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Abstract 

Meningiomas are the most common primary intracranial tumors in adults and are increasing in 

incidence due to the aging population and the rising availability of neuroimaging. While most exhibit 

non-malignant behaviour, a subset of meningiomas are biologically aggressive and lead to significant 

neurological morbidity and mortality. In recent years, meaningful advances in our understanding of the 

biology of these tumors have led to the incorporation of molecular biomarkers into their grading and 

prognostication. However, unlike other central nervous system tumors, a unified molecular taxonomy 

for meningiomas has not yet been established and remains an overarching goal of the Consortium to 

Inform Molecular and Practical Approaches to CNS Tumor Taxonomy-Not Official WHO (cIMPACT-NOW) 

working group. There also remains clinical equipoise on how specific meningioma cases and patient 

populations should be optimally managed. To address these existing gaps, members of the International 

Consortium on Meningiomas (ICOM) including field-leading experts, have prepared a comprehensive 

consensus narrative review directed towards clinicians, researchers, and patients. Included in this 

manuscript are detailed overviews of proposed molecular classifications, novel biomarkers, 

contemporary treatment strategies, trials on systemic therapies, health-related quality of life studies, 

and management strategies for unique meningioma patient populations. In each section we discuss the 

current state of knowledge as well as ongoing clinical and research challenges to road map future 

directions for further investigation.   
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Introduction  

Meningioma is the most common primary intracranial tumor in adults. Historically, investigation 

into its molecular biology and pathogenesis has trailed other central nervous system (CNS) tumors. Since 

2016, through the efforts of independent research groups and consortia including but not limited to the 

International Consortium on Meningiomas (ICOM) and the German Consortium on Aggressive 

Meningiomas (KAM), there has been a surge in molecular studies on meningiomas that have uncovered 

novel diagnostic and prognostic alterations. Despite these advances, meningioma treatments remain 

largely limited to surgery and radiotherapy (RT). Systemic medical therapies are largely reserved for 

otherwise treatment-refractory meningiomas in the context of clinical trials. There is a pressing need to 

translate findings from the current molecular era of meningioma research into meaningful 

improvements in decision making and novel therapies. In this comprehensive narrative review, key 

advances in the understanding of meningioma biology will be discussed, with a focus on recent 

breakthroughs. Each section will also discuss ongoing controversies, critical knowledge gaps and areas of 

unmet need for clinicians, researchers, and patients that could be targeted for future research and 

investigation.  

 

Epidemiology and Risk Factors 

Meningiomas make up 40.8% of all primary brain tumors in the United States (U.S.) and 56.2% 

of “non-malignant” primary brain tumors (Figure 1A, B).1 Incidence rates of non-malignant meningioma 

are the highest amongst all CNS tumors at 9.73 per 100 000 population in the US. These rates increase 

after age 65 and again after age 85. Age-adjusted incidence rates of non-malignant meningiomas 

continue to increase across different sexes, ethnicities, and races (Figure 1C). Meningiomas also account 
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for the largest proportion of intradural spinal tumors in patients 20 years of age and older (39.9%), 

although spinal meningiomas represent only 4.2% of all diagnosed meningiomas.1  

By World Health Organization (WHO) 2021 grading, 80.1% of reported meningiomas are CNS 

WHO grade 1, 18.3% are grade 2, and 1.5% are grade 3.1,2 “Non-malignant” meningiomas (represented 

in the SEER database in the following proportions: 81.4% CNS WHO grade 1 and 18.4% CNS WHO grade 

2) are 2.3 times more commonly diagnosed in females than in males, and this disparity is the largest 

between the ages of 35-44 (Figure 1D, E). Ten-year relative survival for non-malignant meningioma is 

83.4%. Although the SEER database quotes a ten-year survival rate of 60% for “malignant” meningiomas, 

this group is not exclusively comprised of CNS WHO grade 3 cases (63.6%) but also includes a sizeable 

proportion of CNS WHO grade 1 (20.4%) and grade 2 (15%) cases. Notably, the designation of a 

“malignant” meningioma in this context is imprecisely defined and based on ICD coding instead of 

central neuropathological review. Non-registry data of exclusively CNS WHO grade 3 malignant or 

anaplastic meningiomas show far more dismal outcomes with a 5-year overall survival of 66% in one 

cohort and an estimated 10-year overall survival of 14-24%.1,3-5  

The incidence of intracranial meningiomas is higher in Black patients compared to White 

patients and this disparity increases with higher tumor grade (Figure 1F, G).3,6 In turn, the incidence of 

“non-malignant” meningiomas is higher in white patients compared to Asian-Pacific Islanders (API), 

although there may be a higher incidence of “malignant meningiomas” in the latter group (Figure 1F).   

The reasons behind these racial and ethnic differences remain unknown and the limitations of reporting 

based on population-based epidemiological data need to be considered, particularly for comparisons 

between different countries and/or continents.  

Heritable genetic polymorphisms in MLLT10 (MLLT10 histone lysine methyltransferase DOT1L 

cofactor) have also been robustly associated with increased meningioma risk.7,8 Distinct from germline 
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variants that cause hereditary syndromes associated with meningiomas, MLLT10 risk alleles are common 

at the population level and confer a comparatively modest increase in meningioma risk. These variants 

also increase risk for ovarian cancer and estrogen receptor-positive breast cancer, and pan-cancer 

analyses implicate a potential estrogenic mechanism connecting MLLT10 variation to risk of diverse 

tumor types.9 Despite progress in identifying exogeneous and endogenous factors conferring 

meningioma risk, relatively few modifiable risk factors have been definitively identified. These include 

ionizing radiation, elevated body mass index, methotrexate treatment, and cigarette smoking (where 

increased risk is restricted to men).10-21 The most well validated of these risk factors is cranial irradiation, 

with a linear dose-response association between the radiation dose received and the risk of subsequent 

meningioma development, particularly in those who were treated under the age of 10 (to be discussed 

in the Radiation-Induced Meningiomas section).19,20 Despite the fact that meningiomas are known to 

commonly express progesterone receptors, estrogen receptor expression is rare and there are 

conflicting results on the risk of meningioma growth or development in response to endogenous and 

exogenous sex hormones.22-28 Several large retrospective studies have demonstrated a positive 

association between current or past use of hormone replacement therapy and the diagnosis of a 

meningioma.21,29 On a population-level, pregnancy does not appear to be a risk factor for meningioma 

development, although accelerated growth of an existing meningioma during pregnancy has long been 

described.30-32 While multiple risk factors for meningioma have been identified as delineated above, 

there is currently insufficient evidence to support a standardized screening approach such as germline 

genetic testing or routine neuroimaging, even in higher risk cohorts such as female relatives of 

meningioma patients with the MLLT10 risk allele, or women on hormone replacement therapy. This 

does remain an area of active investigation and guidelines may change and evolve with emerging 

evidence.  

 

D
ow

nloaded from
 https://academ

ic.oup.com
/neuro-oncology/advance-article/doi/10.1093/neuonc/noae082/7663195 by guest on 03 July 2024



Acc
ep

ted
 M

an
us

cri
pt

Genomics and Biology  

The neurofibromatosis-2 (NF2) gene was the first gene to be implicated in meningioma 

development. It remains the most common genetic abnormality in sporadic meningiomas, inclusive of 

short structural or copy number variants, and is found in up to 60% of all meningioma cases. As a tumor 

suppressor gene on chromosome 22q12.2, NF2 encodes the protein Merlin which has been implicated in 

the inhibition of signals from the PI3K/Akt, Raf/MEK/ERK, and mTOR signaling pathways in non-

meningioma cells.33-35 In meningioma cells, loss of Merlin may also be associated with overexpression of  

Yes-associated protein 1 (YAP1) and deregulation of the Hippo signaling pathway, leading to increased 

cell proliferation and anchorage-independent growth.36 NF2/Merlin loss may also increase the apoptotic 

threshold of meningioma cells and decrease susceptibility to cytotoxic therapies through interferon 

regulatory factor (IRF) mediated gene expression pathways.37 Consequently, meningiomas with NF2 

alterations have increased risk of higher grade and more biologically aggressive forms, although benign 

NF2-mutant cases are still observed. Specifically, one study found the rate of NF2 mutations to be 37% 

in WHO grade 1 meningiomas (81/220), 60% of grade 2 cases (265/441) and 69% of grade 3 tumors 

(122/176).38  

More recently, recurrent mutations in TRAF7 (tumor necrosis factor receptor-associated factor 

7), KLF4 (Kruppel-like factor 4), AKT1 (AKT serine/threonine kinase 1), SMO (Smoothened), SUFU 

(Suppressor of fused homolog), PRKAR1A (protein kinase cAMP-dependent type I regulatory subunit 

alpha), PIK3CA (phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha), and POLR2A 

(RNA Polymerase II Subunit A) have been discovered in meningiomas without any NF2 alterations.39-44 

Compared to NF2-altered meningiomas, meningiomas with these mutations tend to be lower WHO 

grade, have fewer chromosomal abnormalities, and generally have better clinical outcomes with 

standard therapies.  
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Interestingly, the anatomic location of meningiomas also appear to have genomic 

underpinnings. Meningiomas with NF2 loss tend to be located along the cerebral convexities or 

posterior/lateral skull base; those with non-NF2 mutations (e.g. TRAF7, SMO, SUFU, PRKAR1A) are more 

common around the anterior skull base. Meningiomas with combined NF2/SMARCB1 mutations (two 

genes in close physical proximity to one another on chromosome 22q) may have a proclivity to occur 

along the anterior falx.39,45 Alterations in several meningioma driver genes (including NF2 and TRAF7) 

have also been found in normal leptomeninges with similar anatomic predilection.46 

Mutations in SMARCE1 (SWI/SNF-related matrix-associated actin-dependent regulator of 

chromatin subfamily B member 1), BAP1 (BRCA1 associated protein-1), and PBRM1 are associated with 

different meningioma histologic subtypes. SMARCE1 loss is found in almost all cases of clear cell 

meningioma, which are by definition CNS WHO grade 2.47-51 SMARCE1 encodes for a protein involved in 

the SWI/SNF chromatin remodeling complex and therefore, SMARCE1-deficient cells may be susceptible 

to SWI/SNF inhibition.50 Inactivation of BAP1 has been associated with rhabdoid and papillary histology 

and is almost universally associated with poor prognosis, although fewer than 30 of these cases have 

been reported in the literature.52,53 PBRM1 mutations often co-occur with BAP1 mutations and are 

associated with papillary or sometimes rhabdoid histology.54 Notably, alterations in SMARCE1 and BAP1 

appear to be independent of NF2 mutation or loss, identifying a small, rare group of NF2-wildtype 

meningiomas that are unusually aggressive.   

Finally, mutations in the TERT (telomerase reverse transcriptase) promoter (TERTp) have been 

added to the most recent iteration of the WHO classification as an independent marker of grade 3 

meningiomas.2 While rare in meningiomas, this alteration is associated with significantly worse PFS and 

overall survival when present.55,56 TERT functions to maintain DNA telomere ends, resulting in 

immortalization of cancer cells. Successful downstream blockade of TERTp activity via E26 

transformation-specific (ETS) transcription factor inhibition is a potential therapeutic strategy for these 
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tumors.57,58 Other rare mutations associated with higher grade meningiomas include ARID1A, PTEN, and 

PBRM1.38,54,59-64  

Some of these mutations may occur in the germline and correspond with hereditary 

meningioma syndromes. The most common of these is germline mutation of NF2 resulting in what was 

historically referred to as syndromic Neurofibromatosis type 2, an autosomal dominant condition 

characterized by the growth of multiple schwannomas and meningiomas with a prevalence of 

approximately 1 in 60,000.65 Due to the overlapping phenotypes of Neurofibromatosis type 2 and 

schwannomatosis, the latter a tumor predisposition syndrome also characterized by the development of 

multiple schwannomas, the diagnostic criteria and disease nomenclature for NF2 and schwannomatosis 

was updated in 2022. “Schwannomatosis” is now an umbrella term referring to the phenotype of 

multiple schwannomas, and the individual syndromes are named by their underlying genetic mutation. 

The NF2 syndrome has now been renamed NF2-related schwannomatosis (NF2-SWN) and this is the 

term which will be used in the rest of this manuscript. Schwannomatosis is designated as SMARCB1-

related, LZTR1-related, or 22q-related.66 Importantly, meningiomas are uncommon in non-NF2-related 

schwannomatosis and not part of the diagnostic criteria of LZTR1-related schwannomatosis and 

SMARCB1-related schwannomatosis despite the presence of SMARCB1 mutations in sporadic clear cell 

meningiomas.67 Meningiomas in NF2-SWN patients will be discussed in more detail in a later section.  

Other hereditary syndromes associated with meningiomas are less common and there is an 

overall lack of data supporting these germline mutations driving meningioma tumorigenesis. A rare 

autosomal dominant inheritance pattern of SMARCE1 mutations predisposing to intracranial and spinal 

meningiomas with clear cell histology has been reported.68,69 Germline BAP1 loss causes a hereditary 

cancer predisposition syndrome prototypically associated with mesothelioma and uveal melanoma; 

sporadic and hereditary germline BAP1 mutations have also been linked to the development of rhabdoid 

and papillary meningiomas in small case series, which may have an increased risk of extracranial 
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metastasis.53,70-73 Other meningioma-associated tumor predisposition syndromes include: Werner 

syndrome, an autosomal recessive condition caused by biallelic loss of WRN, characterized by 

premature aging; Gorlin syndrome (or familial multiple meningioma), an autosomal dominant condition 

resulting from germline mutations in Sonic Hedgehog (Hh) pathway genes including PTCH1 or SUFU, 

characterized by multiple basal cell carcinomas and biologically aggressive meningiomas74-76; and 

Cowden syndrome, another autosomal dominant condition resulting from germline PTEN mutation, 

characterized by multiple cancers including of the breast and thyroid.62 Notably, there are all rare 

entities and only a subset of patients with each disease will develop meningiomas. Specifically, the 

overall prevalence is estimated to be between 1 in 20,000 (in some Japanese populations) to as few as 1 

in 1,000,000 for Werner syndrome,  between 1 in 30,000 and 1 in 250,000 for Gorlin syndrome, and 

between 1 in 200,000 and 1 in 250,000 for Cowden syndrome.77-79 The specific prevalence of germline 

SMARCE1 and BAP1 mutations is unclear given their rarity.  

