfiguration planning of a mixed-model assembly line (MMAL) for

several production generations ahead. Each production generation corresponds to product

evolutions, which occur every 6-12 months in today’s unstable manufacturing environment.

In each period, process engineers configure the line to produce a given product family, and

reconfigure it at the beginning of each generation to account for new product models in

the family. As mentioned, the problem arises from a real-world automotive manufacturing

company where an assembly line is organized using human workers and robots at stations.

As mentioned, this company is one of the partners in our common project ASSISTANT.

Our work seeks to answer the following research questions:
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1. Does modeling uncertain product evolution in an assembly line design optimization

model yield more robust and resilient assembly lines?

2. What is the impact of the unknown product evolution on the design and reconfiguration

costs?

We consider robust optimization rather than stochastic optimization because such methods

do not require a precise description of the probabilistic evolution of the product family.

Computing such a probabilistic forecast of the evolution of the products would be very

difficult. In addition, developing an optimization approach to optimize such reconfiguration

planning costs within the lifetime of the assembly line is challenging, and robust optimization

approaches are usually less demanding in computing resources than stochastic optimization

methods.

Our main objective is to design a line to produce a given product family while accounting

for future evolutions of the product family. To account for future generations, we define

several scenarios that give the product variants in each production generation over the life

cycle of the line. The contribution of this work is threefold. First, we formulate a novel

robust optimization problem that minimizes the total design and reconfiguration costs of the

line for the worst possible scenario. The total costs correspond to the reconfiguration effort

of the line. These costs include buying and (un-)installing (re-assigning) the resources and

equipment, the cost of hiring workers, and the profits of selling the resources and equipment.

Following the robust optimization paradigm, we optimize these costs for the worst-case prod-

uct family evolution scenario. We formulate mixed-integer linear programming (MILP ) for

this problem. Second, we propose an adversarial approach to find a more robust solution

faster. Finally, we perform computational experiments in a simulation framework. These

numerical results show that our robust model provides significantly lower design and recon-

figuration costs for the worst-case scenario when compared to the classical model where the
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design and reconfiguration of the line are optimized at each period without foreseeing the

next generations. The robust solution requires a larger initial investment, but the reconfig-

uration costs of a flexible line designed with the robust approach do not vary significantly

when product families change a lot in different generations.

The rest of our paper is organized as follows. Section 2 presents the literature review

of the topic at hand. Section 3 successively introduces the problem description, a generic

approach to generate the scenario tree of product evolutions, an illustrative example, and

the new Mixed Integer Linear Programming (MILP ). Section 4 describes the developed

adversarial approach. Section 5 presents the computational results, and it gives a discussion

on several managerial insights. Finally, Section 6 concludes the paper and suggests some

future work directions.

2. Literature review

This section reviews the literature related to the main concepts studied in this paper,

namely the mixed-model assembly line, reconfigurability, uncertainty in assembly lines, and

commonly developed optimization approaches, respectively. We also highlight the major

contributions of this work compared to the literature.

In terms of product variety, assembly lines are categorized into three types: single-,

mixed-model, and multi-model lines (Kucukkoc and Zhang, 2014). A single line produces

a single type of product, while mixed/multi-model lines produce multiple types of product

models (Sivasankaran and Shahabudeen, 2017). The main difference between mixed-model

and multi-model lines is the ordering of product models entering the line. In multi-model

lines, product models enter in separate lots, and there is a noticeable setup time between

models. In mixed-model lines, products enter in an arbitrary order where the setup time

is negligible compared to the processing and cycle times. A mixed-model line offers a very

high level of flexibility (Johansen, 1990) and can benefit from the reconfigurability concept.
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To do so, our research focuses on improving the reconfiguration of such lines considering

the shortening product lifecycles, product evolutions, and frequent market changes is getting

growing attractions.

The studied line is reconfigurable since the resources and equipment can be removed,

moved, or added to stations for a new product family producing at the line. Reconfigurable

manufacturing systems are designed to rapidly adapt functionality and production capacity

in response to new changes by re-arranging/changing production components (Koren et al.,

1999). On the one hand, changes in product demand affect the takt time and the input

sequences, and they might require re-balancing of the line. On the other hand, changes or

additions to a product variant may require new tools or skills (Mehrabi et al., 2000). These

changes happen after the design of the line, and they can not be predicted accurately. There

is a need to develop methods that can provide an initial assembly line design, while also

accounting for future reconfigurations of mixed model (Şeker et al., 2013; Manzini et al.,

2018).

As the market is no longer satisfied with a mass-producing uniform product (Singh et al.,

2017), manufacturing companies must offer a variety of customized products to the market

(Alptekinoğlu and Corbett, 2008). The explosion of product variety is particularly evident in

the automobile and computer industries (Pil and Holweg, 2004). However, product variety

dramatically increases the complexity of the tasks of process design and production manage-

ment (Benkamoun et al., 2013). In addition, an MMAL adapts to face changes in product

variety and changes in demand during its life cycle (Hu et al., 2008; Zhang et al., 2023). With

the shortening of product life cycles and unpredictable demand, these changes become more

frequent. Some papers studied product family changes from a product design point of view,

but not in terms of the assembly line design and reconfiguration (Johansen, 1990; Pirmoradi

et al., 2014; Gembarski et al., 2021). Creating a product family has a significant impact on

the understanding of the design and manufacturing characteristics during the product’s life
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cycle (Zhang et al., 2020; Stief et al., 2023). Note that product development in the future

corresponds to uncertainty factors (Wei et al., 2017), either in terms of product structure

design (product features) or market demand. For example, Wei et al. (2017) mentioned that

customer requirements create uncertainty for future product evolutions, and they developed

a flexible design method for product family development considering such uncertainty. More-

over, Biswas et al. (2023) mention that product family evolution is seen as the foundation of

product development where new varieties of product models gradually enter the market to

adapt to changing environments. In Biswas et al. (2023), authors propose a methodology to

address uncertainty in the evolution of the dynamic modeling system of product family evo-

lution. The authors consider three driving elements, market demand, customer requirements,

and technological requirements. To the best of our knowledge, we are the first to consider the

assembly line design and balancing problem under uncertain product family evolution. Our

study aims to account for such uncertainty in the reconfiguration planning of a mixed-model

assembly line. Such a concept was raised also from the real automotive industry as we had

an interview with a company in France.

In terms of solution technique, several researchers developed methods to plan manufac-

turing system design changes over several generations of production (AlGeddawy and El-

Maraghy, 2012; Bryan et al., 2013; Abbas and ElMaraghy, 2018; Koren et al., 2018). For

instance, Bryan et al. (2013) studied the reconfiguration planning of a line that produces a

family of products. The authors show that the planning can be improved by considering the

future customization of products and variable demands for different product models. Our

work studies a robust optimization model for the design and reconfiguration planning of an

MMAL with the uncertainty caused by future evolutions of the product family. Robust op-

timization is one of the fundamental optimization approaches that model uncertainty and

its effects (Liu et al., 2020; Pereira, 2018), and it focuses on modeling techniques to make

plans that are insensitive to uncertainty. Robust optimization techniques optimize the per-
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formance of the system for the worst case. Many parameters are subject to uncertainty in

assembly lines, and several works rely on robust optimization models to design lines are can

face, as some given publications in the recent literature (Wu et al., 2022; Liu et al., 2021;

Breckle et al., 2021). The reformulation per constraint and dualization and the adversarial

approaches are commonly used to tackle robust models. The dualization approach does not

apply to our problem, since the associated sub-problem is non-convex. Adversarial techniques

(Yanıkoğlu et al., 2019) refer to the approaches that do not rely on a tractable reformula-

tion of the robust counterpart. These techniques usually perform by iteratively solving a

restricted robust model that accounts for a set of scenarios to provide a possible robust solu-

tion. In each iteration, adversarial approaches find the worst possible scenario for the current

solution. If an adversarial approach finds this scenario, it inserts the scenario into the re-

stricted robust model. The algorithm stops when a possible robust solution is guaranteed to

be feasible. As an example, Bienstock and Özbay (2008) proposed an adversarial approach

using some decomposition techniques to iteratively restrict the space of realization of an un-

certain parameter. The results show that the approach provides robust solutions even for

large instances. A specificity of our problem is that the line is re-configured (re-optimized)

in each generation. This corresponds to a multi-stage stochastic problem, and we adapt the

adversarial approach to this context.

