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Abstract—High-Level Synthesis performs well for compute-
intensive loops with regular control but struggles to uncover
parallelism in kernels with complex control-flow. Novel schedul-
ing techniques based on dynamic scheduling and speculation
have been proposed to address this issue. Although they out-
perform classical static scheduling techniques, they also come
at a significant area overhead. Precisely determining where
and by how much to apply these techniques remains an open
problem, which we address in this work through an efficient
exploration algorithm (combining pruning and search heuristics).
We show that our approach can explore large solution spaces
while producing efficient solutions.

I. INTRODUCTION

High-Level-Synthesis is a well-established design technique
for implementing hardware accelerators. It has been shown
that HLS can be competitive with manual designs, but it is
also acknowledged that existing tools have a lot of shortcom-
ings. One of their weaknesses is their inability to efficiently
deal with complex data-dependent control flow or memory
accesses. This stems from the fact that HLS tools rely on
static scheduling techniques that do not take advantage of
runtime information. This limitation hinders their applicability
to emerging application domains such as graph analytics and
sparse computation, and has therefore motivated a lot of
research work. Most of this work aims at extending HLS
tools to support dynamic [1]–[7] and speculative [5], [8]–[10]
execution mechanisms. Despite these advances, the problem of
determining when and how to take advantage of speculation
and dynamism remains somewhat open (see Section V for
an in-depth related work analysis). In particular, introducing
dynamicity and speculation can lead to a very large design
space, with subtle performance/cost trade-offs that are difficult
to evaluate at a high level in the design flow.

We propose to address the latter issue through a combination
of static analysis and high-level profiling. To do so, we rely on
a unified representation that captures dynamic and speculative
scheduling opportunities, including memory speculation [8],
[10], [11]. More precisely, the contributions of this work are
the following.

• A design-space exploration (DSE) framework enabling
rapid exploration of the design space, thanks to an
efficient pruning algorithm and search heuristics, based
on the SpecHLS design flow [10].

• An experimental evaluation of the approach on several
challenging examples, along with a quantitative and qual-
itative discussion of the results in terms of area and speed.

This paper is organized as follows. Section II provides back-
ground information on dynamic and speculative scheduling.
Section III presents our approach and Section IV addresses its
experimental validation. Section V discusses how our approach
differs from existing work, and Section VI concludes the paper.

II. BACKGROUND

This section recalls key concepts related to HLS, focusing
on static, dynamic and speculative scheduling techniques. It
provides an overview of the SpecHLS flow and its program
IR, and discusses the trade-offs involved in such flows.

A. Scheduling in High Level Synthesis

Efficient custom hardware relies on parallelism and cus-
tomization to deliver performance. Identifying and exploiting
parallelism is challenging from a compiler perspective. Ex-
isting HLS tools build on established optimizing compiler
techniques to extract parallelism from user code. In particular,
loop pipelining [12] has proven to be a key transformation
for HLS, thanks to its ability to automatically infer deep and
wide pipelined datapaths, even in the presence of loop-carried
dependencies. Loop pipelining relies on the existence of a non-
unit minimum reuse distance along loop-carried dependencies
that is determined at compile-time, through static analysis
or user directives. Some kernels cannot benefit from loop
pipelining, often because their control flow or memory access
patterns are unpredictable. This is the case of the example
provided in Figure 1, where the iteration execution path is
dependant on the outcome of a data-dependant decision. In this
situation, the scheduler will consider the worst-case behavior
and derive a schedule with an Initiation Interval (II) of II = 4,
as depicted in part a of Figure 1.

Dynamic and speculative scheduling aim at supporting
more efficient implementations, where the precise execution
of operations is determined at run-time. These techniques take
advantage of some form of dynamic or speculative execution
as illustrated in parts b and c of Figure 1. Several approaches
have been proposed to support such mechanisms within a
High-Level Synthesis flow. Dynamic dataflow-based tech-
niques [4] follow a pure dataflow approach, where the control-
flow of the program is materialized as tokens within the circuit.
This approach is very elegant in that it guarantees correct by
construction circuits, while enabling very aggressive sched-
ules. These dynamic dataflow approaches have been extended
to support speculation [9], but with weaker guarantees. These
approaches come at a significant area overhead, which can lead



Fig. 1. A summary of High-Level Synthesis scheduling techniques. We assume that C(x) evaluates to true only for the second iteration. The static
schedule a is the result of classical HLS scheduling, which employs speculative code motion to start the execution of F and S as early as possible. The
dynamic b and speculative c schedules are the result of state-of-the-art HLS scheduling techniques [4], [8]. Light arrows represent data dependencies
between operator stages, while bold arrows represent inter-iteration data dependencies. The latter are omitted from the speculative schedule, except for the
mispeculation case (after the second iteration). We represent rolled-back operations using stroke-through operator stages in the speculative schedule.