In addition to single-gene alterations, somatic copy number alterations (other than loss of 22q) 

have also been implicated in meningioma development. Deletions of chromosome 1p were identified 

early in meningiomas, where it was associated with shorter progression-free survival (PFS).80-86 Multiple 

genomic targets of 1p loss have been proposed including CDKN2C, RAD54, EPB41, GADD45A, ALPL, 

MUTYH, PRDX1, FOXD2, FOXE3, and PTCH2, but their independent prognostic contributions to a more 

aggressive meningioma phenotype remain relatively unknown.87,88 This remains an area of active study. 

Losses of chromosomal arms 6p, 10q, 14q, 18q, and gains of 17q and 20q were found to be recurrent 

across high-grade meningiomas and additional studies have linked losses of 4q, 6, and 19p with poorer 

PFS.89-94 In cases without chromosome 22q loss, several unique somatic copy number alterations 

including those affecting chromosomes 2q and 7q were found to be associated with dysregulated Hh 

signaling activation in otherwise mutation-negative meningiomas.95  
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Importantly, homozygous loss of the CDKN2A/B (cyclin-dependent kinase inhibitor 2A/B) locus 

on chromosome 9p21 was incorporated into the 2021 WHO classification as a defining feature of CNS 

WHO grade 3 meningioma.2 CDKN2A/B encodes for multiple tumor suppressor proteins including p16, 

which inhibits G1-to-S transition in the cycle cell through the inactivation of CDK4 and CDK6. Its loss has 

been implicated in dysregulated cell cycle progression in multiple cancers.96,97 In meningioma, 

homozygous deletion of CDKN2A/B is associated with shorter PFS, and even heterozygous deletion 

appears to result in similarly poor outcomes in some studies.98-101 In meningiomas with an intact 

CDKN2A/B locus, higher mRNA expression of CDKN2A is associated with significantly shorter PFS and 

increased rates of resistance to CDK inhibitors.98  

The integration of prognostic copy number alterations with contemporary histological grading 

has resulted in the development of “integrated” or “molecular-morphologic” grading schemes. For 

example, a nomogram whereby one point is assigned to each of the following copy number alterations if 

present: 1p-, 3p-, 4p/q-, 6p/q-, 10p/q-, 14q-, 18p/q-, 19p/q-, CDKN2A/B- in addition to one point for 4-

19 mitoses per 10 high-powered fields or two points for more than 20 mitoses. A total of 0-1 points 

would constitute an Integrated Grade 1 meningioma, 2-3 points an Integrated Grade 2 meningioma, and 

4 or more points an Integrated Grade 3 case. This Integrated Grade was able to predict recurrence more 

accurately than standard WHO grading alone.92 Similar models have been developed by assigning scores 

based on WHO grade, DKFZ methylation-class family (benign, intermediate, or malignant; to be 

described further below), and the presence of only three prognostic CNVs: 1p-, 6q-, and/or 14q-. This 

integrated score also had significantly better accuracy in outcome prediction compared to WHO grade, 

particularly for meningiomas bordering the threshold between CNS WHO grade 1 and 2.93 
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Histopathologic Classification 

The histopathologic characteristics of meningioma have been the main correlate to outcome for 

decades and still form the basis of WHO grading. Released in 2021, the 5th edition of the WHO CNS 

classification is the first to include molecular criteria for the definition of a CNS WHO grade 3 

meningioma: presence of a TERTp hotspot mutation or homozygous loss of CDKN2A/B. These molecular 

alterations are both rare in meningiomas, particularly in cases that do not have other worrisome 

histologic findings. In the absence of these alterations, which automatically impart a CNS WHO grade 3 

designation, grading is assigned based on histopathologic features such as the number of mitoses or 

identification of at least 3 out of 5 “soft” criteria for atypia (sheeting architecture, hypercellularity, small 

cell formation, macronucleoli, spontaneous necrosis) (Figure 2).2,102 While the presence of brain invasion 

alone is now sufficient for a designation of CNS WHO grade 2 meningioma, its association with outcome 

in the absence of any other higher grade histopathological features (e.g. without elevated mitotic index, 

hypercellularity, loss of architecture, small cell change, spontaneous necrosis, or prominent nucleoli) 

remains unclear.103-105 Given that cases of brain invasion alone as a solitary atypical feature is rare, only a 

minority of meningioma cases will likely require re-grading retrospectively.104 More work is needed to 

understand the biological significance and mechanism of brain invasion in meningioma.106 Furthermore, 

current intraoperative sampling methods vary significantly between neurosurgical departments 

worldwide and this requires standardization.107,108 A systematic, structured method of safely sampling 

areas suspicious for brain invasion during surgery may be needed to optimize the diagnostic yield for 

detecting CNS invasion. While chordoid or clear cell histology still mandate a grade 2 classification, 

rhabdoid or papillary histology alone without other features of anaplasia or malignancy are now 

insufficient to render a grade 3 designation (Figure 2).2,102 
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Biomarkers and Molecular Classification  

Given the prognostic alterations uncovered in meningiomas, significant efforts have been made 

to develop a unified molecular classification system like those for glioma and medulloblastoma. In 2017, 

the first landmark studies on genome-wide DNA methylation-based classification systems for 

meningioma were published. These models were capable of stratifying meningiomas into groups at 

high- or low-risk of recurrence and further identified six unique subgroups (benign-1, benign-2, benign-

3, intermediate-A, intermediate-B, malignant) that appeared to reflect tumor biology more accurately 

than WHO grade alone.109,110 In a different study, the DNA methylation profiles of meningiomas could be 

further combined with prognostic clinical variables including histologic grade and extent of resection to 

produce a readily useable clinical nomogram that could robustly predict clinical outcome and help guide 

decisions on adjuvant treatment after surgery for individualized patients.111  

Later, the integration of genome-wide DNA methylation, mRNA expression, and copy number 

alterations resulted in the discovery of four stable molecular groups (MGs) of meningioma (Figure 3).64 

Classification by MG was found to have improved prognostication potential and biological relevancy 

compared to WHO grade and classification using any single epigenomic or genomic platform alone. MG1 

or “immunogenic” meningiomas are NF2-mutant, copy number neutral cases enriched in immune-

related transcriptomic pathways. MG2 meningiomas are enriched for non-NF2 mutations and 

angiogenic processes, earning the “NF2-wildtype” designation. MG3 and MG4 meningiomas are 

enriched for prognostically unfavorable alterations including TERTp mutation and homozygous loss of 

CDKN2A/B, in addition to novel somatic mutations in KDM6A, CHD2, and PTEN, and a higher degree of 

chromosomal instability. On transcriptomic analysis, MG3 meningiomas showed upregulation of several 

metabolic pathways including those involved in nucleotide and lipid metabolism, giving this group its 

“hypermetabolic” name. MG4 or “proliferative” meningiomas are enriched for cell cycling pathways 
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including MYC, FOXM1, and E2F pathways, have the highest mutational and copy number burden, and 

were associated with the worst clinical outcomes.64,112-116 

Other molecular classifications were also independently developed by others with some 

differences between them that could be attributed to the use of different genomic/epigenomic 

platforms and bioinformatic methods used. Choudhury et al. uncovered three stable methylation groups 

with unique clinical outcomes and biology: Merlin-intact (MI), immune-enriched (IE), and hypermitotic 

(HM). MI meningiomas, analogous to MG2 (NF2-wildtype), are largely benign cases enriched for non-

NF2 driver mutations such as TRAF7, AKT1, and KLF4. IE meningiomas, similar to MG1 (immunogenic), 

are cases found to have significant immune cell infiltration and increased expression of HLA and 

meningeal lymphatic genes including LYVE1, CCL21, and CD3E. HM meningiomas are clinically aggressive 

cases with poor outcomes enriched for FOXM1 cell proliferation pathways.37 Subsequent reanalysis of 

the HM group revealed two distinct subgroups within it: one enriched in pathways related to 

macromolecule metabolism (resembling the MG3 hypermetabolic meningiomas with intermediate to 

poor outcomes) and one enriched for cell cycle pathways that had the worst clinical outcomes (similar 

to the MG4 proliferative meningiomas). These findings seem to support the concept of either four 

distinct molecular groups matching those by Nassiri et al. or three epigenetic groups with one group that 

could be further split into two subgroups with distinct outcomes.117 Bayley et al. also found three 

methylation groups based on integration of DNA methylation, RNA expression, NF2 status, and degree 

of chromosomal instability in a cohort of primary CNS WHO grade 1 and 2 meningiomas. By their 

classification, MenG A meningiomas are almost entirely CNS WHO grade 1, have no cytogenetic 

changes, and are NF2-wildtype, corresponding to the MG2 and MI groups described above. MenG B 

meningiomas are all NF2-deficient, have a low degree of chromosomal instability, and have overall good 

clinical outcomes, seemingly matching the MG1 and IE groups. MenG C meningiomas are NF2-deficient, 

have a high burden of copy number alterations including 1p loss, and like the MG3, MG4, and HM 
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groups, have the worst clinical outcomes.118 Each of these molecular classification systems tend to 

complement and/or outperform contemporary WHO grading alone in predicting clinical outcome. 

Despite differences in naming, these molecular classifications share a significant degree of common 

biology (Figure 3). These studies together have also not only proven the value of utilizing orthogonal 

bioinformatic methods to independently produce stable, somewhat analogous molecular groups, but 

have also generated a wealth of genomic data as a valuable resource for future studies. An important 

caveat is that these classifiers may be insufficiently powered to include rare subsets of poor-performing 

NF2-wildtype tumours including meningiomas with BAP1 mutations, and management of these unusual, 

but clinically important cases should be carefully considered on an individual patient basis. Upcoming 

efforts, including those by the cIMPACT-NOW group will focus on reconciling the nomenclature of these 

different molecular classifications to reach a consensus that can be hopefully implemented into a 

unified, contemporary grading system.  

One of the additional challenges hindering the routine implementation of these molecular 

classifications is the requirement for sequencing and/or methylation array technology that may not be 

accessible at all centers. This is in addition to other barriers to genomic testing that include: financial 

reimbursement, site-dependent experience in data analysis and interpretation, and uncertainty in 

selecting the specific test to perform. One method of circumventing some of these challenges may be 

with proteomics to identify not only immunohistochemical (IHC) markers enriched in each molecular 

group, but to identify specific markers or combination of markers unique to each group such that 

tumors can be molecularly subtyped without the need for genomic analyses. For this to be clinically 

validated, IHC stains will need to be multiplexed in large, molecularly annotated meningioma cohorts, 

and analyzed by experienced neuropathologists blinded to molecular data.  

Additional uncertainty may arise in deciding on which molecular classification or integrated 

grading system to use. Whilst there are differences in classification or prognostication through models 
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that are trained on or incorporate different clinical endpoints (e.g. integrated molecular-morphological 

meningioma classification or integrated WHO grade) versus the unbiased molecular group classifications 

detailed above, these methods all provide some degree of additive prognostic information to traditional 

grading and for the time being, may be utilized interchangeably based on the available resources of each 

site.64,92,93,117-119 Efforts to expand access to genomic and methylation testing for meningiomas will not 

only aid in prognostication, but help ensure continued progress in better understanding the clinical and 

biological behavior of these tumors. To this point, while the DNA methylation and gene expression 

patterns of some meningiomas appear to remain stable between the primary and recurrent case, the 

effect of accumulating epigenetic and genomic alterations including progressive chromosomal instability 

with multiply recurrent cases (including cases that were completely resected at one point), metastatic 

meningiomas, and cases following RT still need to be further investigated.109,120,121  

An emerging area of promise for meningiomas is the use of liquid biopsy for diagnosis and 

subtyping. The use of cell-free methylated DNA immunoprecipitation and high throughput sequencing 

on patient plasma could effectively differentiate meningiomas from other radiographic mimickers such 

as solitary fibrous tumors, dural-based metastases, and chordomas.122,123 Extracellular vesicles from the 

plasma of meningioma patients quantitatively correlate with extent of resection and their contents were 

found to reliably recapitulate the methylation signatures of the parent tumor, including copy number 

and mutational profile.124 Plasma-based DNA methylation signatures of meningioma patients may have 

similar prognostic potential as the tumor tissue itself for differentiating between cases at high- and low-

risk of recurrence, although these findings still need to be further validated in larger, external validation 

cohorts with matched tissue profiling.125  
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Diagnosis and Imaging  

Many meningiomas are diagnosed when patients become symptomatic from either mass effect 

or seizures.126-128 On non-contrast computed tomography (CT), up to 25% will contain some degree of 

calcification, which may be associated with slower tumor growth and lower WHO grade in some 

cases.129 Magnetic resonance imaging (MRI) is the preferred modality for confirming the radiographic 

diagnosis with most meningiomas being isodense to cortex on all sequences, and approximately 50% 

may be associated with some perilesional edema.130 Secretory, microcystic, angiomatous, and 

lymphoplasmacyte-rich meningiomas are histologic subtypes that are all known to cause a 

disproportionately large degree of edema relative to tumor size and may portend increased risk of 

postoperative complications.131,132 Almost all meningiomas avidly enhance with gadolinium contrast and 

up to 72% have a dural tail.133 Whether the dural tail consistently contains neoplastic meningioma cells 

requiring treatment or simply represents reactive or inflammatory thickening is controversial.134-138 

Vascular imaging, often CT- or MR-angiogram (CTA, MRA) and/or CT/MR-venogram (CTV, MRV) can help 

assess the involvement of nearby vascular structures for treatment planning, which is particularly 

important around the skull base or dural venous sinuses. Formal cerebral angiography is more rarely 

performed but may be indicated if non-invasive vascular imaging provides insufficient information or if 

preoperative embolization is planned. There is some controversy regarding whether preoperative 

embolization reliably leads to decreased blood loss intraoperatively and there may be an association 

with increased risk of postoperative venous thromboembolism.139,140 Therefore, preoperative 

embolization is not a recommended strategy for all meningiomas and decisions surrounding its use must 

be made on a case-by-case basis.  