The main contributions of this work are given below. First, we deal with a novel mixed-

model assembly reconfiguration planning problem (MALRP ), where the line is reconfigured

in each product generation. Second, we formulate a new scenario-based MILP for the ro-

bust optimization model which aims to minimize total design and reconfiguration costs. The

model optimizes for the worst-case sequence of product generation when the model variants

in the future generation are unknown. Third, this study develops a generic technique to gen-

erate the scenario tree for the product family evolutions. Fourth, we propose an adversarial

technique to solve larger instances. Fifth, we perform a simulation to compare the proposed
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robust model with the classical approach, and this simulation leads to several managerial

insights. The results demonstrate the better performance of the developed adversarial ap-

proach compared to the proposed MILP , giving a good quality solution in less computational

time. Note that this work is an extended version of our recent proceeding (Hashemi-Petroodi

et al., 2022). Hashemi-Petroodi et al. (2022) developed a mathematical model for the robust

optimization of the design and reconfiguration planning of an MMAL with the uncertainty of

the future product family evolution. The present work contains several major contributions

compared to our previous study. First, the current mathematical model is slightly improved

by considering more practical assumptions. Second, we develop an approach to deal with the

product family evolution and construct the new product model requirements (e.g. the prece-

dence graph), while in our previous conference paper (Hashemi-Petroodi et al., 2022), we

assumed that the new product requirements are given. Third, an adversarial approach with

corresponding simulation tests has been proposed to solve the problem for larger instances

more efficiently. Fourth, more computational experiments and insights are provided in this

work compared to Hashemi-Petroodi et al. (2022).

3. Problem description and formulation

This section successively describes the studied mixed-model assembly line reconfiguration

planning problem (MALRP ), an approach to generate the scenario tree for future evolutions

of the product family based on user opinions, and a novel scenario-based mixed-integer lin-

ear programming (MILP ) model. This section also provides a simple example for further

clarification of the problem.

3.1. Description of MALRP

The studied problem is motivated by the situation encountered by an automotive pro-

ducer in France. Our discussion with an automotive manufacturer highlighted the difficulty
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they are facing in reconfiguring the production line every few months (e.g., 6/12 months).

Such reconfiguration is challenging and costly for the company and they usually perform it

during weekends or public holidays. The reason behind such a reconfiguration is the mar-

ket changes when the company adds a new product variant to the current product family.

Moreover, the changes in the demand for existing product models may cause reconfiguration.

Often, the new product added to the line replaces other product variants whose production

is discontinued. Therefore, accommodating the new product variant(s) under development

implies the reallocation of tasks to the stations and reconfiguration which corresponds to

removing/adding/moving the equipment pieces, human workforce, and mobile robots at sta-

tions. The company aims to optimize the design and reconfiguration planning of the line

in terms of total costs of eliminating/purchasing, (un-)installing/re-allocating the resources

and equipment. This is expected because the assembly lines are usually designed for a long

lifetime with high investment and following amortized costs (Boysen et al., 2009).

The line produces a part family of products in the context of a mixed-model assembly

line. The products enter the line in arbitrary orders with negligible setup time compared

to the processing times. The set of product models is given as I = {1 . . . I}. The line has

several sequential stations S = {1 . . . S}, and the product items enter one by one, and they

pass through all stations. The items move to the next station at the same time step, called

takt time C, which is the same for all stations as defined in a paced line. Each station has a

single resource (either a human worker or a robot) with several equipment pieces. Each task

can be performed either by a worker or by a robot. We denote by R the set of resources and

by E the set of equipment as well.

At each takt, there is only a single product unit at each station. Each product model

i ∈ I requires a set of Oi tasks. Each task o of product model i requires a processing time

ptoei if it is performed by equipment e. Note that the process duration for a task o may change

with the product models. Each product model i ∈ I has a set Ai of precedence relationships
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(o, o′) between tasks, where task o must be performed before task o′ for this product model.

The compatibilities among tasks, resources, and equipment are represented by two sets.

CEo contains the types of equipment capable to perform task o, and CRe contains the

resources certified to use the equipment e. Note that only one resource (a worker or a robot)

and several pieces of equipment can be located at each station.

The line must be reconfigured in each production generation where the set of model

variants in the product family changes. We distinguish four types of changes in the product

family: (1) the new product family may include a new product model; (2) some model

variants in the new product family may be discontinued; (3) the set of tasks for each model

in the family can change; (4) the demand for each variant can change. Therefore, because

of such changes, the duration of the tasks and their precedence relationships can change.

In each generation g in the set of generation G = {0 . . . G}, the line may assemble a set

PSg = {1 . . . PSg} of product variants. Note that g = 0 refers to the current generation and

the set of product models PS0 is known (|PS0| = 1). Each product family p at generation g

contains the set Ipg = {1 . . . Ipg} of product models. We denote by mg
ip, the market demand

volume of the existing product model i in product family p at generation g. On the contrary,

each of the future generations includes different scenarios that represent different evolutions

of the product families. We explain the generation of these scenarios later in this section.

The objective is to design a reconfigurable assembly line ready to evolve for different

product generations. The reconfiguration is performed by re-arranging the resources and

equipment. A resource or/and the equipment piece(s) might be removed from one station, a

new resource or/and the equipment piece(s) might be added to a station, or a resource or/and

the equipment piece(s) might be removed from one station and installed in the other station.

Each of these reconfigurations is associated with a cost: αeg and α′
rg denote the purchasing

cost of equipment e and robot r (or hiring cost of worker r) in production generation g,

respectively. βeg and β′
rg denote the selling price of equipment e and robot r in production
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generation g, respectively. λeg and λ′
rg are the installation cost of equipment e and robot r

in production generation g, respectively. Finally, γeg and γ′
rg are the un-installation cost of

equipment e and robot r in production generation g, respectively.

The objective is to minimize the design and reconfiguration cost for the worst-case evo-

lution path of the line, but this evolution path must take value in a well-defined uncertainty

set. For simplicity, in this work, we consider that only one new product model is released in

each generation, and this model replaces one of the ancient ones in the family. In addition,

we let the user define some restrictions on what can happen in the future because designing

a line that can handle all possible changes (a new non-restricted product model) would be

too expensive and is not logical. More precisely, the user must intervals for the number

of additional required tasks, removal of tasks, the processing time of those tasks, and the

precedence relationship between tasks.

3.2. New product requirements

The considered problem is a multi-stage robust optimization problem, but the well-known

affine rules cannot be used because the recourse problems are combinatorial. Therefore, we

approximate the problem by sampling a scenario tree that represents the future evolution

of the product. This section explains how the scenarios are generated in a tree using an

illustrative example. Each scenario gives a possible definition of the product in each product

family of each generation. The features of the product models correspond to the product

design, and they consist of the number of required tasks, the processing time of tasks, and

the precedence relationships.

Figure 1 illustrates a simple example of the scenario tree for two future production gen-

erations of a mixed-model line which is initially designed for two parts A and B with equal

demand volumes 50%. Based on the market situation, the marketing and product develop-

ment department decided to upgrade one of these product models. Therefore, two scenarios
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are possible in the next generation (g = 1) where product A or product B evolve to C1 or C2,

respectively. Then, the same can happen for the following generation (g = 2) that one of the

product models is replaced by another new model (e.g., given in Figure 1, products B or C1

be evolved to D2 or D1, respectively). Many scenarios can be generated into this tree based

on the features of the new product model (e.g., set of tasks, processing time, precedence

graph) and the demand volume of product models.

Figure 1: The product families in two production generations (scenario tree).

[Alt-Text: ]The Figure shows the proposed scenario tree for this study where several

evolved product families are generated for some future production generations.

We denote the set of scenarios by SC = {1 . . . N}, where each scenario n ∈ SC is

a succession of pairs (p, p′) of product families such that production moves from family

p ∈ PSg−1 to family p′ ∈ PSg in the next generation. Note that in the proposed approach for

the scenario tree generations, the probability of all scenarios is equally likely. The reason is

the lack of information on the future evolution of products and the nature uncertainty of the

new product requirements. In this study, we are using the generated scenario tree to solve

our robust optimization problem. As we optimize against the worst-case, the model does not
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account for the probability of the scenarios.

The proposed MALRP aims to study a robust optimization model aiming to minimize

the total cost of design and future reconfigurations of the line for the worst scenario in

the tree. The total cost consists of the cost of buying/hiring new resources and equipment,

(un)installing the resources and equipment from the stations, and removing/firing the useless

resources and equipment. We give below the main steps of the approach to provide the

scenario tree, along with an illustrative example for two generations (current product family

p = {A,B} in the design stage g = 0 and the new family p = {B,C1} in generation g = 1 as

given in Figure 1):

Step 1: Create the joint precedence graph for the current product family, e.g. p = {A,B}

at the current design stage g = 0.

This paper considers the product family representation proposed by Bryan et al. (2013).

This approach is appealing because, if the line includes buffers to handle fluctuations in the

time required in each station, methods designed for the simple assembly line balancing prob-

lem can solve the resulting problem (Becker and Scholl, 2006). The approach introduced

by Thomopoulos (1967) creates the product family precedence graph A′
p, which is the in-

tegrated graph of all product models in family p. O′
p represents the set of all tasks needed

for all product models in a product family where O′
p = ∪i∈pOi, where Oi is the set of tasks

needed for product model i. Bryan et al. (2013) uses the weighted average times of tasks

to determine the processing time of tasks. In our work, we create a common precedence

graph for all variants of a given product family. We denote by ptgoep the average time of each

task o executing by equipment e in the joint graph of the product family p at generation g.