Fig. 2. Overview of the SpecHLS source-to-source compilation flow. The input code is represented on the left, while the code produced by the toolchain is
shown on the right. This paper focuses on the design space exploration phase.

to poor area/delay benefits [13]. Several techniques have been
proposed to address this issue by resorting to static schedules
for groups of operations, where it can be shown that neither
dynamicity nor speculation can improve performance [13]–
[15].

Operating from dataflow representations requires a complete
overhaul of existing HLS toolchains, which are based on static
schedules. To address this issue, other approaches propose to
extend HLS toolchain capabilities to support some form of
dynamicity or speculation, by leveraging existing static loop
pipelining capabilities [8], [10]. These approaches incremen-
tally weave dynamicity and speculation in the schedule to
improve performance. They have several advantages: they sup-
port most dynamic execution patterns, can handle speculation,
and take advantage of all existing optimizations in existing
HLS tools. The SpecHLS [10] flow follows this strategy: it
enables the design of both dynamic and speculative hardware
from C or C++ code. This flow operates as a source-to-source
optimizer to be used on top of a commercial HLS tool, as
illustrated in Figure 2.

B. A Gated-SSA with Speculation Support

The SpecHLS flow uses a variant of the Gated-SSA
(GSSA) [16], [17] representation. The latter replaces SSA
form’s φ-nodes by gating nodes. The type of gating node that

Fig. 3. Extended Gated-SSA operators. µ-nodes a represent loop headers,
γ-nodes b encode control-flow decisions, and α-nodes c serve as array
updates. δ-nodes d act as delays on the datapath, storing a value for one
iteration before releasing it.



Fig. 4. Recasting memory dependencies as control-flow decisions [11]. The
dotted arrow represents an intra-iteration Read-after-Write dependency. The
user can annotate the input source code using a pragma to instruct the
transformation flow to speculate that there is no RAW dependency at a
distance lower than k iterations (with k = 2 in our example). The fast path
in the transformed version, from the start of the iteration to the array read
(through two δ-nodes), is indicated by bold red arrows. By exposing new
speculation opportunities in our intermediate representation, we also increase
the design space size.

replaces a given φ-node depends on the context in which the
φ-node appears. The following gating nodes are of particular
interest to us:

• µ-nodes are placed in loop headers. They take three
arguments, µ(p, ix, lx), where p is the loop exit condition,
ix is the initial value of variable x, and lx is the value of
x after a loop iteration.

• γ-nodes are placed at joining points in the control-flow
graph, such as the end of conditional structures. They act
as traditional φ-nodes, but they also encode the predicate
that determines which value is to be selected when exe-
cution reaches them. We denote them by γ(c, x0, x1, . . .),
with c the predicate, and x0, x1, . . . the possible values
for variable x.

Until its code generation phase, SpecHLS treats arrays
as immutable values [10]. We introduce the α operator to
model array updates. This operator takes three arguments,
α(t, x, v), where t is the array to update, x is the index of
the array element to be updated, and v is its new value.
This operator produces a new array value, whose element at
index x is v, and whose contents are otherwise identical to
t. The last operator we introduce is the δ-node. δ-nodes act
as delays on the datapath, storing a value for one iteration
before releasing it. Figure 3 illustrates these GSSA operators
and their corresponding C constructs. The loop exit condition
is omitted from µ-nodes to simplify our examples.

Gated-SSA allows us to work with fully-predicated φ-
nodes, in the form of µ-and γ-nodes. This predication outlines
speculation opportunities in the IR. Each γ-node can then be
seen as a potential speculation candidate [8]. µ-nodes expose
speculation opportunities on the loop exit condition.

Fig. 5. Leveraging cross-basic block speculation opportunities in SpecHLS.
By working directly at the DDG level, SpecHLS can uncover speculation
opportunities across multiple basic blocks.

C. Memory Speculation

SpecHLS also supports memory speculation by recasting
data hazards as a control-flow decision over the existence
of a RAW, WAR or WAW memory dependency [11]. This
translates into additional γ-nodes in the program IR. The more
γ-nodes are present in the IR, the more potential for aggressive
speculation and dynamism.