There are currently no standardized response criteria or clinical trial endpoints for meningioma 

studies. Previous trials have used a modification of the Macdonald criteria (initially developed for high 

grade gliomas), the Response Assessment in Neuro-Oncology (RANO) criteria for high-grade gliomas, or 
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the Response Evaluation Criteria in Solid Tumors (RECIST) criteria for systemic cancers.141-146 While some 

trials have used a reduction in lesion size as a radiographic endpoint, meningioma control is better 

encapsulated by lack of growth (size stabilization) as a decrease in size occurs in only a relative minority 

of cases treated with RT over time (approximately 20-30% of cases).147-149 Additionally, while overall 

survival is often the gold standard for determining treatment efficacy, the long follow-up time required 

to reach this endpoint for all but the most aggressive meningiomas presents a significant challenge, 

particularly for clinical trials. The Response Assessment in Neuro-Oncology (RANO) Working Group 

instead proposed that 6-month progression-free survival (PFS6) could be a viable endpoint for 

meningioma drug trials with a 25% increase in the tumor’s bidimensional product representing definitive 

progression.141 For patients enrolling in clinical trials, collection of pre-treatment MRIs will be important 

to confirm adequate progression of the tumor during trial follow-up. In the future, measurement of 

tumor volume and assessing changes in the rate of tumor volume growth before and after treatment 

may be another method of evaluating the efficacy of novel therapies.150 For reporting in retrospective 

studies, the International Consortium on Meningiomas (ICOM) proposed the definition of tumor 

progression to be any radiographic progression that leads to a change in the clinical management of the 

tumor (e.g. from observation to consideration for surgery, RT, or stereotactic radiosurgery (SRS)), 

thereby excluding cases of minimal radiographic growth or small volume increases followed by a long 

plateau of stability that may not ultimately be of any clinical significance.151  

An emerging imaging tool for meningiomas is positron emission tomography (PET) using 

somatostatin receptor (SSTR) ligands such as Gallium-68-labelled DOTATATE given that nearly all 

meningiomas express SSTR1/2 (Figure 4).152 Recently published guidelines from the RANO Working 

Group suggest that [68Ga]Ga-DOTATATE PET can be used for diagnosis, surgical resection and RT 

treatment volume planning, as well as post-treatment surveillance (Figure 4).153,154 When compared to 

conventional MRI, [68Ga]Ga-DOTATOC PET had improved sensitivity for detecting meningiomas 
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particularly in areas of tumor invading bone, locations obscured by calcifications or radiographic 

abnormalities, tumors centered at the skull base, or those located next to the falx.155 The ability to 

image the entire body is also advantageous for detecting systemic metastases in multiply recurrent 

higher grade or malignant meningiomas that although rare, will dramatically influence patient prognosis 

and treatment planning if identified. When correlated with SSTR2 immunohistochemistry and tumor 

histology, [68Ga]Ga-DOTATATE PET was found to be capable of differentiating between meningioma and 

tumor-free tissue with high accuracy, suggesting that it can be reliably used to demarcate tumor 

invaded bone that may require additional drilling to maximize extent resection (particularly in the skull 

base; Figure 4) and inform adjustments in RT target volumes in addition to potential response 

assessment after RT.152,156-160 Postoperatively, PET imaging may also better define residual tumor and 

therefore extent of resection more accurately than traditional MRI and may also differentiate true 

tumor progression/recurrence from treatment effect.153,161,162 Recently, Fluorine-18-labelled SSTR-

tracers such as [18F]SiTATE have been developed which demonstrate similarly high uptake in 

meningiomas while boasting lower radiation exposure and less logistic constraints for transport and 

clinical use compared to [68Ga]Ga-DOTATATE PET given its longer half-life (110 vs 68 minutes).163,164 

Although PET imaging is a promising addition to the armamentarium for meningioma diagnosis and 

treatment, its limitations include the still sparse data on cost effectiveness, physiologic uptake near 

certain anatomic structures such as the pituitary gland, and tracer uptake by other tumors or non-

neoplastic diseases that may also express SSTR.153,165 Furthermore, additional prospective work and 

multicentre clinical trials are needed to link these positive findings from often single institution 

retrospective studies with demonstrable improvements in clinical outcomes.152  

While many meningiomas are diagnosed symptomatically, approximately 20% are found 

incidentally, a proportion likely to increase with an aging population with increased access to 

neuroimaging.128,166 Incidental meningiomas can be a source of significant anxiety for patients, an 
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economic burden due to the need for regular follow-up imaging, and a clinical dilemma for clinicians due 

to their unpredictable biology given the absence of diagnostic tissue.128,166-168 Natural history studies on 

incidental meningiomas typically only extend to the 10-year follow-up mark and most have found a 

relatively slow growth rate (average <5% volumetric increase per year). Approximately 5-8% of patients 

will develop new symptoms during a mean follow-up period of 4.1 years (standard deviation 2.4 

years).167 Imaging features that may portend a higher risk of progression of an incidental meningioma 

include: lack of calcification, hyperintensity on T2-weighted MRI, presence of peritumoral edema, large 

tumor volume at diagnosis (>10 cm3), non-skull base location, and closer proximity to a venous 

sinus.39,114,167,169-175 There are currently no standardized guidelines for the interval or duration of 

monitoring for incidental meningiomas. Although most meningiomas that progress will do so within 5 

years of observation, some cases can remain indolent for a longer period before demonstrating 

accelerated recurrence or growth. Consequently, many clinicians may follow incidental meningiomas in 

younger patients for a longer duration of time, progressively lengthening the interval between 

neuroimaging while elderly patients may be discharged from follow-up earlier after a confirmatory 

period of radiographic stability.128,167 Several prognostic models such as IMPACT (Incidental 

Meningioma: Prognostic Analysis Using Patient Comorbidity and MRI Tests) have been developed to 

assist clinicians in tailoring follow-up to a specific patient based on individualized clinical and tumor 

factors but these models all require prospective validation.128,166,176-178 Upfront treatment of incidental 

meningiomas is also an option, with surgical resection for often larger tumors, and SRS as a reasonable 

option for smaller volume cases or for patients with contraindications to surgery.179-181 Decisions to treat 

usually hinges on a combination of patient wishes, clinician preference, and tumors factors including 

proximity of the meningioma to critical neurovascular structures such that further enlargement or 

growth could make later resection more challenging or higher risk. Newer technologies such as liquid 

biopsy or 18F-FLT PET could be used to help predict risk of recurrence non-invasively and better 
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individualize management for these cases.125,182 While SRS improves radiographic local control of 

asymptomatic meningiomas compared to observation, this may not translate to a reduced risk of 

developing new symptoms over time.181 Furthermore, even though a subset of incidental meningiomas 

will grow radiographically, these changes may not become clinically significant until tumor size reaches a 

certain threshold or nears eloquent brain areas. As usual, treatment decisions should weigh the risks of 

progression versus the risks of intervention, while also taking into consideration the psychosocial, 

neurocognitive, and socioeconomic effects of active surveillance for the patient versus upfront 

treatment.183,184 

 

Surgical Management  

Surgery remains the mainstay of treatment for growing or symptomatic meningiomas (Figure 5). 

Goals of surgery, as defined by the 2021 EANO guidelines, are predominantly to obtain a tissue 

diagnosis, relieve mass effect, and alleviate neurologic symptoms if present.127 Notably, extent of 

resection is an important correlate of outcome, and maximal safe resection should be sought while 

minimizing neurologic morbidity for all cases. To this end, surgical adjuncts including neuronavigation, 

ultrasonography, and intraoperative neuromonitoring are critical for tumors located in highly eloquent 

areas such as the cerebellopontine angle or foramen magnum, to reduce the risk of incurring permanent 

neurologic injury. Since some meningiomas are intimately associated with critical neurovascular 

structures, complete resection without unacceptable morbidity is not always possible; it is therefore 

important to standardize a maximally beneficial degree of resection for these cases in a meaningful way.  

The Simpson grade, first introduced in 1957, describes surgeons’ assessment of the extent of 

resection for meningioma. It ranges from Simpson grade 1 (complete resection of tumor, affected dural 

attachment, and bone) to 5 (decompression/biopsy only) with higher grades associated with higher 
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rates of recurrence.185-188 Complete tumor resection may be designated as Simpson grade 1, 2, or 3 

depending on whether the underlying dura is resected, coagulated in situ, or left intact respectively. 

While the Simpson grade has historically been a major predictor of postoperative PFS, its role in modern 

meningioma surgery has become somewhat controversial.161,186,187,189-191 For example, recent studies 

have shown that resecting the underlying dura (Simpson grade 1 resection) may not be associated with 

improved outcomes compared to other Simpson grades.190,191 This is important in cases of meningiomas 

originating from the skull base, wherein aggressive dural resection may be associated with increased risk 

of complications such as CSF leak or for meningiomas involving dural venous sinuses wherein 

hemorrhage, venous infarct, or air embolism are notable risks.186,190 In these cases, achieving maximal 

tumor resection without excising the underlying dura may decrease morbidity without affecting PFS. 

Additionally, skull base meningiomas are more likely to exhibit more benign biology, which is used as 

evidence for opposing viewpoints: on one hand, striving for a Simpson grade 1 resection in these 

complex cases may confer unnecessary surgical risk, thereby supporting a more conservative approach; 

on the other hand, complete resection in the context of a meningioma with benign biology may provide 

an opportunity for robust oncologic cure, obviating the need for adjuvant RT and supporting a more 

aggressive surgical approach.192-194 The optimal strategy in these cases will depend largely on the 

surgeon’s comfort level, experience, and of course, the patient’s wishes and their risk tolerance for 

neurologic deficits, temporary or permanent, that may be incurred in an effort to achieve a potential 

cure. As an additive step to a Simpson grade 1 excision, “Simpson grade 0” resection, whereby an 

additional 2-cm margin of surrounding dura is removed, has been proposed primarily for convexity 

located meningiomas where this is most feasible.195 However, there are currently no well-established 

guidelines for the extent of dural resection recommended to optimally prolong time to recurrence and 

adjunctive technologies such as Raman spectroscopy or SSTR PET may help to better define this moving 

forward.152,156,161,196-198  
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Considering these limitations in Simpson grading in meningioma, there has been movement 

towards defining extent of resection as either gross total resection (GTR), indicating cases where all 

tumor is removed regardless of how the underlying dura is handled (Simpson grades 1-3), and subtotal 

resection (STR), indicating cases where a portion of gross tumor is left behind (Simpson grades 4/5). This 

definition has been adopted by organizations such as the European Organization for Research and 

Treatment of Cancer (EORTC) and the Radiation Therapy Oncology Group (RTOG).127 However, the role 

of Simpson grading and extent of resection in the context of meningioma molecular classifications has 

yet to be adequately explored.  

The different surgical approaches to intracranial meningiomas are vast and a comprehensive 

review of each approach is beyond the scope of this paper. The latest evolution in surgical techniques 

for these tumors emerged with improvements in endoscopic technologies, permitting endoscopic 

expanded endonasal approaches (EEA) for anterior skull base including olfactory groove and tuberculum 

sella meningiomas (or, less commonly, tumors in the middle fossa, posterior fossa, or orbit) for 

appropriately selected patients. Tuberculum sellae meningiomas (TSM) are the prototypical candidates 

for endoscopic resection through an EEA and there is a trend toward better visual outcomes but higher 

rates of CSF leaks for these patients when compared to open, transcranial approaches.199-201 TSM 

selected for EEA tend to be smaller in size with less perilesional edema and no vascular encasement.201 

Overall, there is insufficient evidence demonstrating universal superiority of one approach over another, 

and each case should be individualized based on patient and tumor factors in addition to the surgeon’s 

comfort and expertise.127 
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External Beam Radiotherapy for Meningiomas  

In addition to surgical resection, RT is the only currently established treatment for meningioma. 

This may be done as primary treatment or as an adjunct to surgery, either as adjuvant therapy or 

salvage treatment at the time of progression/recurrence. However, the optimal timing of adjuvant RT is 

currently unknown. The recent EANO guidelines suggest RT can be utilized as primary treatment for 

symptomatic patients or those with sufficiently large tumors who cannot undergo surgery due to 

underlying comorbidities, surgical risk, or patient preference. These guidelines also recommend RT as an 

adjunct to surgery in all patients with CNS WHO grade 3 meningiomas or CNS WHO grade 2 cases 

following subtotal resection. Recent evidence suggests that RT may have a role even for patients with 

CNS WHO grade 1 meningiomas that cannot be completely resected, a cohort that had worse PFS than 

completely resected and irradiated CNS WHO grade 2 meningiomas in the non-randomized RTOG-0539 

phase II clinical trial (Figure 5).127,202  

The use of adjuvant RT in all CNS WHO grade 3 meningiomas and partially resected CNS WHO 

grade 2 meningiomas (so called “high-risk” cases) however is supported by the same RTOG-0539 trial, 

which treated these cases with intensity modulated RT (IMRT) in 60 Gy over 30 fractions.203 This 

achieved a 3-year progression-free survival of 58.8% and overall survival of 78.6% in 51 enrolled 

patients, with minimal adverse effects (one grade-5 necrosis related complication in a patient with a 

large RT treatment field, all others grades 1-3). Additionally, EORTC 22042-26042, a non-randomized 

phase II study of patients with WHO grade 2 meningioma who underwent complete resection and 

postoperative RT (60Gy), achieved an encouraging 3-year PFS of 88.7%.204 With improvements in RT 

technology, dose escalation has been proposed as a strategy for higher grade (WHO grade 2 or 3) 

meningiomas. The phase II MARCIE trial utilized a carbon-ion (C12) boost of 18 Gy over 6 fractions 

combined with IMRT or fractionated stereotactic RT of 50.4 Gy/28 fractions for incompletely resected 

WHO grade 2 meningiomas, with resultant 3-year PFS and local control rates of 80.3% and 86.7% 

D
ow

nloaded from
 https://academ

ic.oup.com
/neuro-oncology/advance-article/doi/10.1093/neuonc/noae082/7663195 by guest on 03 July 2024