Moreover, ptgoeip is the processing time of each task o of the certain product model i when it

is executed by equipment e in product family p at generation g. As shown in Figure 2, ptgoep
is calculated with the ratio of the market demand of the product models mg

ip as follows:
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ptgoep =
∑

i∈Ipg mg
ip ptgoeip g ∈ G, p ∈ PSg, o ∈ O′

p, e ∈ E

Figure 2 demonstrates the joint precedence graph for a product family p ∈ PSg with

two product models A,B of the production generation g = 0. Figure 2 gives the precedence

graph of model A and model B as well as the joint precedence graph. We remind that mg
ip

represents the volume of the market demand. For example, the volume of product models

A and B is m0
A1 = 30% and m0

B1 = 70% for the first product family in the current design

stage, respectively.

Figure 2: The joint precedence graph for a product family including two product models {A,B}.

[Alt-Text: ]The Figure shows how to create a joint precedence graph of a product family

including several product models (e.g. {A,B}).

Step 2: Construct a new graph for the new product family p′ (e.g., p′ = {B,C1} in

Figure 1) of the next following generation (e.g., g = 1 in Figure 1).

This graph is built from the graph of the previous stage, by successively, removing δ% of

the tasks, adding δ% of tasks, and modifying the process duration to the task in the interval

[ptg−1
op − σ1.pt

g−1
op , ptg−1

op + σ2.pt
g−1
op ]. The parameters δ, σ1, and σ2 are given, and they control
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the stability of the product family. Note that the product family will not change to something

completely different. Even if the product is evolving, it will remain with a lot of similarities

with the initial version. In most cases, we keep almost a similar number of tasks, the process

duration does not change so much, and some precedence constraints never change.

For example, Figure 3 shows how the joint precedence graph obtained in the example

given in Figure 2 as step 1 converts to the new joint graph in a new generation. In the

current product family, two products A and B are produced where a joint graph is given. By

step 2 the joint graph for the new product family p′ = {B,C1} in the following generation

g = 1 is provided. We select a random value 6 for the number of required tasks in the range

of [5, 1.5 ∗ 5] = [5, 8] with δ = 50%. For the processing time, we select a random value in

the range of 40% below and 60% above the processing time of each existing task (σ1 = 40%

and σ2 = 60% here). For instance, for task 1 a random value from the interval [3.3s, 8.9s]

is taken which is 5.6s in the new graph. For the newly added task 6 we choose a random

value in the range of 40% below minimum and 60% above the average processing time (5.6s)

which is equal to [3.3s, 9s]. Therefore, the processing time of task 6 is given 8s.

Figure 3: Creating the joint precedence graph of a new evolved product family from a joint graph of an

ancient product family (Step 1 and Step 2).

[Alt-Text: ]The Figure shows how a joint precedence graph is created for the newly evolved

product family (e.g. {B,C1}) from a joint graph of the current product family (e.g.

{A,B}).

16



Step 3: In this step, we create the graph of the new product model from the obtained

joint precedence graph of the new family product. We propose the following formulation to

calculate the processing time of each task o of the new product model i′ in a new family p′.

ptgoei′p′ =
[
ptgoep′ −

∑
i∈Ipg−i′ m

g
ip′ .pt

g
oeip′

]
/mg

i′p′ g ∈ G − 0, p′ ∈ PSg, o ∈ O′
p

Figure 4 shows how the precedence graph of the new product C1 is extracted from the

joint graph of the first product family of the generation g = 1 given in Figure 1. Wa assume

a demand volume of product models of mg=1
Bp=1 = 30% and mg=1

Cnp=1 = 70%. For example for

task 2, we obtain pt12C11
= [9− (0.3.8)]/0.7 = 9.4.

Figure 4: Obtaining the precedence graph of a single product model from the joint graph of a certain product

family (step 3).

[Alt-Text: ]The Figure shows how to create the precedence graph of a certain product

model (e.g. C1) in a product family from the joint graph of the family (e.g. {B,C1}).

Figure 5 shows two other examples of scenarios that correspond to different demand

volumes and different product models in the family.
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Figure 5: Precedence graph for two possible scenarios in a single generation.

[Alt-Text: ]The procedure of generating the joint precedence graph of the newly evolved

product families (e.g. {B,C1} and {A,C2}) in the new production generation, based on the

graph of the current product family (e.g. {A,B}), is demonstrated.

3.3. Mathematical model

A new mixed-integer linear programming (MILP ) formulation is provided for the MALRP .

A list of all parameters and variables used in this study is available in Appendix C. The

model aims to minimize the total reconfiguration effort over the future production genera-

tion for the worst-case scenario generated in the scenario tree. The effort includes the total

design and reconfiguration costs which consist of (un-)installing cost of resources and equip-

ment pieces in case of removing and/or adding them in the line or moving them between

stations. The decision variables are defined as follows:

• wg
srp is equal to 1 if resource r is assigned to station s for producing product family p

in generation g, and 0 otherwise.
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• xg
sop is equal to 1 if task o performed on product family p is performed at station s

during production generation g, and 0 otherwise.

• bgsep is equal to 1 if equipment e is installed at station s for producing product family p

in generation g, and 0 otherwise.

• bgsoep is equal to 1 if equipment e is installed at station s to perform task o on product

family p in generation g, and 0 otherwise.

The continuous variable Y gives the worst (maximum) value of the total design and re-

configuration cost. Precisely, Y represents the cost of purchasing equipment/robots, hiring

workers, the cost of installing and uninstalling robots/equipment, and the cost of removing

robots/equipment and firing the workers for the worst scenario among all n ∈ SC. Conse-

quently, the objective function (1) aims to minimize the total design and reconfiguration cost

of the worst scenario.

minY (1)

Furthermore, other continuous decision variables are defined: Qn is the purchase/selling cost

of the equipment, Q′
n is the purchase/selling cost of the robots, and the cost of hiring/firing

the workers, Zn is the installing/uninstalling cost of the equipment, and Z ′
n shows is the

installing/uninstalling cost of the robots and workers. The value of variable Y is calculated

by constraints (2) which is the total cost of a single scenario. Also, Qn, Q′
n, Zn and Z ′

n are

calculated by equations (3), (4), (5), and (6), respectively.

Y ≥ Qn +Q′
n + Zn + Z ′

n n ∈ SC (2)
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Qn =
∑

g∈G−0

∑
(p,p′)∈SCn

[∑
e∈E

[
αe0

[∑
s∈S b0se0

]
+ αeg

[∑
s∈S bgsep −

∑
s∈S bg−1

sep′

]+
+

βeg

[∑
s∈S bgsep −

∑
s∈S bg−1

sep′

]−]]
n ∈ SC

(3)

Q′
n =

∑
g∈G−0

∑
(p,p′)∈SCn

[∑
r∈R

[
α′
r0

[∑
s∈S w0

sr0

]
+ α′

rg

[∑
s∈S wg

srp −
∑

s∈S wg−1
srp′

]+
+

β′
rg

[∑
s∈S wg

srp −
∑

s∈S wg−1
srp′

]−]]
n ∈ SC

(4)

Zn =
∑

e∈E γe0

[∑
s∈S b0se0

]
+
∑

g∈G−0

∑
(p,p′)∈SCn

∑
s∈S

[∑
e∈E

[
λeg

[
bgsep − bg−1

sep′

]+
−

γeg

[
bgsep − bg−1

sep′

]−]]
n ∈ SC

(5)

Z ′
n =

∑
r∈R γ′

e0

[∑
s∈S w0

sr0

]
+
∑

g∈G−0

∑
(p,p′)∈SCn

∑
s∈S

[∑
r∈R

[
λ′
rg

[
wg

srp − wg−1
srp′

]+
−γ′

rg

[
wg

srp − wg−1
srp′

]−]
n ∈ SC

(6)

Constraints (3) - (6) are non-linear. To linearize these constraints, several binary variables

must be defined.

We define some binary variables related to equipment reconfiguration as b+g
epp′ :=

[∑
s∈S bgsep−∑

s∈S bg−1
sep′

]+, b−g
epp′ := −

[∑
s∈S bgsep −

∑
s∈S bg−1

sep′

]−, b′+g
sepp′ :=

[
bgsep − bg−1

sep′

]+, b′−g
sepp′ :=
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−
[
bgsep − bg−1

sep′

]−. These variables determine the re-arrangements of equipment at stations

when the line moves from one generation to the next.

Similarly, some binary variables for resource reconfiguration are defined as w+g
rpp′ :=[∑

s∈S wg
srp−

∑
s∈S wg−1

srp′

]+, w−g
rpp′ := −

[∑
s∈S wg

srp−
∑

s∈S wg−1
srp′

]−, w′+g
srpp′ :=

[
wg

srp−wg−1
srp′

]+,

w′−g
srpp′ := −

[
wg

srp −wg−1
srp′

]−. These variables also determine the re-arrangements of resources

at stations when the line switches from one generation to the next.

New constraints (7) - (14) must be added to the model for linearization. These constraints

consider two consecutive generations g − 1 and g, and they compute the value of the newly

defined binary variables with a +/−. For example, in Constraints (7) and (8), if equipment e

is needed in a station at generation g (
∑

s∈S bgsep = 1) and was not already in the line during

the previous generation g − 1 (
∑

s∈S bg−1
sep = 0), then Constraint (7) results in b+g

epp′ = 1.