Figure 4 illustrates a transformation that exposes a new
γ-node in the GSSA intermediate representation to handle
a RAW memory hazard. Since the read and write addresses
are not known at compile time, there may be aliasing issues
between the α operator on the left-hand side, and the following
array read. The key idea behind this transformation is that
we can insert a runtime hazard detection mechanism in the
form of a γ-node controlled by an alias function to check
for aliasing between consecutive iterations. The alias node
keeps a buffer of k past write addresses, and checks the current
read address for aliasing, returning the distance of the current
iteration to the first aliasing iteration (or k + 1, if there are
no aliases in the last k iterations). The γ-node then selects a
delayed version of the array to pass on to the read operator.
We note that delaying an array through a δ-node is equivalent
to ignoring the last update to said array. The value of k is
determined through a user annotation in the form of a pragma
directive, as seen in the code at the bottom left of Figure 4.

Finally, SpecHLS combines this transformation with spec-
ulation on the most delayed path, i.e., the one with the largest
reuse distance, to efficiently handle data hazards at runtime.

D. Fine-Grained Speculation Discovery

SpecHLS operates on a data-dependency graph (DDG) to
transform its input to a speculatively-scheduled output [10].
This approach exposes fine-grained interaction between oper-
ators, which existing approaches based on basic block analysis
fail to uncover [9]. By not confining themselves to basic block
boundaries, SpecHLS transformations can leverage inter-block
speculation opportunities, e.g., by merging conditions with
similar latencies. Figure 5 illustrates such a situation, where
the calls to cond1 and cond2 are merged into a single
control signal across multiple basic blocks, exposing a three-
way speculation opportunity on next_y.



 

Fig. 6. Illustrative example for our exploration algorithm. Part a illustrates the Gated-SSA representation of the circuit, where we assume TC1,2,4 = TF1,3 =

5 ns, TC3
= TS2

= 15 ns, TS1
= 25 ns and Tγ = 1 ns. Part b presents a schedule trace for the circuit, unrolled four times. Part c exhibits a schedule

trace for the unrolled circuit, where each γ-nodes is controlled by an oracle that chooses the first available input. Part d displays a schedule trace for the
unrolled circuit, where γ1 and γ4 are controlled by an oracle and γ2 always chooses its first input. Part e depicts a schedule trace for the unrolled circuit,
where γ1, γ3 and γ4 are controlled by oracles.

E. Problem Statement

One of the main strengths of SpecHLS lies in its ability
to uncover complex fine-grained speculation opportunities
that would be missed by other approaches. This raises the
challenge of determining where (i.e., on which γ-nodes) and
how (i.e., for which input) to speculate. An exhaustive search
is excluded, since it is common for control-heavy kernels to
reach several hundreds of thousands of potential speculation
configurations. More information on the design space size can
be found in our experimental results (Section IV-B).

III. PROPOSED APPROACH

This work proposes a design space exploration algorithm
that uses a combination of static analysis and profiling data.
Static analysis is used to prune the search space whereas
profiling data is used to guide the exploration. Since our
approach heavily relies on loop pipelining techniques, we first
recall some principles of pipelined scheduling.

A. Determining the RecMII in a Pipelined Schedule

To understand our approach, it is first necessary to intro-
duce the notion of recurrence-constrained minimum initiation
interval (RecMII). The RecMII corresponds to the best achiev-
able II, without any resource constraint considerations. This
metric captures the maximum amount of available pipeline
parallelism within a loop. It uses both operator delays and
dependence distances to obtain the best II along all elementary
cycles in the graph, as illustrated in Figure 6. The II is
determined by the following formula, where T (cyclei) cor-
responds to the cumulative delay along elementary cycle i,
and D(cyclei) to the cumulative dependence distance along
the same elementary cycle.

RecMII = max
i∈cycles

T (cyclei)

D(cyclei)

Since the number of elementary cycles can be exponential in
the number of operations in the graph, directly computing the

TABLE I
PROFILING DATA AND γ-CONFIGURATIONS FOR FIGURE 6.