Acc
ep

ted
 M

an
us

cri
pt

respectively. However, a higher-than-expected proportion of patients developed radiation-induced 

contrast enhancement post-treatment and the study was prematurely terminated due to one 

treatment-associated death.205 A large, single-center retrospective study from Toronto found that dose 

escalation of conventional photon-based RT to 66-70 Gy over 33-35 fractions for WHO grade 2 and 3 

meningiomas (both as adjuvant and salvage treatment) led to improvements in local control and PFS 

compared to standard dose RT (59.4-60 Gy/30-33 Fr), without a significant difference in treatment-

related adverse events, although the authors acknowledged likely underreporting of these toxicities.206 

A randomized controlled trial is likely warranted to help answer the question of optimal RT dosing for 

these higher grade cases. Several other retrospective studies also support the use of adjuvant RT in CNS 

WHO grade 2 and 3 meningiomas but are limited by small sample sizes, non-standardized RT 

doses/techniques, lack of distinction between local and out-of-field treatment failures, and evolving 

WHO criteria.207,208 There continues to be controversy on the benefit of adjuvant RT in patients with 

completely resected CNS WHO grade 2 tumors, a group wherein the guidelines remain equivocal. This 

critical question is being addressed with the ongoing phase III randomized trials NRG BN-003 

(NCT03180268) and ROAM/EORTC-1308 (ISRCTN71502099) and results are pending.209-212 

The use of WHO grading to stratify meningiomas into different treatment arms should also be 

considered carefully. The WHO criteria for CNS WHO grade 2 and 3 meningiomas (the cases that are 

most often selected for adjuvant RT) have undergone several updates of varying degrees from 2000 to 

2021.2,213-215 Clinical trials that accrue over several years will therefore require central pathological 

review or be limited by this confounder. Furthermore, apart from the most recent 2021 classification, all 

previous WHO grading systems were almost entirely based on histopathology alone and in some 

instances may be susceptible to differences in interpretation between pathologists.216,217 Additionally, in 

this emergent molecular era of meningioma classification, the WHO grade has been shown to be less 

predictive of outcome than nearly all molecular classifications although robust, large scale validation of 
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these classifications are still needed, particularly as it pertains to response to RT. Despite the associated 

challenges, it will be important to consider prognostic molecular alterations when it comes to optimal 

selection of patients for adjuvant RT after surgery. When DNA methylation was performed on 38 CNS 

WHO grade 2 and 3 meningiomas from the phase II EORTC 22042–26042 clinical trial that received 

different degrees of surgical resection, loss of chromosome 1p and unfavorable DKFZ methylation class 

were found to be associated with worse 3-year PFS, although statistical significance was not met.218 

Recently, a 34-gene targeted gene-expression signature was developed that appeared to outperform 

WHO grade and several different molecular-based grading systems in accurately predicting 5-year PFS. 

Using this signature, which was also validated using cases from the RTOG-0539 trial, meningiomas were 

able to be stratified into cases at high- and low-risk of recurrence.219 Although this gene expression 

biomarker was robustly validated in large external cohorts where postoperative management for up to 

29.8% of cases could be refined, these cohorts spanned multiple decades of time and included only 210 

patients who received postoperative RT. Therefore, further validation will still be needed to translate 

this and other molecular predictors of RT response to clinical practice.220  

Finally, patients undergoing primary RT for meningioma in lieu of surgery may undergo either 

SRS or fractionated external beam RT. While both have been associated with excellent rates of tumor 

control, the latter may be preferred for larger tumors (typically larger than 2-3 cm in maximum diameter 

but may be institution-dependent) or those close to radiation-sensitive structures such as the brainstem 

or optic nerves since fractionation optimizes normal tissue tolerance.221-224 Nevertheless, recent non-

randomized evidence suggests that larger meningiomas may have worse outcomes with fractionated 

RT.223,225,226 Small cavernous sinus meningiomas and optic nerve sheath meningiomas, however, tend to 

be well controlled with primary fractionated RT and have similarly excellent rates of symptomatic 

improvement after treatment.223,227,228 
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Stereotactic Radiosurgery for Meningiomas  

SRS is defined as treatment with a single fraction of radiation, typically using doses ranging from 

12-18 Gy to the 50% isodose line for Gamma Knife, 60-70% isodose line for CyberKnife, or up to 80% for 

other linear accelerator (LINAC) based methods. Delivery of SRS in multiple fractions using frameless 

image-guided SRS systems, termed hypofractionated stereotactic radiotherapy (HSRT), has also been 

implemented and typically applies a dose per fraction of ≥ 5 Gy not exceeding 5 fractions. The 

multicenter retrospective IMPASSE study on small asymptomatic/incidental meningiomas demonstrated 

that in a large cohort matched for patient age, tumor volume, location, and imaging follow-up, 

meningiomas that received SRS had a tumor control rate of 99.4% compared to 62.1% in the 

observation arm. This suggests that SRS likely does change the natural history of some meningiomas, 

with the caveat that most incidental and asymptomatic meningiomas do not demonstrate clinically 

significant growth on long-term follow-up and can be safely observed without any treatment.128,167,177 

Treatment may be warranted in meningiomas that are adjacent to critical structures such that growth 

may lead to significant neurologic deficits, particularly in younger patients, although this decision too 

must be balanced against long-term RT-associated sequelae.208 

In a meta-analysis of non-cavernous sinus CNS WHO grade 1 meningiomas treated with SRS or 

hypofractionated stereotactic radiotherapy, local control rates ranged from 71-100% (median 94.2%) 

while progression-free survival (PFS) ranged from 55%-97% (median 89.4%) with a median follow-up of 

at least 3-years.229 Factors associated with improved tumor control included smaller volume and patient 

age under 65.229 Local control and PFS rates for cavernous sinus meningiomas are more favorable, with 

5-year PFS rates ranging from 86-99% and 10-year PFS rates ranging from 69-97%.229 Factors associated 

with improved local control following SRS included higher marginal dose, small-to-medium sized tumors, 

CNS WHO grade 1, primary SRS (vs adjuvant), treatment within 1 year of symptom onset, female sex, 

younger age, and less conformal plans. By contrast, tumor volume >10 cc, parasagittal/parafalcine 
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location, and venous sinus invasion were associated with worse tumor control and an increased rate of 

complications after SRS.207,208,224,230-232  

The evidence on SRS for higher grade meningiomas (CNS WHO grades 2 and 3) is limited. 

However, tumor control in histologically-confirmed higher grade meningiomas is typically poor, with one 

series reporting rates of 50% and 17% at 2-2.5 years for WHO grade 2 and 3 tumors, respectively.233 A 

recent multicenter study of 233 WHO grade 2 meningiomas found a similar 3-year PFS rate of 53.9% 

after SRS, with a 5-year PFS of 33.1%. When recursive partitioning analysis was performed, two 

subgroups were identified with divergent prognoses. Poor outcomes were associated with patient age 

over 50, multiple prior resections or prior RT, and treatment volume >11.5 cm3.234 There are limited data 

on whether higher SRS doses or hypofractionated treatment regimens are advantageous for higher 

grade meningiomas and existing evidence is confounded by clinical factors such as pre-treatment clinical 

history, treatment timing, and RT field. Therefore, prospective studies are needed for cases with 

treatment equipoise. Importantly, as with external beam RT, given the lack of molecular stratification in 

the current SRS literature, future studies should focus on incorporating these modern classification 

schemes in retrospective and prospective studies.  

 

SSTR-Targeted Peptide Receptor Radionuclide Therapy 

Given the fact that SSTR2 ligands can be utilized for either diagnostic (e.g. 68Ga) or therapeutic 

purposes (e.g. 177Lu or Y), the novel concept of theranostics has gained traction in meningiomas.235 

Several mostly single- or bi-center retrospective studies have been completed with promising results in 

terms of achieving stable disease in progressive, pretreated meningiomas.236,237 The uptake of the 

diagnostic tracer might be suitable as a prognostic marker for the efficacy of this therapy given its 

usually high sensitivity and specificity for its target.238 Recently, an EMA- and FDA-approved 
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radiopharmaceutical for SSTR2-radioligand therapy became available for the treatment of 

neuroendocrine tumors, which like meningiomas, are characterized by high SSTR expression.239 A recent 

single-arm phase II study (NCT03971461) on the use of 177Lu-DOTATATE for progressive, intracranial 

meningiomas saw 6/14 patients achieving the PFS-6 threshold required for the study to progress to its 

second stage, currently open for enrolment in the US.240,241 A randomized clinical trial to evaluate the 

efficacy in 177Lu-DOTATATE in recurrent meningioma is in preparation within the EORTC Brain Tumor 

Group network. Other radioligands are also currently being developed for similar applications. 

 

Systemic Therapies for Meningiomas  

Classically, meningioma treatment has centered on surgical resection and RT. However, novel 

systemic agents have emerged as a possible option for recurrent or aggressive tumors, all of which 

remain under investigation.242 These include tyrosine kinase inhibitors and monoclonal antibodies 

targeting vascular endothelial growth factor (VEGF) signaling pathways given the established role of 

angiogenesis in the pathophysiology of meningiomas.243-247 A phase II trial of the multikinase inhibitor 

sunitinib which targets the VEGF and  platelet-derived growth factor receptors, among others, in grade 2 

and 3 meningiomas showed a 6-month progression free survival (PFS6) rate of 42%, meeting the primary 

endpoint.243 A phase II trial of bevacizumab in recurrent meningiomas showed a PFS6 of 77% in grade 2 

and 46% in grade 3 meningiomas suggesting possible activity.248 The Alliance A071401 trial is the first 

genome-driven platform phase II study in which patients with recurrent meningiomas are genotyped 

and assigned to treatment with vismodegib for tumors with SMO mutations, abemaciclib for CDK 

alterations, capivasertib for AKT or PI3K mutations and a FAK inhibitor (GSK2256098) for NF2-mutant 

cases. GSK2256098 was well tolerated and demonstrated promise in achieving a PFS-6 in progressive 

WHO grade 1 of 83% and 33% in WHO grades 2/3 meningiomas. Cytotoxic and hormonal agents, 
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including trabectedin, somatostatin agonists and progesterone antagonists, have demonstrated less 

clinical efficacy.247,249-257  

Immunotherapy has shown promise in treating solid organ tumors, and recently there has been 

growing interest in its role in meningiomas despite the challenges of their usually immunologically quiet 

microenvironment and low tumor mutational burden.258 In a single-arm, open-label phase II trial 

(NCT03279692), patients with progressive CNS WHO grade 2 and 3 meningiomas were treated with 

pembrolizumab, a PD-1 inhibitor, which met primary endpoint and achieved a PFS of 48% at 6 months 

with a median PFS of 7.6 months.259 In the same trial, 20% of patients experienced one or more grade-3 

or higher adverse events associated with treatment. A trial of nivolumab monotherapy in similarly 

progressive high grade meningiomas failed to demonstrate improvement in PFS at 6 months (PFS-6 

42.4%); however, two patients with high tumor mutational burden had increased immune cell 

proliferation and were long-term survivors.260  

Thus far, more trials are needed to identify better systemic therapies for meningioma patients. 

Results from several published and completed clinical trials are summarized in Table 3. Given the lack of 

options for treatment-refractory meningiomas, additional agents are needed. The results from ongoing 

trials may highlight the importance of molecular classification on patient selection for targeted therapies 

as opposed to stratification based on WHO grade alone. There are several ongoing clinical 

immunotherapy trials on the use of nivolumab, ipilimumab, and avelumab (NCT03173950, 

NCT04659811, NCT03267836) for meningiomas and other CNS tumors, the results of which may yield 

interesting treatment insights for the future (Table 4).  
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Quality of Life for Meningioma Patients 

The impact of a meningioma diagnosis on patients is often underestimated and standardized 

methods and tools to assess health-related quality of life (HRQoL) in meningioma patients are still 

lacking. Many present with symptoms that can profoundly impair HRQoL such as seizures, motor and 

sensory deficits, cognitive impairment, cranial neuropathies, neuropsychiatric symptoms, and systemic 

symptoms such as fatigue.261,262 Many of these symptoms may be persist long after treatment, with 

some patients reporting considerable effects on HRQoL as long as 10 years after surgery.263 Therefore, 

even if long-term tumor control is achieved, patients may require additional targeted interventions to 

help then return to their premorbid quality of life. Even surveillance imaging may be associated with 

significant anxiety and negative effects on HRQoL.  

After surgery, patients with symptomatic meningiomas often experience a significant 

improvement in their symptoms and improved HRQoL in the short term. However, most demonstrate 

persistently reduced long term HRQoL when compared to healthy controls.264-266 Of note, achieving 

seizure control plays a significant role in improving HRQoL, whereas multiple surgical resections and the 

use of adjuvant RT are associated with reduced HRQoL scores, although these results may be 

confounded by tumor location and extent of resection. Other predictors of lower postoperative HRQoL 

include lower preoperative HRQoL, larger tumor size, skull base location, and the presence of 

peritumoral edema.267 Fatigue is the most common symptom that has been reported to worsen in the 

post-treatment period following either surgery or radiosurgery.267,268 Patients who receive RT may 

demonstrate improvement in some domains of HRQoL in the short term but may also experience 

delayed and progressive cognitive decline in the long term. Much of this data, however, is based on 

older RT treatment paradigms, with modern treatment plans likely to show more favorable long-term 

cognitive outcomes.266,269-271 Increased patient support resources and counselling should be directed 

towards patients at high risk of persisting impairments in HRQoL both before and after treatment.268 
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There is currently a critical lack of a standardized, externally validated questionnaire targeting HRQoL for 

meningioma patients as well as specific interventions outside of standard tumor treatments designed to 

improve different HRQoL domains.266 The correlation between quality of life and molecular subgroups 

also remains largely unexplored despite key differences in tumor behavior between these groups (e.g. 

NF2-wildtype tumours are more likely to grow in the skull base resulting in cranial nerve deficits 

whereas NF2-altered meningiomas are more common along the convexity and may be more commonly 

associated with seizures). Subgroup-specific quality of life metrics may provide an opportunity for 

further improvements in personalized and patient-centric care. 