Therefore, in Constraint (8), b−g
epp′ = 0, the equipment must be bought for the line, and the

buying cost of equipment αeg is calculated in the function (3). In contrast, if the equipment

is used in the line within generation g − 1 (
∑

s∈S bg−1
sep = 1) and not needed anymore in

generation g (
∑

s∈S bgsep = 0), then b+g
epp′ = 0 through Constraints (7) and b−g

epp′ = 1 by

Constraint (8) that means
[∑

s∈S bgsep −
∑

s∈S bg−1
sep′

]−
= −1 in the function (3). When a

certain equipment piece is either used or not used in two consecutive generations, these two

variables are equal to 0. Constraints (9) to (14) are similar. Constraints (7) - (14) ensure

that these binary variables get value 1 or 0, and their use in constraints (3) - (6) lead to the

positive/negative value.

∑
s∈S

bgsep −
∑
s∈S

bg−1
sep′ ≤ b+g

epp′ g ∈ G, n ∈ SC, (p, p′) ∈ SCn, e ∈ E (7)

∑
s∈S

bg−1
sep′ −

∑
s∈S

bgsep ≤ b−g
epp′ g ∈ G, n ∈ SC, (p, p′) ∈ SCn, e ∈ E (8)

bgsep − bg−1
sep′ ≤ b′+g

sepp′ g ∈ G, n ∈ SC, (p, p′) ∈ SCn, s ∈ S, e ∈ E (9)
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bg−1
sep′ − bgsep ≤ b′−g

sepp′ g ∈ G, n ∈ SC, (p, p′) ∈ SCn, s ∈ S, e ∈ E (10)∑
s∈S

wg
srp −

∑
s∈S

wg−1
srp′ ≤ w+g

rpp′ g ∈ G, n ∈ SC, (p, p′) ∈ SCn, r ∈ R (11)

∑
s∈S

wg−1
srp′ −

∑
s∈S

wg
srp ≤ w−g

rpp′ g ∈ G, n ∈ SC, (p, p′) ∈ SCn, r ∈ R (12)

wg
srp − wg−1

srp′ ≤ w′+g
srpp′ g ∈ G, n ∈ SC, (p, p′) ∈ SCn, s ∈ S, r ∈ R (13)

wg−1
srp′ − wg

srp ≤ w′−g
srpp′ g ∈ G, n ∈ SC, (p, p′) ∈ SCn, s ∈ S, r ∈ R (14)

The rest of the constraints are given as follows:∑
s∈S

xg
sop = 1 g ∈ G, p ∈ PSg, o ∈ O′

p (15)

∑
s∈S

bgsep ≤ 1 g ∈ G, p ∈ PSg, e ∈ E (16)

∑
s∈S

wg
srp ≤ 1 g ∈ G, p ∈ PSg, r ∈ R (17)

∑
r∈R

wg
srp ≤ 1 g ∈ G, p ∈ PSg, s ∈ S (18)

xg
sop ≤

∑
e∈CEo

bgsoep g ∈ G, p ∈ PSg, s ∈ S, o ∈ O′
p (19)

bgsoep ≤
∑

r∈CRe

wg
srp g ∈ G, p ∈ PSg, o ∈ O′

p, e ∈ CEo, s ∈ S (20)

bgsoep ≤ bgsep g ∈ G, p ∈ PSg, o ∈ O′
p, e ∈ CEo, s ∈ S (21)∑

o∈O′
p

∑
e∈CEo

ptgoepb
g
soep ≤ C g ∈ G, p ∈ PSg, s ∈ S (22)

∑
s∈S

s xg
sop ≤

∑
s′∈S

s′ xg
s′o′p g ∈ G, p ∈ PSg, (o, o′) ∈ A′

p (23)

Constraints (15) ensure that each task o performed on product family p is performed

in only one station s at generation g. Constraints (16) and (17) ensure that equipment e/
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resource r is assigned at only one station s for producing product family p in generation

g. Constraints (18) assign only one worker/robot at each station s. Constraints (19) ensure

equipment is assigned to the station when performing a task there. Constraints (20) identify a

compatible resource (worker/robot) at a station when the task is performed with the required

equipment at that station. Constraints (21) determine the value of bgsep according to the value

of bgseop. Constraints (22) and (23) are respectively the classical takt time and precedence

relationship constraints. Note that the model does not forbid keeping the possible stations

free in the line to enhance the line’s flexibility as needed. Finally, Constraints (24) - (33)

give the bounds on the decision variables.

b+g
epp′ , b

−g
epp′ ∈ [0, 1] n ∈ SC, (p, p′) ∈ SCn, e ∈ E (24)

b′+g
sepp′ , b

′−g
sepp′ ∈ [0, 1] n ∈ SC, (p, p′) ∈ SCn, s ∈ S, e ∈ E (25)

w+g
rpp′ , w

−g
rpp′ ∈ [0, 1] n ∈ SC, (p, p′) ∈ SCn, r ∈ R (26)

w′+g
srpp′ , w

′−g
srpp′ ∈ [0, 1] n ∈ SC, (p, p′) ∈ SCn, s ∈ S, r ∈ R (27)

xg
sop ∈ {0, 1} g ∈ G, p ∈ PSg, s ∈ S, o ∈ O′

p (28)

bgsep ∈ {0, 1} g ∈ G, p ∈ PSg, s ∈ S, e ∈ E (29)

wg
srp ∈ {0, 1} g ∈ G, p ∈ PSg, s ∈ S, r ∈ R (30)

bgsoep ∈ {0, 1} g ∈ G, p ∈ PSg, s ∈ S, o ∈ O′
p, e ∈ E (31)

Qn, Q
′
n, Zn, Z

′
n ≥ 0 n ∈ SC (32)

Y ≥ 0 (33)
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3.4. Illustrative example

For clarity, this section illustrates the studied MALRP with a simple example. All the

details of input used parameters in the example are given in Appendix A.

This illustrative example aims to further clarify the studied MALRP considering a line

with two sequential stations which is producing two product models. For each product family

evolution in each period when a new product model is added to the family, the line should be

reconfigured. At the initial stage of the line (g = 0), a product family p = 0 requires 5 tasks.

In g = 1, the product family can evolve in different scenarios. In this example, we generate

five scenarios to obtain the worst-case. However, only two scenarios are illustrated, namely,

the case of product families p = 0 requiring 5 tasks, and p = 1 requiring 7 tasks. The takt

time is equal to 600s. The precedence graphs of the new product families are generated as

explained in Section 3.2.

Figure 6 shows the initial design (p = 0 and g = 0) and the configuration of the line for

two possible product families in the new generation g = 1. Among these two scenarios, the

second one (p = 1 in g = 1) is worse (total cost of 73, 247 compared to 70, 478) and also

the worst one among all 5 generated scenarios. The detailed calculation of cost functions are

given in Appendix B.

24



Figure 6: The solution of the illustrative example with one generation and two products family

[Alt-Text: ]The solution of the illustrative example (including the required resources,

equipment, task assignments, and cost values) for two possible scenarios of the current

design and one future production generation.

4. Adversarial approach

This section introduces a heuristic based on the adversarial approach to robust optimiza-

tion problems. The advantage of this method is that it does not require the random generation

of the scenario tree. Instead, the worst-case scenarios are generated iteratively during the

resolution. However, the proposed approach generates the worst-case scenarios with a heuris-

tic. As a result, the solution may be sub-optimal. On the contrary, the MILP based on the

sampled scenario tree converges toward the optimal solution as the size of the tree increases.

The advantage of the heuristic based on the adversarial approach is its computational effi-
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ciency. Solving the MILP for a large scenario tree would take too much computational effort.

Our results show that the adversarial approach outperforms the scenario-tree approach in

terms of speed and solution quality. In particular, the adversarial approach scales better to

large-size instances than the MILP based on the sampled scenario tree.

An adversarial approach is an effective approach to solve robust optimization problems

(Yanıkoğlu et al., 2019). This approach is also known as a two-step robust optimization

approach since it consists of two stages, called the master problem and the sub-problem.

The adversarial approach starts with a finite set of scenarios over the uncertain parameter.

The first stage master problem makes the optimal decisions for the current set of scenarios.

Then, the sub-problem finds a scenario for the uncertain parameter that makes the last

found solution from the master problem infeasible, e.g., we can search for the scenario that

maximizes the infeasibility. We add this scenario to the set of scenarios in the master problem

and solve the resulting robust optimization problem. The approach improves the robustness

of the solution, iteratively.

In this study, we develop an adversarial approach to accelerate finding the worst scenario

of product variants for each production generation in the future. To adapt the approach

to the problem at hand, we define the master problem and sub-problem(s). The master

problem solves the proposed MILP considering a smaller number of scenarios that are

generated similarly as in MILP . The master problem results in the initial design of the line

and reconfiguration plans considering the corresponding scenarios. Then, the sub-problem

solves the MILPsub to find the worst product variant (the worst scenario) for each time

period.