Scenario γ1 γ2 γ3 γ4 CP (ns) Prob.

configuration 1 1 0 1 0 2 ns 0.34
configuration 2 0 0 1 1 2 ns 0.21
configuration 3 0 0 0 1 8 ns 0.17
configuration 4 1 1 0 0 27 ns 0.10
configuration 5 0 1 0 0 13 ns 0.08
configuration 6 1 0 0 1 27 ns 0.04

static - - - - 27 ns 1
speculative 1 0 - 0 1 8 ns 0.17
speculative 2 - 0 1 - 2 ns 0.58

RecMII using the former approach is impractical. However, it
has been shown by Leiseron and Saxe [18] that the RecMII
of a given loop can be computed in polynomial time, since it
amounts to a flow problem.

We illustrate the II computation on the example shown in
Figure 6, in which multiple γ-nodes interact with one another.
In this example, assuming a target clock period of Tclk =
10ns, and delays provided by the caption, we would obtain
a static schedule with a value of II = 3 (due to the slow
path through S1). This, however, is a pessimistic II. Profiling
data may actually show that the path through S1 only seldom
contributes to the actual result.

Table I captures the probability of observing γ-nodes select-
ing one of their two inputs. Since the probabilities associated
to distinct γ-nodes are likely to be correlated, we cannot reason
on each γ-node individually, and therefore introduce the notion
of γ-configuration, which defines the joint outcome of all the
γ-nodes in the kernel. Each row in Table I corresponds to
such a configuration, along with its probability of occurrence
during program execution.

Inspecting the GSSA graph in Figure 6 will reveal that the
best achievable II can be 1, assuming that γ-nodes γ1, γ4 and
γ3 select their first input, but also when γ2 and γ3 selects their
first and second input, respectively. It is important to note that,



due to the slow delay along the C3 path, the latter scenario
requires speculative execution (with potential mispeculation
penalties) whereas the former can achieve II = 1 with dynamic
scheduling only. Given the profiling data in Table I, we can
also conclude that configuration speculative 2 is the most
likely among the two. It can therefore be considered the best
strategy.

B. Exploring the Solution Space

Although the previous example remains simple, a large
number of γ-nodes quickly makes the problem of finding the
best configuration intractable. If we denote the set of γ-nodes
in our representation by Γ, and the number of inputs for node
n by inputs(n), then our solution space contains up to∏

n∈Γ

inputs(n)

distinct γ-node combinations to consider. For each γ-node,
we need to determine whether the γ-node is selected for
dynamic or speculative execution and, if so, which one of
the two paths is considered as the taken path. However, we
are only interested in the subset of configurations that have
the following properties:

• The configuration achieves the target II (usually II = 1)
by exposing a short path in the GSSA graph.

• The configuration has an occurence probability higher
than a reference threshold θ. The latter is set by the user
as a parameter to guide the design space exploration.

• The configuration is minimal: removing any speculated
γ-node from it increases the achievable II.

A solution meeting all these requirements is called a valid
configuration. In the context of a full DSE, the goal is to obtain
all such configurations. However, because the search space is
intractable, we may instead look for the first n solutions. In all
cases, we need to be able to (i) prune the search space as early
as possible and (ii) explore the space by favoring solutions that
are likely to be more profitable, through search heuristics.

C. Static Design Space Pruning

Our pruning strategy consists of determining the set of γ-
nodes that need not be considered for speculation. We also
determine, given a set of speculation candidates, whether we
can reach the target II. To do so, we rely on a form of abstract
schedule, in which we consider each γ-node to operate in one
of the following modes:

• In the static mode, the node output is considered ready
as soon as all of its inputs are ready.

• In the speculative mode, the γ-node assumes that one
specific data input is always selected: the γ-node output
is ready as soon as the speculated input is ready.

• In the oracle mode, the γ-node always picks the earliest
of its data inputs.

When all γ-nodes operate in static mode, the schedule
amounts to a fully static schedule (schedule b in Figure 6).
When all γ-nodes operate in oracle mode, the resulting
schedule assumes the best possible execution outcome for all

nodes (schedule c in Figure 6) and is therefore a lower bound
for II. We apply this scheduling step repeatedly until it reaches
a fixpoint1 where the schedule starts to expose a periodic
behavior. This period is a lower bound on the achievable II
for that configuration.

We illustrate the operation of our exploration algorithm
through examples in part d and e of Figure 6, where we
consider two different γ-node sub-sets: (i) γ1 and γ4 as oracles,
γ2 as speculated on its first input and γ3 as static, and (ii) all
γ-nodes as oracles but γ2 as static.

We use this abstract schedule to identify nodes that need
not be speculated (thanks to a mobility metric, detailed in
the following), and prune the search space when the γ-
configuration is guaranteed not to lead to a viable solution.