 

Seizures in Meningioma Patients  

Seizures are a common presenting symptom in patients with meningioma, occurring in up to 

30% of cases preoperatively.272,273 Risk factors associated with an increased seizure risk include recurrent 

disease, larger tumor size, non-skull base location, higher WHO grade, presence of peritumoral edema, 

and postoperative RT.4,274,275 The presence of brain invasion and peritumoral edema are associated with 

neurotransmitter alterations, ionic channel changes, and blood-brain barrier disruption, all of which may 

contribute to development of a cortical epileptogenic focus.276-279 One study found that NF2-mutated 

meningiomas had an increased risk of preoperative seizures but only when associated with atypical 

histology and peritumoral edema. They additionally found that mutations in genes of the Hedgehog 

signaling pathway (SMO, PRKAR1A, SUFU) in CNS WHO grade 1 meningiomas were associated with 

postoperative seizures.274 Additional work is needed to ascertain whether specific molecular alterations 

can independently predict perioperative seizure risk or if the postoperative course is mainly affected by 

the anatomic location associated with meningiomas harboring SMO, PRKAR1A, or SUFU mutations. 

D
ow

nloaded from
 https://academ

ic.oup.com
/neuro-oncology/advance-article/doi/10.1093/neuonc/noae082/7663195 by guest on 03 July 2024



Acc
ep

ted
 M

an
us

cri
pt

The primary treatment for meningioma-related seizures is surgical resection, ideally GTR.280 For 

patients for whom surgery or GTR may not be feasible, or for those whose seizures persist despite 

surgical resection, antiepileptic medications are often used following a similar treatment protocol as for 

idiopathic epilepsy. There are currently no recommendations regarding the first-line antiepileptic drug 

of choice for these patients, although levetiracetam is the most commonly prescribed option.280,281 The 

optimal duration of perioperative antiepileptic therapy for meningioma patients with seizures is also 

highly variable and there are no current guidelines or level 1 evidence to support specific practices that 

are often institution or provider specific. In general, the literature supports continuing seizure 

medications postoperatively for 1-2 years before tapering off in the setting of ongoing seizure 

freedom.280,282,283 The use of antiepileptic medication as prophylaxis is controversial but is generally not 

recommended given a lack of conclusive evidence demonstrating reduction in postoperative seizure 

risk.284,285 Nevertheless, it may be considered in patients with one or more seizure risk factors such as 

significant peritumoral edema.272,286 Furthermore, results from the ongoing multicentre, randomized 

controlled trial “STOP ‘EM” in the United Kingdom on prophylactic levetiracetam for seizure naïve 

meningioma patients may help inform changes in clinical practice.287   

 

Meningiomas in Patients with NF2-Related Schwannomatosis 

Pathogenic germline alterations in the NF2 gene, whether inherited or acquired (e.g. new 

germline variant), result in the development of the tumor predisposition syndrome neurofibromatosis 

type 2 or NF2-SWN.66 NF2-SWN is a highly penetrant autosomal dominant condition with an incidence of 

1 in 25 000 to 33 000.288-290 While classically characterized by the development of bilateral vestibular 

schwannomas, 48-75% of patients with NF2-SWN will develop meningiomas at some point in their 

clinical course.291 Comparatively, patients with NF2-SWN typically develop meningiomas at a younger 
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age and are at higher risk for developing multiple meningiomas.75,292 Therefore, patients presenting with 

a meningioma at young age and/or multiple meningiomas should be screened for germline NF2 and 

SMARCE1 mutations. The majority of NF2-SWN-associated meningiomas are asymptomatic and often 

diagnosed during the work up for NF2-SWN or over the course of routine radiographic surveillance. 

When present, approximately 10% of these meningiomas will grow rapidly (defined as ≥2 cm3/year by 

one study) while the remainder will demonstrate no or very slow growth. New meningiomas will 

develop in 20% of patients.293-295 Importantly, patients with NF2-SWN that have a meningioma may have 

a significantly increased risk of death.296 

Given their complexity, management of patients with NF2-SWN by multidisciplinary teams at 

high volume centers has been demonstrated to improve both their quality of life and life expectancy.296 

The majority of NF2-SWN-associated meningiomas can be safely observed including those that 

demonstrate slow growth. Surgery remains the primary treatment for symptomatic or rapidly enlarging 

tumors, though its risks must be weighed against the anticipated risks of other operative procedures 

NF2-SWN patients may need to undergo for other tumors.296 Maximizing extent of resection remains 

important but must be balanced against the risk of incurring a significant neurologic deficit.294 

Importantly, NF2-SWN-associated meningiomas that are resected tend to be more biologically 

aggressive than sporadic meningiomas (52% are WHO grades 2 or 3), though this may be confounded by 

a relative hesitancy to resect slow growing tumors in these patients.290,293   

SRS has also been proposed as a viable treatment strategy for enlarging meningiomas in NF2-

SWN patients with 5-year local control rates generally greater than 90%. However, distant failure rates 

ranged from 27-51%, and studies are limited to small institutional case series.297-300 Additionally, 

malignant transformation remains a rare but important concern with SRS in this patient population with 

a significantly higher risk of malignant progression in previously benign tumors of NF2-SWN patients (up 

to 5-6% absolute risk increase) compared to patients with irradiated sporadic disease.301 Furthermore, 
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the quality of life of NF2-SWN patients may be negatively impacted by the use of RT.270,302,303 Therefore, 

radiotherapy should be used with caution in this patient population and reserved for recurrent 

meningiomas or those associated with unacceptable surgical risk.290  

Given the challenges related to NF2-SWN associated tumors, several clinical trials have been 

undertaken to identify better treatment options. The AZD2014 trial in NF2-SWN patients with 

progressive or symptomatic meningiomas (NCT02831257) used a dual mTORC1/mTORC2 inhibitor but 

had 12 out of 18 patients withdraw due to adverse effects. The RAD001 trial (NCT01419639) was a 

phase II trial using everolimus, an mTOR inhibitor, as monotherapy for NF2-SWN patients which 

appeared to slow tumor growth but did not demonstrate any reduction in size. The phase II CEVOREM 

trial (NCT02333565) combined octreotide, a somatostatin analogue, with everolimus for the treatment 

of aggressive and otherwise treatment-refractory meningiomas, though only 4 of 20 patients had a 

germline NF2 mutation. This trial demonstrated significant reduction in the median tumor growth rate 

at 3- and 6-months, with 4 patients withdrawing due to adverse effects.256  A retrospective review also 

found slowing of meningioma growth with the EGFR/ErbB2 inhibitor lapatinib (NCT00973739) in 8 NF2-

SWN patients with 17 tumors.304 The phase II INTUITT-NF2 trial (NCT04374305) utilized brigatinib, a 

potent anaplastic lymphoma kinase inhibitor in combination with INK-128, a dual mTORC1/2 inhibitor 

for NF2-SWN associated tumors, with interim results of the brigatinib arm demonstrating radiographic 

response of 28% in meningiomas.305 While some of these treatments show promise, additional 

prospective trials are needed before any systemic therapies become standard of care. Furthermore, 

translational studies incorporating radiography, molecular biomarkers (including non-invasive 

biomarkers), histopathology, and quality of life will be critical for improving treatment paradigms for 

NF2-SWN patients.  
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Radiation-Induced Meningiomas  

Exposure to ionizing radiation is a well-known risk factor for meningioma development. While 

RT improves the survival of many childhood cancers, some long-term survivors are left with secondary 

neoplasms as a consequence of their treatment, most commonly radiation-induced meningiomas 

(RIMs).306,307 Other less common sources of exposure include low-dose RT for tinea capitis which was 

employed in the first half of the 20th century and survivors of the atomic bombs of World War 

2.13,15,308,309 The latency period between initial RT exposure and the development of RIMs typically varies 

between 10-40 years and may be inversely associated with the initial exposure dose.11,13,15,310 Given that 

most RIMs in childhood cancer survivors are diagnosed 40 years after their initial treatment, imaging 

follow-up at fixed intervals, with more frequent follow-up for those who received high-intensity 

treatment may be warranted.306,307  

RIMs are biologically and clinically distinct from their sporadic counterparts and while rare 

(making up only 1-2% of all meningiomas), they present a significant clinical challenge due to their 

increased biological aggressiveness, multiplicity, and resistance to standard therapies. They also have a 

much higher burden of cytogenetic changes compared to sporadic meningiomas including frequent 

losses of chromosomes 1p (over 50% of cases), 9p, 19q, 18q, 10p, and 22q.10,14,311  Notably, RIMs were 

less frequently found to have loss of chromosome 22q or NF2 point mutations compared to sporadic 

meningiomas but had more frequent NF2 gene fusion events. These fusions are likely secondary to 

misrepair of RT-associated double-stranded DNA breaks, providing an alternative mechanism of NF2 

disruption. Non-NF2 driver mutations including in AKT1, SMO, TRAF7, and KLF4 were not observed in 

RIMs.10,41   

Standard treatment guidelines for RIMs do not currently differ from sporadic meningiomas, with 

surgical resection as first line therapy for symptomatic cases. When multiple RIMs are present in the 
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same patient, surgery should target the largest and/or symptomatic tumors first. Otherwise, active 

surveillance remains a safe initial strategy for these tumors, with a low rate of neurological morbidity.312 

The role of adjuvant RT for RIMs is unclear but may be utilized in cases of subtotally resected 

meningiomas or those with higher WHO grade. However, even CNS WHO grade 1 RIMs can demonstrate 

aggressive behavior and many of these cases are RT-resistant. SRS appears to be safe and well tolerated 

for RIMs that are not amenable to resection or in patients with multiple RIMs. Overall, tumor control 

rates are lower for RIMs than for sporadic meningiomas, and larger treatment volume is associated with 

worse PFS.313-316 

 

Spinal Meningiomas  

Although rarer than their intracranial counterparts (with an incidence of approximately 0.193-

0.33 cases per 100 000), spinal meningiomas are the most common intradural spinal tumor, 

representing 25-45% of these cases.317-319 CNS WHO grade 2 and 3 cases are also comparatively less 

common in the spine.318-320 Spinal meningiomas appear to differ from intracranial meningiomas on a 

molecular basis as well and are generally more biologically benign.321-323 A novel classification was 

recently proposed with two major subgroups: one with predominantly NF2 mutations and the other 

with AKT1 mutations (mutually exclusive to NF2 mutations). While both subgroups were predominantly 

comprised of meningiomas from benign methylation subclasses, the NF2-mutated subgroup was 

associated with comparatively intermediate outcomes and more strongly associated with female sex, 

thoracic spine location, and frequent tumor calcification.109,321,322 AKT1-mutated spinal meningiomas had 

no sex predilection and were associated with meningothelial subtype, cervical spine location, and 

absence of tumor calcification.321,322 Interestingly, there was a small subset of spinal meningiomas with a 

much higher degree of cytogenetic changes that did not show a clear association with either of the 
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above subgroups and instead more closely resembled intermediate and malignant methylation 

subclasses of intracranial meningoma.322 This suggests that as more clinically aggressive spinal 

meningiomas are profiled, additional molecular subgroups may be elucidated.  

Treatment guidelines for spinal meningiomas are the same as for intracranial meningiomas, with 

gross total resection as the usual goal of surgery. In cases where a Simpson grade 1 resection (including 

dural resection with patch reconstruction) may not be feasible such as for tumors with a ventral origin, a 

Simpson grade 2 resection with extensive dural coagulation may have comparable outcomes.319,320,324 

Careful anatomic planning of surgical corridors may avoid the need for instrumentation in many of these 

cases.325 The role of RT for spinal meningiomas is unclear, particularly given their largely benign 

behavior. A review of the National Cancer Database showed that only 2.5% of 10 458 patients with 

spinal meningiomas received radiotherapy. Older patients with higher WHO grade, larger tumors, and 

recurrent cases were more likely to receive RT. Interestingly, this study also reported an unexpected 

increase in mortality risk among borderline and malignant tumors that received RT following surgery 

compared to those that did not.326 Further study is needed in order to fully resolve the role of adjuvant 

RT or primary stereotactic body radiation therapy (SBRT) for spinal meningiomas.327-329  

 

Pediatric Meningiomas  

Unlike in adults, meningiomas are rare in the pediatric population and account for only 2.2-3.6% 

of all brain tumors in this group and 0.4-2.5% of all diagnosed meningiomas.330-334 Also dissimilar to their 

adult counterparts, pediatric meningiomas affect males and females relatively equally with a greater 

incidence of tumors in an intraventricular and spinal location.333-335 There is also a higher proportion of 

CNS WHO grade 2 and 3 meningiomas in pediatric patients compared to adults330,333,336 and a larger 

proportion with clear cell (CNS WHO grade 2) or papillary (associated with CNS WHO grade 3) 
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histology.335-337  However, grading is less predictive of overall outcome in these cases.330,333,338 Patients 

under 3 years old or over 12 years old may have worse overall survival; the former group may be 

associated with higher operative morbidity and mortality while the latter have meningiomas that more 

closely resemble adult cases.330 Pediatric patients with meningiomas are more likely to have NF2-SWN 

than adults and these cases have a much shorter time to progression and higher mortality rate 

compared to non-NF2-SWN cases.330,335 Therefore, pediatric patients who are diagnosed with a 

meningioma should be screened for NF2 mutations and other associated rare genetic conditions.339 

Spinal meningiomas are also more common in the pediatric population warranting the consideration of 

full craniospinal imaging at the time of diagnosis.332,333,335,340,341 

As in adult cases, extent of resection appears to be the most important prognostic factor, with 

GTR conferring both a PFS and overall survival benefit.330,339,340 The role of adjuvant RT is controversial, 

with insufficient literature to assess its utility. One meta-analysis showed no clear demonstrated benefit 

for PFS or OS, though there was likely a high selection bias for aggressive tumors.330 Clinical decisions 

should be made with multidisciplinary discussion on a case-by-case basis, keeping in mind that cranial 

radiation is associated with significant morbidity in children. Some clinicians advocate for second-look 

surgery if residual tumor is detected on postoperative imaging though evidence to support this 

approach is not well established.332,342-344  

Similar to adult meningiomas, NF2 mutations and loss of chromosome 22 are the most common 

alterations in pediatric meningiomas, found in 47-72% of cases.336,341,345 However, other classical non-

NF2 driver mutations such as AKT1, SMO, KLF4, and TRAF7 have not been described in the pediatric 

population.336,341,346 Various YAP1-fusions have been described in non-NF2 altered pediatric 

meningiomas (YAP1-MAML2; YAP1-PYGO1; YAP1-LMO1) and have been proposed as an alternative 

oncogenic driver to NF2 inactivation.347,348 Preclinical studies have shown that the YAP component of 
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these gene fusions is likely the critical driver of these tumors and the YAP1-MAML2 fusion may be 

targetable through pharmacologic disruption of the YAP1-TEAD interaction.348  

The majority of clear cell meningiomas in this population expectedly harbour SMARCE1 

mutations.47,49-51  DNA methylation profiling largely segregates pediatric meningioma cases from adult 

cases and may further separate them into three methylation subgroups: one comprised almost 

exclusively of SMARCE1-mutated clear cell meningiomas, one driven by NF2 or chromosome 22q loss, 

and one mixed group containing all cases with rhabdoid histology, allelic loss of chromosome 11 and 

rare loss of chromosome 22.336 The prognostic significance of these groups remain uncertain given the 

rarity of cases with both molecular profiling and annotated clinical data.  