Master problem: We use the approach described in Section 3.2 to generate the initial

scenario tree, and we solve the proposed MILP (1) - (33). The master problem solves the

MILP (1) - (33) with a smaller scenario tree compared to the main MILP model, called the

set SC ′ (with fewer scenarios in the set SCn). The set of scenarios is iteratively enriched
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by solving the sub-problem.After getting the solution to the master problem, we keep only

the initial design of the line including the resource and equipment assignment to stations

at g = 0. More precisely, we fix the decision variables w0
srp, b0sep and b0soep and rename

them as w∗0
sr , b∗0se and b∗0soe, respectively. Then, the sub-problem is solved for each production

generation, separately, to find a new scenario.

Sub-problem: We create a sub-problem for each generation. The sub-problem solves

MALRPsub which is similar to the MILP , but the initial design of the line is fixed, it only

optimizes one generation ahead and finds the worst product model adding to the line (the

worst scenario). The first sub-problem solves MALRPsub for only the first generation ahead

(g = 1) and the second one solves MALRPsub for the next and last generation (g = 2). Each

sub-problem searches only one scenario n = 1 as the worst product family |PSg| = 1 for each

new generation (|G| = 1). Indeed, the design of the line from the master problem is given by

w∗0
sr , b∗0se and b∗0soe, and the sub-problem optimizes the reconfiguration of the first generation and

fix them as w∗1
sr , b∗1se and b∗1soe, then it optimizes the reconfiguration of the second generation.

After generating the whole scenario (for all generations), we add this scenario to set SC ′, and

the master problem is resolved with the new scenario tree. Therefore, the variables in the

subproblem define the precedence graph, the processing times of the tasks, and the number

of tasks required for the new product family.

Note that, for the number of required tasks, the worst case happens when the new product

family requires the maximum number of possible tasks which is the upper bound of the

proposed interval ⌈δ.|Oi|⌉.We define O′, the set of tasks of the current product family, and

O′′ as the set of new tasks added to the joint precedence graph of the new product family in

the new generation. To determine the processing time and precedence relationships of tasks,

we define the following decision variables:

• Moo′ is equal to 1 if task o ∈ O′ ∪O′′ preceeds task o′ ∈ O′′, and 0 otherwise.
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• pt′oe
g ≥ 0 is the processing time of task o ∈ O′ ∪ O′′ in the single scenario (product

family) generated at the generation g.

These variables are involved in the takt time and precedence constraints in the MILPsub. The

approach seeks a product family that results in the worst-case, and this corresponds to the

largest number of tasks with high process time and a complex precedence graph. After solving

the master problem, the sub-problem aims to find the worst-case of the product family for

each generation that optimizes the product process time pt′oe and precedence relationships

Moo′ by maximizing the product variant complexity which is the same as maximizing the

cost. On the other hand, the sub-problem aims to balance and design the line for each

generation with less cost. That means that it optimizes the task, resource, and equipment

assignments/reconfigurations (variable sets xg
so, wg

sr, bgse and bgsoe, respectively) aiming to

minimize the total costs. Therefore, the objective function of the MILPsub is given as (34),

where F (x,w, b, pt′,M) is a function of existing variables in the model.

max
pt′,M

(
min F (x,w, b, pt′,M)

)
(34)

The resulting objective function is difficult to integrate into the sub-problem. For example,

a local-search algorithm could be developed for the Max-part of the model to provide several

product variant scenarios, then the scenarios can be evaluated using MILPsub optimizing the

inner Min-part of the model. However, solving the sub-problem with a combined approach

of local search and mathematical programming is not efficient in the adversarial approach.

Thus, we simplify the function to a Max-Max one instead of the Max-Min. The main idea

behind this conversion is to provide an approximated solution, efficiently. Indeed, the Max-

Min model discovers the robust solution for the real worst-case, where the process designers

re-design the line after observing the new product family. However, the Max-Max function

provides a solution corresponding to the worst scenario of the product variants, but it is not

that good at balancing costs. This approximation has a minor impact on our results since it

28



concerns the sub-problem, and the subproblem only provides the worst scenario for the set

of existing scenarios in the tree. Afterward, the master problem optimizes the total cost for

the worst case.

Therefore, the function (34) is transformed to (35). The mathematical model MILPsub is

finally given as (D.1) - (D.32) in Appendix D. Note that, MILPsub is for the single generation

with a given design for the previous generation. The objective function D.1 aims to find the

most costly product family.

max
pt′,M

(
max F (x,w, b, pt′,M)

)
(35)

The MILPsub is adapted from the proposed MILP by modifying Constraints (D.21) and

(D.22). Constraint (D.21) is quadratic which needs to be linearized. So for that, we give

a finite upper bound for pt′oe
g called M with o ∈ O′ ∪ O′′, e ∈ CE, g ∈ G, |G| = 1. Then

this constraint is linearized by using the so-called big M method. We introduce a new

variable πg
soe = pt′oe

gbgsoe with s ∈ S, o ∈ O′ ∪ O′′, e ∈ CE, g ∈ G, |G| = 1. Note that

the product that we model by πg
soe equals zero if bgsoe = 0 but πg

soe can take any value in

the range of 0 and M if bgsoe = 1. This can be modeled using πg
soe ≤ bgsoeM . Next, the

product is always positive and smaller than pt′oe
g, thus πg

soe ≥ 0 and πg
soe ≤ pt′oe

g with

s ∈ S, o ∈ O′ ∪ O′′, e ∈ CE, g ∈ G, |G| = 1. It is left to force πg
soe to equal pt′oeg in case

bgsoe = 1 which we obtain with constraint (36).

πg
soe ≥ pt′oe

g − (1− bgsoe)M s ∈ S, o ∈ O′, e ∈ CE, g ∈ G, |G| = 1 (36)

Constraints (D.21) are linearized as given in equation (36). Moreover, Constraints (D.22)

are activated when a precedence relationship is taken into account between tasks o and o′,

otherwise they are deactivated. The details of the proposed adversarial approach are given in

Algorithm 1. Moreover, in Appendix E, Figure E.9 illustrates the framework of the proposed

adversarial technique with a precise description, as well.
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Algorithm 1 Adversarial approach (AA)
Required: Generate a scenario tree with fewer scenarios (from section 3.2), compared to

the MILP . We call the set of scenarios SC ′.

Step 1: Solve the MILP with set SC ′ of scenarios. Get the solution ”sol”. Start iteration

numbering (Iter := 1).

Step 2: Fix the decision variables w0
sr0, b0se0 and b0soe0 to become w∗0

sr , b∗0se and b∗0soe. The rest

of these variables are optimized in the sub-problem for the generation g = 1.

Step 3: Solve the MILPsub searching for a single worst product family |PSg| = 1 observing

only one new generation ahead (|G| = 1).

Step 4: Similarly to Step 2, fix variables w1
sr0, b1se0 and b1soe0 as w∗1

sr , b∗1se and b∗1soe, and re-solve

MILPsub for g = 2 (|G| = 1).

Step 5: A single scenario for both generations is found as n′. Re-solve the master problem

considering the single scenario n′. Get the new solution "solnew".

Step 6: If "solnew" is better than solution "sol", then set sol := solnew and add n′ to the

set of scenario (SG′ := SG′ ∪ n′). Re-start the iterations (Iter := 0) with the new number

of scenarios |SC|, and re-do the steps 1 to 5. Otherwise, if "solnew" is not better than "sol"

repeat steps 1 to 5 going to the next iteration (Iter : + = 1).

Step 7: The algorithm stops when the number of iterations reaches N (Iter := N).

5. Computational experiments and results

This section successively reports the instances generation procedure, the results of com-

putational experiments that analyze the performance of the proposed approach in terms of

solution quality and CPU time, and several managerial insights. Within this section, AA

stands for the adversarial approach. The models are solved with IBM ILOG CPLEX Op-

timization Studio V12.10. The experiments were run on an Intel(R) Core(TM) i7-8650U

CPU @ 1.90GHz 2.11 GHz processor with 32 GB of RAM in MS Windows 10 Pro (64 bit)
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operational system.

5.1. Instance generation

The data generator proposed by Otto et al. (2013) is extended to the specificity of the

current problem. Each of the instances in this study merges I random instances of Otto et al.

(2013). As an example, each instance in this study contains the data from two random in-

stances of Otto et al. (2013) corresponding to I = 2 product models with different precedence

graphs and processing times which are currently produced in the line. We consider different

numbers of stations (S = {4, 7, 10}). We use two sets of instances from Otto et al. (2013),

with 20, 50, and 100 tasks. Note that, these are the number of tasks for the current product

family, and these numbers will increase for future product evolutions in future generations.

We assume I = 2 product models in generation 0, and we assign random values to δ and σ1,

but σ2 = 1− σ1.

The instances’ sizes are determined by the 3-tuple (I, S,O), where I, S, and O represent

the number of product models, stations, and tasks, respectively. Therefore, for each size of

instances ((2, 4, 20− 24− 29), (2, 7, 50− 60− 72), and (2, 10, 100− 120− 144)), 10 instances

are generated and solved. Precisely, 20 − 24 − 29 in (2, 4, 20 − 24 − 29) − size instances

means the upper bound of the number of generated tasks in the current, first, and second

generations are 20, 24, and 29, respectively, because δ = 20%. Moreover, additional tests are

performed for sensitivity analysis and managerial insights by changing some parameters of

the model.