We define the schedule difference (for a given γ-node)
between the worst case and the best case schedule as the γ-
node’s mobility. Figure 6 shows how we obtain a mobility
score of 2 for γ2. A γ-node with a mobility of zero will not
benefit from speculation, and can safely be discarded from
the search space. Similarly, γ-nodes with a large mobility are
promising candidates for speculation, and should be consid-
ered first during the search phase.

We can further exploit these abstract schedules to prune
the search space. Consider, for example, a situation where
we have determined the speculation decision for a subset of
m among n γ-nodes (speculated on first input, second input,
or not speculated at all). We now need to determine whether
this subset may ultimately lead to a solution enforcing the
target II, possibly by speculation on additional nodes. We can
use our abstract scheduler to answer this question by simply
considering the remaining m − n γ-nodes as operating in
oracle mode. If the resulting schedule period is higher than the
target II, it is safe to conclude that there exists no refinement
of the configuration at hand that can lead to the target II.

Our pruning technique is illustrated in parts d and e of
Figure 6. Part d represents the abstract schedule obtained
when γ2 speculate on input 0 and all γ-nodes but γ3 operate in
oracle mode. In this case, the schedule’s steady regime shows
that it is impossible to achieve II = 1: we are constrained at
II = 2 due to a long path through µy . We can use this result to
prune a subset of the design space since we now know that it
is impossible to reach II = 1 by speculating on the first input
of γ2 but without speculating on γ3. On the contrary, part e of
Figure 6 shows the abstract schedule obtained when all γ-node
but γ2 operate in oracle mode. In that case, the steady regime
achieves II = 1, and we need now we may need to further
explore the sub-space (by speculating on additional γ-nodes)
to possibly reach II = 1.

D. Exploration Heuristics

Pruning alone is not sufficient to enable efficient design
exploration. The way we explore the design space is also very
important. Our approach uses a breadth-first search among the

1It can be shown that the fixpoint can be reached after at most 2×card(M)
iterations, where M is the set of all µ-nodes in the IR for a given circuit.



Fig. 7. Exploration tree for our running example, using the total order based
on mobility, e.g. γ3 ≺ γ2 ≺ γ4 ≺ γ1.

different γ-configurations. This corresponds to an exploration
tree, as illustrated in Figure 7. Additionally, we use a total
order ≺ over γ-nodes to prevent exploring the same configu-
ration twice. The total order we use assigns higher rankings
to promising γ-nodes. In our current implementation, γ-nodes
are sorted based on the mobility value defined in III-C.

In the exploration tree, a child c of a node f represents a γ-
configuration conf(c) where (i) we speculate over the same γ-
nodes as the configuration in f , and (ii) we add one speculation
over a specific input i of a node γn which is smaller than every
speculated γ-node in f . More precisely, for each node n in
the exploration tree,

conf(n) = conf(father(n)) ∪ {γm → i}

for some input i, where

γm ≺ min
≺
{γ | ∃i ∈ N, {γ → i} ∈ conf(father(n))} .

The root of the exploration tree corresponds to the fully
static schedule. Figure 7 represents an exploration tree for the
example in Figure 6, based on a possible ordering of γ-nodes.

For each node in the tree, we apply the following pruning
techniques:

1) Minimality: We verify whether there already exists
a valid configuration, which is a strict subset of the
current configuration. In such a case, we can prune the
exploration, since we know that the current configuration
(and all of its children) will not be minimal.

2) Probability: We compute the probability of the current
configuration based on profiling information. If it is
below the validity threshold, all sub-configurations are
also below the threshold, and the branch can be pruned.

3) Static pruning: We use the technique described in
Section III-C to determine whether it is possible to reach
II = 1 using current speculation choices, with all smaller
γ-nodes configured as oracles. We prune the branch if
it is impossible.

Figure 7 illustrates the pruning steps undertaken during
exploration. Configuration (γ3:0, γ2:0, γ4:1, γ1:0) is pruned,
since the valid configuration (γ3:0, γ4:1, γ1:0) is one of
its valid strict-subsets. Configuration (γ3:0, γ2:1, γ4:1) is

impossible, based on profiling information. Most of the other
configurations are pruned by static pruning.

The total order over γ-nodes used for the exploration is
critical for efficiently pruning the tree. If speculating only
on the smallest γ-node is sufficient to obtain II = 1, then
the pruning technique will always return that it is possible to
obtain II = 1 by adding speculation over smaller γ-nodes, and
will never prune.