 

Preclinical Models of Meningioma  

Historically, there has been a paucity of cell models for meningiomas due to the slow growth 

rates of most primary cell lines and the tendency of most cell lines to senesce after several passages. 

More recently though, there have been increased efforts by laboratories worldwide to optimize primary 

meningioma cell cultures to better study the functional impact of specific genomic alterations and 

create higher fidelity preclinical models.349,350 IOMM-Lee is an established meningioma cell line derived 

from an intraosseous CNS WHO grade 3 meningioma that is still commonly utilized due to its ability to 

readily form heterotopic and orthotopic xenografts.351-353 Although it harbors CDKN2A/B loss as a 

hallmark of proliferation in addition to a high burden of copy number changes, it lacks the biallelic NF2 

inactivation seen in the majority of biologically aggressive meningiomas and also contains unusual 

chromosomal gains of 3q, 5, and 9 that are not commonly found in meningiomas. The NCH93 

meningioma cell line is similarly derived from a CNS WHO grade 3 meningioma, but unlike IOMM-Lee, 

contains an NF2 frameshift mutation making it a potentially more serviceable aggressive NF2-mutant 
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meningioma model that also reliably forms xenografts.354,355 KT21-MG1 is another aggressive 

meningioma cell line established from a human malignant meningioma that demonstrates c-myc 

amplification and monosomy of chromosome 22, with the ability to produce xenografts in nude 

mice.116,356,357 Similarly, MN3 is another serially transplantable orthotopic cell model derived from a 

recurrent malignant meningioma which can also produce xenografts in nude mice and harbors several 

pathological hallmarks of aggressive meningioma including elevated Ki-67, vimentin expression, and NF2 

inactivation.358 

One of the first benign meningioma cell lines, Ben-Men-1, was derived from a WHO grade 1 

meningioma by transducing tumor cells with the human TERT gene to overcome cellular senescence. 

However, while Ben-Men-1 proliferated rapidly in vitro, orthotopic xenografts using this cell line grew 

slowly, making it suboptimal for testing therapeutic agents.359 Furthermore, introducing alterations such 

as the human TERT gene or disruption of p53 and pRb pathways necessary to immortalize meningioma 

cell lines may also alter how closely these cell lines recapitulate their tumor of origin.360  

To date, orthotopic xenograft models have been the gold standard for evaluating treatment 

efficacy in vivo, with tumor volumes readily evaluable by MRI or bioluminescence.361,362 However, these 

models are limited by the requirement for immunodeficient mice as hosts, which may be missing 

important immune cell populations for the study of tumor microenvironment interactions. Genetically 

engineered mouse models have attempted to overcome this shortcoming and different groups have 

leveraged conditional homozygous NF2 knockout models, with and without CDKN2A/B loss or SMO 

activation, amongst other models. However, most of these models are hindered by similar limitations of 

prolonged tumor formation time, reduced animal survival due to secondary malignancies, low rates of 

induction, and complex time- and resource-intensive methodologies.363,364  
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Recently, two other novel ex-vivo meningioma models have gained popularity: organotypic 

tumor slices and patient-derived spherical cell culture models (which include spheroids and organoids), 

both of which represent patient-derived 3D tumor models that closely recapitulate the genetic and 

epigenetic alterations of its parent tumor while also preserving cell type heterogeneity including 

immune and endothelial cells. While the former method enables meningioma tumor to remain in its 

original structure and within its native microenvironment, it requires larger amounts of intact tissue that 

cannot be damaged during sectioning and must account for the potential confounding of intratumoral 

heterogeneity within and between slices, making this technique challenging to standardize.365,366 

Meningioma organoids, however, can be established from smaller amounts of tissue and can be readily 

multiplexed in order to perform rapid drug screening and other molecular assays such as DNA- or RNA-

sequencing, flow cytometry, and immunohistochemistry.367-370 They also successfully establish in 60-

100% of cases. Moreover, meningioma organoids and spheroids tend to express tumor markers such as 

progesterone receptor, more closely mimic the cell proliferation rate of human meningiomas than two-

dimensional cultures, and may have increased transcriptomic markers for the epithelial-to-mesenchymal 

transition compared to traditional monolayer cultures.371,372 Variants identified in meningioma organoids 

such as NF2 or TRAF7 alterations are found at similar allele frequencies to their parental tumors, and the 

CNV profiles of the organoids also closely resemble those of the original tumor.373 The intratumoral 

heterogeneity and tumor microenvironment of the parental meningioma can also be recapitulated in 

organoid models, including retainment of immune cells (CD68+ macrophages, CD3+ T cells) and specific 

neoplastic cell subpopulations.368 Importantly, for organoids or spheroids, specific cell culture conditions 

need to be established in order to maintain tumor microenvironment cells over time. While these 

innovations are promising, additional studies are needed to better characterize both existing and novel 

preclinical meningioma models to assess their capability to guide treatment decisions for patients in the 

future.  
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Future clinical trial design and other future directions  

Meningioma clinical trials face several challenges related largely to tumor heterogeneity. One 

issue is that despite a growing body of evidence demonstrating the superiority of molecular 

classification systems compared to histopathology, there has yet to be a unified schematic that can be 

readily adopted by the WHO. The ideal classification should have a strong biological foundation and be 

readily implementable in most pathology laboratories. This standardization will ensure that patients are 

grouped based on clinically meaningful biological criteria that may overcome the interrater reliability 

issues implicit in histopathologic analysis. Immunohistochemical correlates that can reliably identify 

molecular group on a one-to-one basis would also be helpful, particularly in expanding trial access 

beyond tertiary referral centers and high-income countries. These measures may ultimately improve the 

homogeneity of trial arms and decrease biologic heterogeneity, particularly amongst CNS WHO grade 2 

cases.  

In addition to classification, standardization of outcomes reporting is crucial to develop clinically 

meaningful trials for meningiomas.151,374 For instance, while PFS-6 has been considered the primary 

endpoint in most meningioma trials, the control benchmarks are largely based on historical cases which 

may be graded differently today. To account for this, there is a need retrospectively determine PFS-6 

amongst molecularly defined meningioma cohorts, which would contribute to establishing a set of 

modern control cases for future prospective trial cases, which will likely also be molecularly driven, to 

benchmark against. Additionally, the relative improvement in PFS-6 that can be considered clinically 

meaningful should be standardized and these criteria will require subsequent validation. Lastly, as 

suggested by the RANO group, if PFS is to be used as the primary endpoint, neuroimaging over the last 

6-12 months prior to trial enrolment is critical to establish a baseline rate of growth for comparison.141 
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Defining the appropriate interval and type of surveillance needed for each meningioma subgroup will 

also enable clinicians to detect tumor progression or recurrence at an early stage, leading to timely 

interventions and improved outcomes. Given the poor reliability of historic benchmarks such as PFS-6, 

ideally randomized trials should be conducted whenever possible. Additionally, the implementation of 

adaptive clinical trial designs, which allow for real-time adjustments based on novel data, could enhance 

the efficiency of clinical trials and accelerate the identification of novel treatments. Addressing these 

challenges through collaborative efforts among researchers, clinicians, and regulatory bodies will pave 

the way for more robust meningioma clinical trials, enhancing the precision and impact of future 

treatments. 

 

Summary 

Meningiomas are the most common primary intracranial tumors, and recent years have 

witnessed an increasing number of important discoveries that have shed light into their molecular 

underpinnings and heterogeneity. Nevertheless, some unique groups of patients including those with 

NF2-associated schwannomatosis, radiation-induced meningiomas, and pediatric patients with 

meningiomas have been largely excluded from contemporary molecular studies. Furthermore, lack of 

access to sequencing resources and a relative dearth of high-fidelity preclinical models have also 

contributed to slower translation of encouraging findings to routine clinical implementation. While 

surgery and radiotherapy remain the only current standard of care options for patients, several 

promising systemic therapies have demonstrated evidence of potential efficacy in progressive or 

recurrent meningiomas and several important clinical trials are ongoing. Molecular profiling of 

meningiomas from these clinical trial cases including both responders and non-responders to systemic 

therapies may uncover novel insights that can be leveraged in future studies. Additionally, in this current 
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molecular era of meningioma research, there is a need to unify the many classification models that have 

been discovered. Achieving this will require a data-driven approach and consensus amongst experts in 

the field, including cooperation amongst those who originally developed these classification systems. 

This remains a high priority goal of the cIMPACT-NOW working group and consortia such as ICOM and 

KAM. Implementation of a standardized molecular taxonomy for these tumors will ultimately serve as 

an important benchmark for future discovery and clinical trial design as well as have a significant impact 

on patient care. 
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Figure Legends:  

Figure 1. (A) Distribution of all primary brain tumors (malignant and non-malignant combined; five-year 

total = 453,623; annual average cases = 90,725) by histopathology. (B) Distribution of all non-malignant 

primary brain tumors (five-year total = 326,894; average annual cases = 65,379) by histopathology. (C) 

Annual age-adjusted incidence rates of meningioma based on sex, ethnicity, and race. (D) Incidence rate 

ratios by sex (female-to-male) for selected primary brain and other CNS tumor histopathologies with 

malignant and non-malignant meningiomas highlighted. (E) Female-to-male incidence rate ratios and 

95% confidence intervals (CI) for meningioma, by age group at diagnosis and stratified by WHO tumor 

grade. (F) Incidence rate ratios by race (White:Black and White:Asian or Pacific Islander [API]) for 

selected primary brain and other CNS tumor histopathologies with malignant and non-malignant 

meningiomas highlighted. (G) Average annual age-adjusted incidence rate and 95% confidence interval 

(CI) for meningioma by race/ethnicity and stratified by grade. Incidence rate ratios (IRR) and their 95% CI 

appear above bars and are calculated relative to non-Hispanic White individuals as the reference. Rates 

are age-adjusted to the 2000 US standard population. CBTRUS statistical report: US Cancer Statistics – 

National Program of Cancer Registries (NPCR) and the Surveillance, Epidemiology, and End Results 

(SEER), 2016-2020.1,3 Image panels A-D, F reused with permission from Ostrom et al. (2023)1. Image 

panels E, G reused with permission from Walsh et al. (2023)3. GBM- glioblastoma; CBTRUS- Central Brain 

Tumor Registry of the United States.  

 

Figure 2. Updated 2021 World Health Organization (WHO) Grading criteria for meningiomas including 

histological subtypes for CNS WHO grade 1 cases: (A) meningothelial, (B) fibrous, (C) transitional, (D) 

psammomatous, (E) secretory, (F) angiomatous, (G) microcystic, (H) lymphoplasmacyte-rich, (I) 

metaplastic; CNS WHO grade 2 cases: (J) atypical, (K) clear cell, (L) chordoid; and CNS WHO grade 3 

cases: (M) anaplastic, (N) papillary, (O) rhabdoid. HPF- high-powered fields; N:C- nuclear to cytoplasm. 

Histological image panels (A-O) used with permission from Bi et al. (2016).91 CNS- central nervous 

system; HPF- high powered fields; N:C- nuclear to cytoplasm; TERT- telomerase reverse transcriptase.  

 

Figure 3. (A) Different meningioma molecular/methylation classifications discovered by independent 

groups arranged based on approximately how they correlate with one another based on common 

biology, alterations, and outcome (read from top to bottom). (B) Relative distribution of meningiomas 

belonging to each WHO grade in each molecular or methylation group. (C) Relative proportion of 

meningiomas based on location in either a skull base or non-skull base location in the supratentorial or 

infratentorial compartment in datasets where tumor location was available. (D) Key transcriptomic 

pathways found to be overexpressed in meningiomas belonging to each molecular or methylation 

group, grouped into 4 main set of pathways. (E) Relative distribution of common meningioma driver 

mutations found in cases with more benign biology (left) and more biologically aggressive cases (right). 

(F) Proportion of different chromosomal alterations seen in each molecular or methylation group. (G) 

PFS of meningiomas belonging to each recently published molecular or methylation groups based on the 

original publication’s cohort. These groups may not correlate with one another precisely on a one-to-

one basis and as a result, the PFS curves of different groups may be repeated in different panels. For 

instance, while many meningiomas from the Ben-3 methylation subclass share commonalities with 

Merlin-intact or NF2-wildtype cases (e.g. absence of 22q deletions, presence of chromosome 5 gain, 
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angiomatous histology), some cases may classify into other molecular groups e.g. immunogenic or 

hypermetabolic groups. Similarly, some cases of Ben-3 do have 22q deletions as well. Int-A and Int-B 

meningiomas may not precisely separate into hypermetabolic and proliferative cases. PMCRT- Princess 

Margaret Cancer Research Tower; DKFZ- German Cancer Research Center; UCSF- University of California 

San Francisco; MM-FAV- meningioma methylation group favorable; MM-UNFAV- meningioma 

methylation group unfavorable; Ben- benign; Int- intermediate; Mal- malignant; MG- Molecular Group; 

MenG- Meningioma Group; NF2- neurofibromatosis 2; TRAF7- Tumor necrosis factor receptor 

associated factor 7; KLF4- Krüppel-like factor 4; AKT1- RAC(Rho family)-alpha serine/threonine-protein 

kinase; SMO- Smoothened; PIK3CA- phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit 

alpha; DNA-directed RNA polymerase II subunit RPB1; TERTp- Telomerase reverse transcriptase 

promoter; CDKN2A/B- cyclin-dependent kinase inhibitor 2A/B 

 

Figure 4: (A) Postoperative magnetic resonance imaging suggesting a gross total resection with contrast 

enhancing reactive changes only. (B) Positron emission tomography (PET) imaging showing focal uptake 

along the cribriform plate (standardized uptake value 7.43, white arrow) suspicious for residual disease. 