The compatibility matrices CEo and CRe are randomly generated. However, the equip-

ment with higher ability is more expensive compared to the ones that can perform only a

small set of tasks. Moreover, automated equipment is more expensive than manual ones.

Note that, the passage of time and amortization are taken into account to generate the cost

values. As there are no-cost values in the data set (Otto et al., 2013), costs are uniformly
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distributed. We tried to logically generate these cost values respecting the reasonable ratio

of different types of costs (buying, installing, etc.). The ratio has been asked and approved

by our industrial partners. The main reason for selecting the uniform distribution was to

have more simplicity and not get biased results. Using a uniform distribution, all cost values

within a given range are selected with equal chance which led us to avoid any corresponding

biases of costs. Moreover, it is not easy to find proper cost data sets as needed in our studied

problem in the literature. Therefore, the uniform distribution can be suitable in our case

when dealing with limited information about the cost distribution from the literature. The

cost values are generated as follows:

• αeg and α′
rg are randomly selected from the interval [1000, 2500] and [20000, 40000],

respectively.

• βeg and β′
rg are randomly selected from the interval [600, 2200] and [28000, 32000],

respectively.

• γeg and γ′
rg are randomly selected from the interval [200, 500] and [7000, 8000], respec-

tively.

• λeg and λ′
rg are randomly selected from the interval [100, 250] and [3500, 4000], respec-

tively.

5.2. Performance of approaches

Herein, we evaluate the performance of the proposed MILP and AA in terms of the

solution quality and execution time. Table 1 includes two parts for different sizes of instances

and indicates the number of solved instances within the time limit, the average integrality

gap (in %) for non-solved instances, the average CPU time (in s) for the MILP , the average

CPU times spent in the master and sub-problems, and the average number of iterations that

the master problem is resolved with an updated set of scenarios (Nmaster) for the AA. Table 1
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shows that the MILP cannot solve some large-size instances to optimality, and the integrality

gap of CPLEX is given. Note that for this size the time limit for the CPLEX is set to 60000s.

Assembly line design and balancing decisions are made every several years, and the user does

not require a fast response time. Therefore, such a time limit is reasonable for the user in

such decision-making processes. Moreover, it helps us to benchmark the AA against good

quality solutions to avoid bias in our analysis. Also, the last column shows that the number

of iterations of AA is smaller for some large-size instances than small-size cases. The reason is

that we set less number of N iterations with no solution improvement to stop the algorithm.

However, AA still finds a better solution much quicker than MILP (the solution quality is

given and discussed in Table 2). Table 1 shows that AA can solve the instances much faster

than MILP . Note that the CPU time for the sub-problem given in this Table is the sum of

all iterations of doing the sub-problem (not for a single run of the sub-problem).

Table 1: Average computational time (s) of the approaches.

Size MILP AA

(P, S, O) N° solved Integrality CPU CPU time (s) Nmaster

instances opt. gap (%) time (s) Master problem Sub-problem

(2, 4, 20-24-29) 10/10 0.0 747.1 136.4 0.2 7.7

(2, 7, 50-60-72) 10/10 0.0 8356.3 1054.8 2.8 8.6

(2, 10, 100-120-144) 8/10 4.8 41065.6 4959.7 19.1 5.1

Table 2 shows the final solution (cost objective function value) provided by MILP and

AA. The objective function value (OFV) of the MILP is the average cost for the instances of

different sizes. Two values in two different columns (OFV (master problem) and OFV (sub-

problem)) are given for the solution of AA. The values in column OFV (master problem) are

the average final objective function values obtained by AA where the worst scenario found

by the sub-problem is integrated with other existing scenarios. The values in column OFV

(sub-problem) are the average best values obtained by the sub-problem for only the worst
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scenario found by the sub-problem. Since the developed AA performs as a heuristic to solve

the problem, it may not be able to find the same value as in MILP but it finds a very

close objective value to the value obtained by MILP . The first Gap (%) column shows the

average difference between the final solution of AA and the best solution of MILP . The

gap is calculated using Formula (37). Moreover, the last column Nhuristic shows the number

of instances (out of 10 for each size) where the OFV of the sub-problem is not equal to

the one for the master problem. In these instances, the sub-problem is not able to find the

optimal worst scenario in the last iteration, and the suboptimal worst scenario found by the

sub-problem was already in the set of scenarios in the master problem. The last Gap (%)

column also uses the same Formula (37) to calculate the difference between the OFVs of the

sub-problem and the master problem for each instance, but the cost values of the master and

sub-problems are replaced to the cost values of MILP and AA−master, respectively.

Gap =
Cost(MALRPMILP )− Cost(MALRPAA−master)

Cost(MALRP −WMILP )
100% (37)

Table 2: Solution quality of the approaches.

Size MILP AA Gap (%) Nhuristic Gap (%)

(P, S, O) OFV OFV (master problem) OFV (sub-problem) MILP/AA AA (master/sub)

(2, 4, 20-24-29) 80455.2 80285.0 79895.1 0.2 2/10 0.5

(2, 7, 50-60-72) 84323.5 81657.2 80892.0 2.9 4/10 1.0

(2, 10, 100-120-144) 86883.2 89831.6 89831.6 - 11.0 0/10 0.0

The performance of the proposed AA shows that the approach is working very well for

small and medium-size instances where it finds the solution with less cost. In the same

context, the MILP gives the smaller cost for large-size instances and it performs better for

the large size. However, the comparison of approaches that solve robust optimization by

approximating the worst case with heuristics is not straightforward. For instance, the larger

cost observed for AA may mean that AA performs quite well to generate the worst-case
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solution for the large-size instances (worst with higher cost value) solution compared to the

MILP (with 11% cost difference) much faster in a reasonable time. That is, the scenarios

that correspond to the worst-case cost may not be part of the sampled scenario tree. Note

that the AA was not able to find the higher cost value compared to the solution of MILP for

only 1 instances among 10 in large-size instances. Moreover, the sub-problem provides the

same result as the master problem which means that the algorithm converges to the same

value.

5.3. Managerial insights

This section provides several insights stemming from the approaches’ performance evalu-

ation. First, it compares the performance of the proposed robust model and the performance

of the classical model for the problem at hand. Second, a sensitivity analysis is given for the

different values of some parameters of the model. The values reported in this section concern

only a set of small size instances ((2, 4, 20− 24− 29)− size).

5.3.1. Comparison of the robust model and a classical model

This section describes a classical model (named MALRPClassic) to compare our robust

model MALRP with the classical approach MALRPClassic.

The MALRPClassic refers to the case where the design and reconfiguration planning de-

cisions are made at each period for each production generation. In this case, the user does

not foresee future generations, and decisions are not made at the design stage considering all

future production generations regarding the possible scenarios. Here, the model optimizes

the design/redesign of the line between each consecutive generation for each product family

with the same set of scenarios as in the MILP . We fix the design of equipment and the

resources for each corresponding period, then we optimize the reconfiguration planning for

the following periods. Finally, we sum up all the assembly costs of the worst scenario of each

generation over the life cycle of the line (all generations). We also evaluate the performance of
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the classical approach via a simulation model. The simulation does the same as the classical

model considering a given scenario at each period.

To compare our robust model with the classical one, we resolve the example introduced

in 3.4 for the classical model. The robust model outperforms the classical model with a cost

of 73247 versus 74014. The reason is because of the period-by-period decision-making in the

classical model. The cost parameters related to equipment and robots that have been used

in the solution of the classical model are given as; α20 = 1027, α60 = 2096, α01 = 1349,

α21 = 1263; β20 = 614, β60 = 1667, β01 = 933, β21 = 882; γ20 = 207, γ60 = 438, γ01 = 257,

γ21 = 276; λ20 = 66, λ60 = 82, λ01 = 152, λ21 = 142; α′
20 = 32077, α′

21 = 33924; β′
20 = 21902,

β′
21 = 23602; γ′

20 = 7000, γ′
21 = 7701, λ′

20 = 3260, and λ′
21 = 3697. The detailed calculation

of cost functions are given in Appendix B.
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Figure 7: The solution of the illustrative example solved by the classical model.

[Alt-Text: ]The solution of the illustrative example with the classical model (including the

required resources, equipment, task assignments, and cost values) for two possible scenarios

of the current design and one future production generation.

Table 3 shows that MALRP results in significantly lower costs than MALRPClassic

(16.7%). This table also shows that MALRPClassic is well simulated using the evalua-

tion model and the evaluated model MALRPEv
Classic provides a very close cost value to the

MALRPClassic (5.6%). These gap values are calculated using the adaption of Formula (37).

Note that the costs in the simulation are lower because the expected cost values are reported.

Table 4 shows that the studied robust model MALRP results, in significantly lower costs

than MALRPClassic, but it consumes more computational time. However, we show in the

previous section that AA significantly reduced the time to solve the mode. For example, for

the corresponding small size of instances, AA lasts in average 136.6s (in Table 1) which is
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Table 3: Comparison of our model MALRP and the classical model MALRPClassic.

Gap (%)

MALRPClassic/MALRP MALRPClassic /MALRPEv
Classic

16.7 5.6

even faster than the MALRPClassic which lasts in average 180.9s. Table 3 shows that our

robust model can save 16.7% of the total costs compared to the classical model. However,

concerning the detailed cost values in Table 4, it can be seen around 18% of such cost-saving

belongs to the purchasing/selling costs of robots and workers, and installation/un-installation

cost of equipment, robots, and workers. On the contrary, the classical model MALRPClassic

saves around 4.8% of the purchasing/selling costs of the equipment (Q) over all instances,

whereas the total average value of such a cost in the MALRPClassic is still slightly higher

than our morel MALRP . The robust model purchase flexible equipment that will ease

future reconfigurations. As a result, the MALRPClassic invests more (around 20% than the

MALRP ) on the design cost of the line by purchasing costs of equipment and resources

(Q+Q′) and then for the reconfiguration of the line by (un-)installation costs of equipment

and resources (Z + Z ′), especially for the equipment.

Table 4: Comparison of the detailed cost values and CPU time between our model MALRP and the classical

model MALRPClassic.

Problem Q Q′ Z Z′ CPU time (s)

MALRP 9816.0 61022.6 1866.0 8377.2 747.1

MALRPClassic 9972.2 78803.6 2730.6 12237.6 180.9

MALRPEv
Classic 9123.0 72675.4 1882.8 14517.0 0.7
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5.3.2. Sensitivity analysis

This section analyzes the sensitivity of the solution of the MALRP and the classical

model MALRPClassic to the value of δ that controls the number of tasks in the new product

variants. We consider a large value of δ (δ = 50%) and compare the results with the results

of instances with δ = 20%. Note that a large value of δ corresponds to the situation where

the product family changes a lot from one generation to the next. The graphs in Figures 8

show how increasing the number of tasks in the new product variants impacts the costs of

the studied model MALRP and also the MALRPClassic.

The left part a of the figure shows the purchasing costs of the equipment and resources

increase when the number of required tasks increases for the product models. Moreover,

in part b, our proposed model does not change by increasing the number of required tasks

and it keeps almost the same (un-)installation (reconfiguration) cost of the equipment and

resources, whereas this cost value increases in the classical model, significantly.

Figure 8: The impact of changing δ on the average cost values in both models MALRP and MALRPClassic:

a) values of Q+Q′, b) values of Z + Z ′.

[Alt-Text: ]Two sides: the left side shows how changing the value of δ from 1.2 to 1.5

influences the average cost values Q+Q′ in both models MALRP and MALRPClassic and

the right side shows the same analysis for the cost values Z + Z ′.
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The performance of the MILP based on scenario sampling depends on the number of

scenarios. Thus, we investigate the impact of omission/inclusion of scenarios on the cost

value of the worst case. We eliminate a portion of scenarios (a% from all number of scenarios)

in the scenario tree, and we see how the results change. Table 5 shows how the total and

detailed cost values change from the main problem (MILP −MALRP ) to other variants of

the problem with a% less number of scenarios (MILP −MALRP a%), where a = 10, 20, 50.

The total cost value (OFV column) and all the detailed costs decrease by removing a set

of scenarios, overall. However, in some cases, the (un-)installation cost of equipment (Z)

and resources (Z ′) at stations increase which is because of the sample of scenarios and the

reconfiguration costs may vary.

Table 5: Checking the impact of omission/inclusion of scenarios on the solution.

Elimination portion OFV Q Q’ Z Z’

MILP −MALRP 80455.2 9816.0 61022.6 1866.0 8377.2

MILP −MALRP 5% 80120.0 9016.0 60722.2 1772.8 8609.0

MILP −MALRP 10% 79675.1 8934.3 60561.8 1671.8 8507.2

MILP −MALRP 20% 79012.5 8350.0 60554.9 1711.8 8395.8

MILP −MALRP 50% 78611.2 8199.2 60513.3 1738.6 8160.1

This analysis shows the conservatism of the obtained solution. The results in Table 5

are logical because when the decision maker removes some scenarios the solution does not

become worse and the total cost decreases because the worse scenarios which rarely happen

in the assembly line may be ignored. We can conclude that our robust model is able to

account for the risk-averse profile of the decision-maker by sampling the correct number of

scenarios. When the less likely scenarios which are costly are omitted the total design and

reconfiguration cost decrease.
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6. Conclusion

This study deals with a mixed-model assembly line reconfiguration planning problem

(MALRP ). The problem occurs in a practical case study of the automotive industry. The

line produces a set of product models from a product family, and it must be reconfigured

when any changes in demand happen, or when the product family changes. The design and

reconfiguration of the line are costly. Therefore, we studied a robust optimization problem

where the evolution of product families in future periods is uncertain. To the best of our

knowledge, we are the first to study the robust assembly line design under uncertainty on

the product family. We provide a novel mixed-integer linear programming (MILP ), and

it minimizes the total cost of the initial design and future reconfigurations. The MILP is

based on a scenario tree that provides realizations of the product family in the future. To

generate the tree, we provide a tool to sample random scenarios for future product models.

An adversarial approach (AA) is also developed to approximately solve the larger instances.

Several computational results and analyses are provided over benchmark instances gener-

ated from the literature. The results show that AA performs much faster and more efficiently

than the proposed MILP . The AA performs well for small-size instances where it can find

better solutions with lower cost value. For the large size instances, the MILP cannot find

the optimal solution within a certain time limit, while it provides the solution with less cost

compared to AA. Also, the AA is better at finding the worst-case scenario for large-size

instances (worst with higher cost value) solution compared to the MILP , with significantly

less computational time. Moreover, we show that the proposed robust model leads to signif-

icantly a lower design and reconfiguration cost for the worst-case scenario compared to the

classical model where the design and reconfiguration of the line are optimized at each period

without foreseeing the next generations. We analyze the impact of the variability of the prod-

uct family on the cost of the line over its life cycle. The results show that the reconfiguration
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costs of a flexible line (designed with the robust approach) do not vary significantly when

product families change a lot in different generations. However, the robust solution requires

a larger initial investment. Also, we tried to consider the impact of omission or inclusion

of scenarios on the final solution of the proposed robust optimization model, where the user

may find a less costly solution by omission of some less likely scenarios.

We identify several promising avenues for future research. An interesting future research

effort on this study is to develop an efficient exact algorithm to solve larger instances, opti-

mally. Moreover, the proposed generic approach to generate the scenario tree can be enhanced

by characterizing the set of product families for a given joint precedence graph. Finally,

learning techniques could be developed to design and evaluate the quality of the proposed

uncertainty set.
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Appendix A. Illustrative example - input parameters

The input parameters used in the illustrative example are as follows:

δ = 0.2 and σ = 0.4.

α30 = 1001;α40 = 1140; α50 = 2068; α31 = 1457; α41 = 1330; α51 = 2293 and α61 = 2299.

β30 = 771; β40 = 700; β50 = 1641; β31 = 882; β41 = 807 ; β51 = 1866 and β61 = 1952.

γ30 = 217; γ40 = 220; γ50 = 446; γ31 = 295; γ41 = 285 γ51 = 453 and γ61 = 470.

λ30 = 87;λ40 = 84; λ50 = 87; λ31 = 177; λ41 = 119; λ51 = 138 and λ61 = 112.

α′
30 = 25297 ;α′

10 = 32803 ; α′
31 = 27236 and α′

11 = 34467.

β′
30 = 0 ;β′10 = 21811; β′

31 = 0 and β′
11 = 24680.

γ′
30 = 0 ;γ′

10 = 7286; γ′
31 = 0 and γ′

11 = 7565.

λ′
30 = 0 ;λ′

10 = 3353; λ′
31 = 0 and λ′

11 = 3666.

Appendix B. Illustrative example - calculation of cost functions

The calculations for two scenarios (Equations (B.1) - (B.4) for scenario 1 and (B.6) -

(B.9) for scenario 2) considered in the illustartive example provided in section 3.4 are detailed

below. Therefore, the final total cost for two scenarios are calculated in Equations (B.5) and

(B.10), respectively.