(C) Follow-up MRI 2-years later after patient declined to pursue recommended adjuvant radiotherapy 

with increased enhancing soft tissue signal (green arrow). (D) Increased focal PET uptake in the 

cribriform plate suggesting progression of residual disease (standardized uptake value 8.96, yellow 

arrow). (E) Axial brain MRI of a 54-year-old woman with newly diagnosed breast cancer metastatic to 

axillary lymph nodes who was noted to have asymmetric photopenia in the left cerebellum on a staging 

fluorodeoxyglucose (FDG)-position emission tomography (PET) and computer tomography (CT) scan 

(left). T1 post-contrast brain magnetic resonance imaging (MRI) showed a multilobulated, 

homogeneously enhancing extra-axial mass adjacent to the left petrous temporal bone with associated 

edema and mass effect in the left cerebellum and cerebellar peduncle (middle). Leading differential 

diagnoses included a distant metastasis or a meningioma. DOTATATE PET/MRI showed markedly avid 

uptake in the intracranial mass (right), but not in the right breast or ipsilateral lymph nodes (not shown). 

A diagnosis of synchronous meningioma and locoregionally advanced breast cancer was made. The 

meningioma was treated with stereotactic radiosurgery. The patient underwent lumpectomy, sentinel 

lymph node biopsy, and adjuvant whole breast radiotherapy. At 24 months after meningioma treatment 

and 13 months after breast cancer treatment, the patient had no evidence of disease. (F) Sagittal T1 

post-contrast brain MRI (left) and DOTATATE PET (right) of a 61-year-old male with recurrent atypical 

meningioma, CNS WHO grade 2, status post resection and stereotactic radiosurgery 8 years before 

developing multiple vertex recurrences that were treated with subtotal resection. Planning DOTATATE 

PET imaging revealed extensive tumor infiltration of the sagittal sinus from the vertex to the torcula. 

Part of this figure was originally published in The International Journal of Radiation Oncology, Biology, 

Physics. Prasad et al. 68Ga-DOTATATE PET: The Future of Meningioma Treatment (2022).152 FDG- 

fluorodeoxyglucose; MRI- magnetic resonance imaging; PET- positron emission tomography; used with 

permission.  
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Figure 5. Summary of most contemporary treatment guidelines for the management of meningiomas 

based on WHO grade, extent of resection, with the incorporation of molecular data if available. Content 

for this figure was partly adopted from Goldbrunner et al. EANO Guideline on The Diagnosis and 

Treatment of Meningiomas (2021) published in Neuro-Oncology.127 Used with permission. MRI- 

magnetic resonance imaging; SRS- stereotactic radiosurgery; fRT- fractionated external beam 

radiotherapy; GTR- gross total resection; STR- subtotal resection 
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Table 1. Recurrent mutations associated with meningiomas. While some genes and their alterations have been well investigated by multiple 

independent groups, others may have been identified in only single or small cohorts of meningiomas. Consequently, the overall frequencies of 

less studied mutations may be confounded by smaller cohorts biased to include either more benign or clinically aggressive cases from which the 

data is obtained. 

 

Gene Location Protein 
Gene 
status 

Frequency 
(%) 

WHO 
Grade 

Modification 
Associated 

Meningioma 
Phenotype 

Effect of 
Modification 

Reference 

AKT1 14q32.33 
protein kinase B 
alpha, beta, and 

gamma 
Oncogene 10 1 Point mutation 

Anterior/middle 
skull base 

location, NF2-
wildtype 

meningiomas 

Conformational 
change in 

protein, altering 
its localization 

from the 
cytoplasm to the 

plasma 
membrane, 
resulting in 
constitutive 

activation of the 
AKT1 kinase and 

activation of 
mTOR and 

ERK1/2 signalling 
pathways 

38,39,41,375-379 

ARID1A 1p36.11 
AT-rich interaction 

domain 1A 
Tumor 

suppressor 
5 2, 3 

Frameshift 
mutation 

Recurrent and 
high-grade 

cases 

Destabilizes 
SWI/SNF complex 

which normally 
modulates DNA 
accessibility for 

cellular processes 
involved in 
chromatin 
structure 
including 

transcription, 
DNA replication 

and repair, 

38,59-61,89 
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resulting in global 
deregulation of 

gene 
transcription 

BAP1 3p21.1 
BRCA1 associated 

protein 1 
Tumor 

suppressor 
<1 2, 3 

Splice site, 
nonsense, 
frameshift 
mutation 

Rhabdoid and 
papillary 
histology 

Impaired nuclear 
localization of a 

ubiquitin 
carboxy-terminal 

hydrolase that 
normally has 

tumor 
suppressor 

activity when 
bound to BRCA1 

or BARD1 

38,45,53,62,70,71,380 

BRAF 
(V600E) 

7p34 
B-Raf proto-

oncogene 
Oncogene <1 3 Point mutation 

Rhabdoid 
histology 

Mimics 
phosphorylation 
of nearby serine 
and threonine 

residues resulting 
in BRAF 

activation and 
subsequent 

activation of the 
MAP kinase/ERK-

signaling 
pathway 

43,93,381,382 

CDH1 16q22 E-cadherin 
Tumor 

suppressor 
30 1-3 

Deletion, 
nonsense 
mutation 

Unknown 

Activation of wnt 
signaling via 

dysregulation of 
β-catenin and the 

APC protein, 
resulting in 

upregulation of 
cell cycling 
programs 

including c-myc 
and cyclin D1 

pathways 

383-385 
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CDKN2A/B  9p21.3 p16, p15INK4b 
Tumor 

suppressor 
1-5 3 Deletion 

Anaplastic, 
biologically 
aggressive 

meningiomas 

Loss of inhibition 
of CDK4 and 

CDK6 mediated 
phosphorylation 

of 
retinoblastoma 

family of 
proteins, leading 
to unchecked cell 
cycle progression 

from G1 to S-
phase 

2,38,92,93,96,98,101,119,386-390 

CDKN2C 1p32.3 
Cyclin-dependent 

kinase 4 inhibitor C 
(p18) 

Tumor 
suppressor 

1 2 
Nonsense 
mutation 

Atypical and 
anaplastic 

meningiomas 

Activation of 
CDK4 and CDK6 
resulting in loss 
of control of cell 

growth 
regulation and 
subsequent cell 

cycle G1 
progression 

92,96 

CHEK2 22q12.1 
Checkpoint kinase 2 

(Chk2) 
Tumor 

suppressor 
50 1-3 

Deletion, 
frameshift 
mutation 

NF2-altered 
meningiomas 

Defect in DNA 
homologous 

recombination or 
nonhomologous 

end joining 
pathways 

following DNA 
damage including 
double-stranded 

DNA breaks 
resulting in 
increased 

chromosomal 
instability 

341,391 

Dal-1 18p11.3 Protein 4.1B 
Tumor 

suppressor 
50-80 1-3 

Deletion, 
nonsense 
mutation 

Multiple 
meningiomas, 

sporadic 
meningiomas 

Dysregulation of 
cell-cell contact 

inhibition growth 
arrest normally 

mediated 
through actin 
cytoskeletal-

346,392-394 
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associated 
proteins resulting 

in similar 
downstream 

effects as NF2 
inactivation 

EZH2 7q36.1 
Enhancer of zeste 

homolog 2 
Oncogene 1-5 2-3 

Point 
mutation, 

amplification 

Higher grade 
meningiomas 

Dysregulation of 
catalytic 

subgroup of PRC2 
complex, 

upregulation of 
proliferative 

genes in the cell 
cycle-

retinoblastoma-
E2F pathway 

395-397 

FBXW7 4q31.3 
F-box and WD 
repeat domain 

containing 7 

Tumor 
suppressor 

1-5 1-3 
Frameshift 
mutation 

NF2-altered 
meningiomas 

Deregulation of 
ubiquitin-
mediated 

proteolysis of 
oncoproteins 

such as cyclin E, 
notch, c-Jun, c-

Myc, mTOR 
resulting in 
increased 

tumorigenesis 

398,399 

FGFR3 4p16.3 
Fibroblast growth 
factor receptor 3 

Oncogene 15 1-2 
Missense 
mutation 

Skull base 
location, NF2-

wildtype 
meningiomas 

Increased 
mitogenic 

signaling from 
FGF 

receptors/kinases 
via activation of 

the PI3K-Akt-
p70S6K pathway 

and activation of 
STAT3 

400,401 

KDM6A Xp11.3 
Lysine demethylase 

6A (UTX) 
Tumor 

suppressor 
5 2-3 Deletion 

NF2-altered, 
higher grade 
meningiomas 

Dysregulation of 
polycomb 
repressive 

complex (PRC2) 
catalyzed histone 

38,402 
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methylation 
including of 

H3K27 

KLF4 9p31 Krüppel-like factor 4 
Tumor 

suppressor 
10-15 1 

Missense 
mutation 

Skull base 
location, 
secretory 

meningiomas 
(when 

combined with 
TRAF7 

mutation) 

Deactivation of 
CDKN1A (cyclin-

dependent 
kinase inhibitor 
p21) resulting in 
cell proliferation, 

and loss of 
inhibition of 

CDK1 
transcription 

10,39,45,132,403-407 

NF2 22q12.2 Merlin 
Tumor 

suppressor 
40-60 1-3 

Deletion, 
nonsense 
mutation 

Non-skull base 
location 

Dysregulation of 
several essential 
cell proliferation 

and survival 
pathways 

including loss of 
cell-to-cell 

contact 
inhibition, 

activation of 
hippo pathway, 
mTOR/PI3K/AKT 

pathway and 
receptor tyrosine 

kinases 

33-

35,37,64,91,92,109,175,346,387,394,408-

410 

PIK3CA 3q26.32 

Phosphatidylinositol-
4,5-bisphosphate 3-

kinase, catalytic 
subunit alpha 

(p110α protein) 

Oncogene 5 1 
Point, 

missense 
mutation 

Skull base 
location, benign 
WHO grade 1, 

progestin-
related 

meningiomas 

Activation of PI3 
kinase and 
PI3K/AKT 
pathway 

resulting in 
downstream 

signaling 
cascades 

mediating cell 
survival. 

Apoptosis, 
transformation, 
metastasis, and 
cell migration 

42-44,411,412 
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POLR2A 17p13.1 
RNA polymerase II 

subunit A 
Oncogene 5 1 

Missense 
mutation 

Skull base, 
tuberculum 

sellae location, 
benign WHO 

grade 1 
meningiomas, 
meningothelial 

histology 

Activation of 
catalytic subunit 

of RNA 
polymerase II, 

hijacking enzyme 
and driving cell 

proliferation and 
neoplastic 

progression 

40,45,407 

PBRM1 3p21.1 Protein polybromo-1 
Tumor 

suppressor 
1 3 

Nonsense 
mutation, 
deletion 

Papillary 
histology 

Dysregulation of 
SWI/SNF 

chromatin 
remodeling 

complex, 
dysfunctional 
repair of DNA 

double-stranded 
breaks via ATM 

phosphorylation 

38,54 

PTEN 10q23.31 
Phosphatase and 
tensin homolog 

Tumor 
suppressor 

2-6 2, 3 

Frameshift 
mutation, 
deletion, 

rearrangement 

Biologically 
aggressive, 

proliferative 
meningiomas 

Dysregulation of 
AKT/PI3K 

pathway in the 
cell cytoplasm 
resulting from 

loss of feedback 
inhibition of AKT 
and subsequent 
uncontrolled cell 
cycle progression 

38,62-64 

SMARCB1 22q11.23 

SWI/SNF-related 
matrix-associated 
actin-dependent 

regulator of 
chromatin subfamily 

B member 1 

Tumor 
suppressor 

<5 2, 3 
Missense 
mutation 

NF2-altered, 
atypical 

meningiomas 

Inactivation of 
core subunit of 

SWI/SNF 
chromatin 

remodeling 
complex resulting 

in aberrant 
enhancer and 

promoter 
regulation and 

subsequent loss 
of transcriptional 

control 

61,413,414  
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SMARCE1 17q21.2 

SWI/SNF-related 
matrix-associated 
actin-dependent 

regulator of 
chromatin subfamily 

E member 1 

Tumor 
suppressor 

<1 1 

Splice site, 
nonsense, 
frameshift 
mutation 

Clear cell 
histology 

Inactivation of 
subunit of 
SWI/SNF 

chromatin 
remodeling 

complex resulting 
in loss of 
apoptosis 

induction via 
tumor 

suppressor gene 
CYLD and other 

pathways 

47-51,69 

SMO 7p32.1 Smoothened Oncogene 3-5 1 Point mutation 
Anterior medial 

skull base 
location 

Activation of the 
sonic hedgehog 
(SHH) signalling 

pathway 
resulting in cell 
proliferation, 

differentiation, 
and angiogenesis 

39,41,42,379,415,416 

SUFU 10q24.32 
Suppressor of fused 

homolog 
Tumor 

suppressor 
1-2 2-3 

Frameshift 
mutation 

Familial 
multiple 

meningiomas 

Abnormal 
constitutive 

upregulation of 
downstream Gli 

mediated 
transcription 

factors in SHH 
pathway 

74,75,417,418 

TERTp 5p15.33 
Telomerase reverse 

transcriptase 
promoter 

Oncogene 5.5 3 Point mutation 

Biologically 
aggressive, high 

grade 
meningiomas 

Activation of 
telomerase-

mediated 
telomere 

stabilization 
resulting in 

delayed 
replicative 

senescence and 
increased 

telomere-driven 
genomic 

instability 

56-59,419-421 
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TRAF7 16p13.3 
TNF receptor 

associated factors 7 
Tumor 

suppressor 
20-25 1 

Missense 
mutation 

Skull base 
location, brain 

invasion 

Disruption of 
catalytic activity 
of E3 ubiquitin 

ligase interaction 
with MAPK 

pathway and RAS 
GTPases, altering 

actin dynamics 
and promoting 

anchorage-
independent 

growth 

39,132,422 
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Table 2. Recurrent copy number alterations observed in meningiomas and their association with clinical prognosis (when known).  