Q1 = 1001
[∑

s∈S b0s30 = 1
]
+ 1140

[∑
s∈S b0s40 = 1

]
+ 2068

[∑
s∈S b0s50 = 1

]
= 4209

(B.1)

Q′
1 = 32803

[∑
s∈S w0

s10 = 1
]
+ 25297

[∑
s∈S w0

s30 = 1
]
= 58100 (B.2)

Z1 = 217
[∑

s∈S b0s30 = 1
]
+ 220

[∑
s∈S b0s40 = 1

]
+ 446

[∑
s∈S b0s50 = 1

]
= 883 (B.3)
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Z ′
1 = 7286

[∑
s∈S w0

s10 = 1
]
= 7286 (B.4)

Q1 +Q′
1 + Z1 + Z ′

1 = 4209 + 58100 + 883 + 7286 = 70478 (B.5)

Q2 = 1001
[∑

s∈S b0s30 = 1
]
+ 1140

[∑
s∈S b0s40 = 1

]
+ 2068

[∑
s∈S b0s50 = 1

]
+2299

[
b+1
610 = 1

]
= 6508

(B.6)

Q′
2 = 32803

[∑
s∈S w0

s10 = 1
]
+ 25297

[∑
s∈S w0

s30 = 1
]
= 58100 (B.7)

Z2 = 217
[∑

s∈S b0s30 = 1
]
+ 220

[∑
s∈S b0s40 = 1

]
+ 446

[∑
s∈S b0s50 = 1

]
+ 470

[
b′−1
s610

=1
]

= 1353

(B.8)

Z ′
2 = 7286

[∑
s∈S w0

s10 = 1
]
= 7286 (B.9)

Q2 +Q′
2 + Z2 + Z ′

2 = 6508 + 58100 + 1353 + 7286 = 73247 (B.10)

Moreover, the calculations corresponding to the illustartive example provided in section

5.3.1 are detailed below (Equations (B.11) - (B.14)). The final total cost is computed in
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Equation (B.15).

Q1 = 1027
[∑

s∈S b0s20 = 1
]
+ 2068

[∑
s∈S b0s50 = 1

]
+ 2096

[∑
s∈S b0s60 = 1

]
+ 1349

[
b+1
010 = 1

]
+1457

[
b+1
310 = 1

]
= 7997

(B.11)

Q′
1 = 32077

[∑
s∈S w0

s20 = 1
]
+ 25297

[∑
s∈S w0

s30 = 1
]
= 57374 (B.12)

Z1 = 207
[∑

s∈S b0s20 = 1
]
+ 446

[∑
s∈S b0s50 = 1

]
+ 438

[∑
s∈S b0s60 = 1

]
+ 257

[
b′−s010

1 = 1
]

+295
[
b′−1
s310 = 1

]
= 1643

(B.13)

Z ′
1 = 7000

[∑
s∈S w0

s20 = 1
]
= 7000 (B.14)

Q1 +Q′
1 + Z1 + Z ′

1 = 7997 + 57374 + 1643 + 7000 = 74014 (B.15)

Appendix C. The nomenclature and definitions of sets, parameters, and vari-

ables

All the sets, indices, parameters, and decision variables are defined in detail as follows:

[htbp]

50



Table C.6: The list of sets and indices proposed in MILP .

Sets and indices

SC Set of scenario n ∈ {1, ..., N}.

G Set of production generation g ∈ {0, ..., G}.

PSg Set of product families p,p′ in generation g (p,p’ ∈ {1, ...,PSg}).

I Set of product models i ∈ {1, ..., I}.

S Set of stations s ∈ {1, ..., S}.

E Set of equipment e ∈ {1, ..., E}.

R Set of resources r ∈ {1, ..., R}.

O Set of assembly tasks o ∈ {1, ..., O}.

Oi Set of assembly tasks required for product model i.

O′
p Set of assembly tasks required for product family p.

CRe Set of resources certified to use the equipment e.

CEo Set of equipment capable to perform task o.
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Appendix D. Mathematical model for the sub-problem (MILPsub)

The mathematical formulation of the MILPsub is given as follows:

max Q+Q′ + Z + Z ′ (D.1)

s.t.

Q =
∑
e∈E

[
αeg−1

[∑
s∈S

b∗g−1
se

]
+ αeg b+e

g + βeg b−e
g

]
g ∈ G, |G| = 1 (D.2)

Q′ =
∑
r∈R

[
α′
rg−1

[∑
s∈S

w∗g−1
sr

]
+ α′

rg w+
r
g + β′

rg w−
r
g

]
g ∈ G, |G| = 1 (D.3)

Z =
∑
e∈E

λeg−1

∑
s∈S

b∗g−1
se +

∑
s∈S

∑
e∈E

[
λeg b′+se

g − γeg b′−se
g

]
g ∈ G, |G| = 1 (D.4)

Z ′ =
∑
r∈R

λ′
rg−1

∑
s∈S

w∗g−1
sr +

∑
s∈S

∑
r∈R

[
λ′
rg w′+

sr
g − γ′

rg w′−
sr

g

]
g ∈ G, |G| = 1 (D.5)

∑
s∈S

bgse −
∑
s∈S

b∗g−1
se ≤ b+e

g e ∈ E , g ∈ G, |G| = 1 (D.6)

∑
s∈S

b∗g−1
se −

∑
s∈S

bgse ≤ b−e
g e ∈ E , g ∈ G, |G| = 1 (D.7)

bgse − b∗g−1
se ≤ b′+se

g s ∈ S, e ∈ E , g ∈ G, |G| = 1 (D.8)

b∗g−1
se − bgse ≤ b′−se

g s ∈ S, e ∈ E , g ∈ G, |G| = 1 (D.9)∑
s∈S

wg
sr −

∑
s∈S

w∗g−1
sr ≤ w+

r
g r ∈ R, g ∈ G, |G| = 1 (D.10)

∑
s∈S

w∗g−1
sr −

∑
s∈S

wg
sr ≤ w−

r
g r ∈ R, g ∈ G, |G| = 1 (D.11)

wg
sr − w∗g−1

sr ≤ w′+
sr

g s ∈ S, r ∈ R, g ∈ G, |G| = 1 (D.12)

w∗g−1
sr − wg

sr ≤ w′−
sr

g s ∈ S, r ∈ R, g ∈ G, |G| = 1 (D.13)∑
s∈S

xg
so = 1 o ∈ O′ ∪ O′′, g ∈ G, |G| = 1 (D.14)

54



∑
s∈S

bgse ≤ 1 e ∈ E , g ∈ G, |G| = 1 (D.15)

∑
s∈S

wg
sr ≤ 1 r ∈ R, g ∈ G, |G| = 1 (D.16)

∑
r∈R

wg
sr ≤ 1 s ∈ S, g ∈ G, |G| = 1 (D.17)

xg
so ≤

∑
e∈CEo

bgsoe s ∈ S, o ∈ O′ ∪ O′′g ∈ G, |G| = 1 (D.18)

bgsoe ≤
∑

r∈CRe

wg
sr s ∈ S, o ∈ O′ ∪ O′′, e ∈ CEo, g ∈ G, |G| = 1 (D.19)

bgsoe ≤ bgse s ∈ S, o ∈ O′ ∪ O′′, e ∈ CEo, g ∈ G, |G| = 1 (D.20)∑
o∈O′∪O′′

∑
e∈CEo

pt′oe
gbgsoe ≤ C s ∈ S, g ∈ G, |G| = 1 (D.21)

∑
s∈S

s xg
so −

∑
s′∈S

s′ xg
s′o′ ≤ M(1−Moo′) o ∈ O′ ∪ O′′, o′ ∈ O′′, g ∈ G, |G| = 1

(D.22)

b+e
g, b−e

g ∈ [0, 1] e ∈ E , g ∈ G, |G| = 1 (D.23)

b′+se
g, b′−se

g ∈ [0, 1] s ∈ S, e ∈ E , g ∈ G, |G| = 1 (D.24)

w+
r
g, w−

r
g ∈ [0, 1] r ∈ R, g ∈ G, |G| = 1 (D.25)

πg
soe ∈ [0, 1] s ∈ S, o ∈ O′, e ∈ CE, g ∈ G, |G| = 1 (D.26)

xg
so ∈ {0, 1} s ∈ S, o ∈ O′ ∪ O′′, g ∈ G, |G| = 1 (D.27)

bgse ∈ {0, 1} s ∈ S, e ∈ E , g ∈ G, |G| = 1 (D.28)

wg
sr ∈ {0, 1} s ∈ S, r ∈ R, g ∈ G, |G| = 1 (D.29)

bgsoe ∈ {0, 1} s ∈ S, o ∈ O′ ∪ O′′, e ∈ E , g ∈ G, |G| = 1 (D.30)

Moo′ ∈ {0, 1} o ∈ O′ ∪ O′′, o′ ∈ O′′ (D.31)

Q,Q′, Z, Z ′ ≥ 0 (D.32)
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Appendix E. The framework and details of the adversarial approach

Precisely, the master problem solves the MILP for a smaller number of scenarios and

provides the current design (G = {0}), then the first sub-problem optimizes the first recon-

figuration of the line as well as searching for the worst product family in the first generation

(G = {1}) and it keeps fixed, the design of the line, as given by the master problem. A

single worst product family for this generation is found. The second sub-problem does the

same for the next generation (G = {2}) by keeping fixed the design and first reconfiguration

plan of the line. It finds the worst product family for the new generation. Therefore, the

whole scenario for both generations which has been found by sub-problems is added to the

set of scenarios existing in the master problem and we re-solve the master problem. Finally,

comparing the new solution and the previous solution of the master problem, the algorithm

decides whether to stop or continue. The developed approach is detailed in Algorithm 1 and

drawn in Figure E.9.
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Figure E.9: The framework of the adversarial approach.

[Alt-Text: ]The Figure shows the data flow between the master problem and sub-problems

and also more details of the Adversarial Approach (AA) developed in this study.
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