Chromosome arm/gene Loss/Gain 
Approximate frequency in all 

meningiomas 
Associated clinical prognosis 

1p Loss 30-50% Intermediate to poor 

1q Gain 5% Poor 

3p Loss 10-15% Intermediate 

4p/q Loss 5-10% Intermediate to poor 

5p/q Gain 2-3% Good 

6q Loss 15-20% Poor 

7p Loss <5% Intermediate-poor 

8p Gain <5% Unknown 

10q Loss 10% Poor 

11q Loss 5% Intermediate 

12p/q Gain 2-3% Good 

14q Loss 20% Poor 

15q Gain <5% Unknown 

16q Gain 5% Unknown 

17q Gain 5-10% Unknown 

18q Loss 15-20% Poor 

20q Gain 10% Unknown 

22q Loss 50-60% Intermediate to poor 
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Table 3. Selected completed and published clinical trials on systemic therapy in meningiomas. WHO- World Health Organization; KPS- Karnofsky 

performance score; PFS-6/24 progression free survival at 6/24 months; PO- per os; IM- intramuscular; IV- intravenous; EORTC- European 

Organization for Research and Treatment of Cancer; NF2- neurofibromatosis-2 (NF2-SWN); BID- twice per day 

 

Corre
spon
ding 
Auth

or 

Y
e
a
r 

Study Title 
Study Population and 
Key Eligibility Criteria 

Total patients 
Systemic/Experimen

tal Agent 

Prima
ry 

Endpo
int 

Outcome 

+/- 
Prim
ary 

Outc
ome 

R
e
f 

Cham
berlai

n 

2
0
0
4 

Temozolomide for treatment-
resistant recurrent 

meningioma 

Progressive WHO 
grade 1 meningiomas 

and KPS ≥60 
16 

Temozolomide (75 
mg/m2 for 42 days 
followed by 28 day 

break) 

PFS-6 0% - 

4

2

3 

Wen 

2
0
0
9 

Phase II study of imatinib 
mesylate for recurrent 
meningiomas (North 

American Brain Tumor 
Consortium study 01–08) 

Recurrent 
meningiomas with 

KPS ≥60 

23 (13 benign (WHO 
grade 1), 5 atypical 
(WHO grade 2), 5 

malignant (WHO grade 
3)) 

Imatinib (600-800 
mg PO daily) 

PFS-6 

29.4% (45% for 
benign, 0% for 

atypical or 
malignant) 

- 

4

2

4 

Wen 

2
0
1
0 

Phase II trials of erlotinib or 
gefitinib in patients with 
recurrent meningioma 

Recurrent 
meningiomas and 

KPS ≥60 

25 (16 gefitinib, 9 
erlotinib) 

Gefitinib (500-1000 
mg PO daily), 

erlotinib (150 mg PO 
daily) 

PFS-6 
28% (25% 

gefitinib, 33% 
erlotinib) 

- 

4

2

5 

Reard
on 

2
0
1
1 

Phase II study of Gleevec® 
plus hydroxyurea (HU) in 
adults with progressive or 

recurrent meningioma 

Progressive/recurrent 
meningioma and KPS 

≥60 
21 

Hydroxyurea (500 
mg  PO BID) and 

Imatinib (400-800 
mg PO daily) 

PFS-6 

61.9% (87.5% 
WHO grade 1, 
46.2% WHO 
grade 2/3) 

+ 

4

2

6 

Wen 

2
0
1
4 

Phase II study of monthly 
pasireotide LAR (SOM230C) 
for recurrent or progressive 

meningioma 

Recurrent or 
progressive 

meningioma with KPS 
≥60 

34 (18 cohort 
A/malignant, 16 
cohort B/benign) 

Pasireotide (60 mg 
LAR IM monthly) 

PFS-6 
17% cohort A, 
50% cohort B 

- 

2

5

3 

Kaley 

2
0
1
4 

Phase II trial of sunitinib for 
recurrent and progressive 

atypical and anaplastic 
meningioma 

Refractory recurrent 
WHO grade 2-3 
meningiomas 

36 
Sunitinib 50 mg PO 

daily 
PFS-6 42% + 

2

4

3 
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Raizer 

2
0
1
4 

A phase II trial of PTK787/ZK 
222584 in recurrent or 

progressive radiation and 
surgery refractory 

meningiomas 

Surgery and 
radiotherapy 

refractory recurrent 
meningiomas and 

KPS ≥60 

22 (14 WHO grade 2, 8 
WHO grade 3) 

PTK787/ZK 22585 
(500 mg PO BID) 

PFS-6 

54.4% (64.3% 
WHO grade 2, 
37.5% WHO 

grade 3) 

+ 

2

4

4 

Versc
hraeg

en 

2
0
1
5 

Double-Blind Phase III 
Randomized Trial of the 

Antiprogestin Agent 
Mifepristone in the 

Treatment of Unresectable 
Meningioma: SWOG S9005 

Progressive or 
refractory 

meningioma with 
prior radiotherapy, PS 

0-2 

164 (80 mifepristone, 
84 placebo) 

Mifepristone (200 
mg PO daily) 

PFS-
24 

30% 
mifepristone, 
33% placebo 

- 

4

2

7 

Jense
n 

2
0
1
6 

Combined Hydroxyurea and 
Verapamil in the Clinical 
Treatment of Refractory 

Meningioma: Human and 
Orthotopic Xenograft Studies 

Refractory 
recurrent/progressive 

meningiomas with 
KPS ≥90 

7 

Hydroxyurea (20 
mg/kg/day PO BID), 
Verapamil (120-240 

mg PO daily) 

PFS-6 85% - 

4

2

8 

Graill
on 

2
0
2
0 

Everolimus and Octreotide 
for Patients with Recurrent 
Meningioma: Results from 
the Phase II CEVOREM Trial 

Progressive 
meningioma 

ineligible for further 
surgery/radiotherapy 

with KPS >50 

20 

Everolimus (10 mg 
PO daily) and 

octreotide (30 mg 
LAR IM monthly) 

PFS-6 55% + 

2

5

6 

Reard
on 

2
0
2
1 

Activity of PD-1 blockade with 
nivolumab among patients 

with recurrent 
atypical/anaplastic 

meningioma: phase II trial 
results 

WHO grade 2 or 3 
recurrent 

meningiomas with 
KPS ≥70 

25 
Nivolumab (240mg 

IV q2weeks) 
PFS-6 42.40% - 

2

6

0 

Preus
ser 

2
0
2
2 

Trabectedin for recurrent 
WHO grade 2 or 3 

meningioma: A randomized 
phase II study of the EORTC 
Brain Tumor Group (EORTC-

1320-BTG) 

Recurrent WHO 
grade 2 or 3 

meningiomas with PS 
0-2 

90 (61 trabectedin, 29 
standard of care) 

Trabectedin (1.5 
mg/m2 q3weeks) 

PFS-6 

2.4 months 
Trabectedin, 
4.2 months 
standard of 

care 

- 

2

4

7 

Kumt
hekar 

2
0
2
2 

A multi-institutional phase II 
trial of bevacizumab for 
recurrent and refractory 

meningioma 

Progressive 
meningiomas with 

KPS ≥60 

42 (10 WHO grade 2, 
20 WHO grade 2, 12 

WHO grade 3) 

Bevacizumab (10 
mg/kg  IV q2weeks 
for 6 months, then 

15 mg/kg IV 
q3weeks) 

PFS-6 

90% WHO 
grade 1, 76% 

WHO grade 2, 
45% WHO 

grade 3 

+ 

2

4

8 
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Brasti
anos 

2
0
2
2 

Alliance A071401: Phase II 
Trial of Focal Adhesion Kinase 

Inhibition in Meningiomas 
with Somatic NF2 Mutations 

WHO grade 1-3 
recurrent or 
progressive 

meningiomas with 
NF2 mutation 

36 (12 WHO grade 1, 
24 WHO grade 2/3) 

GSK2256098 750 mg 
PO BID 

PFS-6 

83% WHO 
grade 1, 33% 
WHO grades 

2/3 

+ 

4

2

9 

Plotki
n 

2
0
2
3 

Prospective phase II trial of 
the dual mTORC1/2 inhibitor 
vistusertib for progressive or 
symptomatic meningiomas in 

persons with 
neurofibromatosis 2 

NF2 patients with 
progressive or 
symptomatic 
meningiomas 

18 
Vistusertib (125 mg 

PO BID for 2 days per 
week) 

Volu
me 

decre
ase > 
20% 

6% partial 
response, 94% 
stable disease 

- 

4

3

0 
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Table 4. Selected ongoing clinical trials on systemic therapies in meningiomas. WHO- World Health Organization; NCT- National Clinical Trial; 

CGE- Cobalt Gray Equivalent; KPS- Karnofsky Performance Score; PFS-6/12- Progression-free survival at 6/12 months; CR- complete response; 

PR- partial response; CNS- central nervous system; PO- per os; BID- twice per day.  

 

Princip
al 

Investi
gator 

Estim
ated 

Comp
letion 

Study Design 
Study Population and 
Key Eligibility Criteria 

Systemic/Experimental Agent 
Primary 

Endpoint 
NC
T # 

Jiayi 
Huang 

2023 

Neoadjuvant Avelumab and 
Hypofractionated Proton Radiation 

Therapy Followed by Surgery for 
Recurrent Radiation-refractory 

Meningioma 

WHO grade 1-3 
meningioma which has 

failed maximal safe 
resection + radiation 

therapy 

Avelumab (10 mg/kg IV q2weeks for 
3 months), proton therapy (20 CGE/5 

daily fractions of 4 CGE per day) 

CD8+/CD4
+ tumor 

infiltrating 
lymphocyt

es 

NC
T03
267
836 

David 
A. 

Reardo
n 

2024 

An Open-Label Phase II Study of 
Nivolumab and Ipilimumab in Adult 

Participants with 
Progressive/Recurrent Meningioma 

Progressive or 
recurrent meningiomas 

with KPS ≥70 

Nivolumab (240 mg q2 weeks), 
Ipilimumab 1 mg/kg q3weeks) 

PFS-6 

NC
T02
648
997 

Priya 
Kumth

ekar 
2024 

Optune Delivered Electric Field 
Therapy and Bevacizumab in Treating 

Patients with Recurrent or 
Progressive Grade 2 or 3 Meningioma 

Progressive or 
recurrent meningiomas 

KPS ≥60 

Bevacizumab IV dose not specified, 
electric field therapy using Optune 

daily over 18 hours 
PFS-6 

NC
T02
847
559 

Priscill
a K. 

Brastia
nos 

2024 
Vismodegib, Capivasertib, and 

Abemaciclib in Treating Patients with 
Progressive Meningiomas 

Progressive or 
recurrent meningiomas 

Vismodegib (PO once daily), 
capivasertib (PO BID days 1-4, 

treatment q7days), abemaciclib (PO 
q12h), FAK inhibitor GSK2256098 

(PO BID) 

PFS-6 

NC
T02
523
014 

Erik P. 
Sulma

n 
2025 

A Phase II trial of 177Lu-DOTATATE 
for recurrent/progressive 

meningioma 

Progressive 
meningioma (any 

grade) with KPS ≥ 60 

177Lu-DOTATATE intravenously 
every 8 weeks up to 4 cycles 

PFS-6 

NC
T03
971
461 

Recurs
ion 

Pharm
2027 

Efficacy and Safety of REC-2282 in 
Patients with Progressive 

Progressive and 
recurrent NF2 
meningiomas 

Small molecule HDAC inhibitor REC 
2282 (30-60 mg PO 3 times per 

week, for 3 of 4 weeks) 
PFS-6 

NC
T05
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aceutic
als 

Neurofibromatosis Type 2 (NF2) 
Mutated Meningiomas (POPLAR-NF2) 

130
866 

Marta 
Penas-
Prado 

2027 

Phase II Trial of the Immune 
Checkpoint Inhibitor Nivolumab in 

Patients with Recurrent Select Rare 
CNS Cancers 

Atypical or malignant 
meningioma 

Nivolumab (240 mg IV q2weeks for 
cycles 1-2, then 480 mg q4weeks for 

14 additional doses) 

PFS-6, 
CR/PR 

NC
T03
173
950 

Rupes
h R. 

Kotech
a 

2028 
A Phase II Study of Cabozantinib for 

Patients with Recurrent or 
Progressive Meningioma 

Progressive or 
recurrent meningiomas 

with KPS ≥ 50 

Cabozantinib (60 mg PO daily for 28 
days) 

PFS-6 

NC
T05
425
004 

Nancy 
Ann 

Oberh
eim 

Bush 

2028 

Stereotactic Radiosurgery (SRS) and 
Immunotherapy (Pembrolizumab) for 

the Treatment of Recurrent 
Meningioma 

Recurrent WHO grade 
2 or 3 meningioma 

SRS (15-20 Gy/1 Fr or 25-30 Gy/5 Fr) 
combined with pembrolizumab (200 

mg IV on day 1 to -1 of radiation 
then q3weeks) 

PFS-12 

NC
T04
659
811 
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Figure 1 
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Figure 2 

 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/neuro-oncology/advance-article/doi/10.1093/neuonc/noae082/7663195 by guest on 03 July 2024



Acc
ep

ted
 M

an
us

cri
pt

 

 

Figure 3 
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Figure 4 
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Figure 5 
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