Algorithm 1 gives a pseudo-code implementation of our
proposed approach.

Algorithm 1: Exploration of speculation opportunities.
sortedGammas← sortByMobility(Γ)
configsToExplore← {γ → i|∀γ ∈ sortedGammas,
∀i ∈ inputs(γ)}
validConfigs← ∅
while configsToExplore ̸= ∅ do
config← pop(configsToExplore)
for every γ ∈ sortedGamma such that
∀γ′ → i ∈ config, γ ≺ γ′ do

for every input i of γ do
newConfig← config ∪ {γ → i}
if probability(newConfig) ≥ threshold and
recmiiWithOracle(newConfig) == 1 then

if recmii(newConfig) == 1 then
validConfigs←
validConfigs ∪ {newConfig}

else
configsToExplore←
configsToExplore ∪ {newConfig}

end if
end if

end for
end for

end while

E. Choosing the Final Configuration

Once the exploration is completed, we obtain a set of
valid configurations. Since we generate a speculative schedule
entirely at compile-time, we are capable of statically comput-
ing the iteration latency for each configuration of γ-nodes.
Consequently, we can use the profiling information depicted
in Table I to derive a precise estimate of the whole loop
latency without performing RTL simulation. Additionally, we
can build an area score based on the size of the control
logic inserted to handle the speculations. Picking the right
configuration is then a matter of deciding which trade-offs
to make between performance and area.

IV. EXPERIMENTAL VALIDATION

This Section evaluates the relevance of our approach from a
qualitative and quantitative perspective. Our aim is to demon-
strate that our flow finds good solutions even in large design
spaces, and that the latter improve performance compared to



TABLE II
AREA RESULTS AND DESIGN SPACE METRICS FOR LARGE BENCHMARKS.

Benchmark Type Area Design space size Runtime
II Tclk (ns) LUT FF DSP γ-nodes Baseline Heuristics SOTA [7]

FPU Baseline 3 7.90 353 283 2 21 30.9B 116k 10.9k 1055sSpeculative 1 17.6 2 885 1 105 2

SpMM Baseline 6 6.27 256 442 4 12 708k 60 1.35k 6sSpeculative 2 6.71 1 097 1 377 4

RISC-V CPU Baseline 5 8.891 1 499 361 0 16 752M 1.46k 11.3M 263sSpeculative 1 14.35 1630 953 0

Superscalar Baseline 4 7.16 3502 2688 0 16 178M 1.19k 5.74M 177sSpeculative 2 10.451 6865 5682 0

static scheduling. In the following, we describe our experi-
mental setup and then discuss the results that we obtain.

A. Experimental Setup

The SpecHLS flow is implemented within the GeCoS
source-to-source compiler infrastructure [19], and relies on the
CIRCT [20] project to provide a fast scheduling infrastructure
for our pruning strategy. We use Vitis HLS 2021.2 as a back-
end to perform High-Level Synthesis, with an XC7A200 as
the target FPGA.

Existing HLS benchmarks [21], [22] focus on kernels with
regular control-flow and memory access patterns: they favor
applications that work well with state-of-the-art HLS tools.
This makes them poor candidates for evaluating our approach.
Instead, we choose a selection of benchmarks that expose com-
plex and data-dependant control flow. These benchmarks were
obtained from previously published work [1], [10], [15], [23],
[24] and are challenging to pipeline, since reaching II = 1
requires a non-trivial combination of speculations that remains
out of reach of SOTA dynamic scheduling techniques [4], [7],
[15]. We briefly describe them below:

• RISC-V: a processor implementing the rvi32 ISA, in the
form of an untimed abstract datapath, exposing specula-
tion opportunities on PC, registers, etc.

• Superscalar: a simplified 2× unrolled version of the
above, exposing the opportunity to issue two instructions
per iteration.

• FPU: an FPU supporting addition and multiplication,
with a fast path in case operands have the same exponent.

• SpMM: structured sparse matrix product, with specu-
lation opportunities over the matrix weight structure to
enable parallel accumulation.

B. Experimental results

Table II shows the area results and design space metrics for
our benchmark set. The baseline (with no speculation applied)
is shown first, followed by its speculative counterpart.

1) Scalability evaluation: The rightmost part of Table II
provides metrics regarding the size of the design space. The
first two columns provide the number of γ-nodes and the
size of the full solution space that can be considered. The
column labeled Heuristics demonstrates the effectiveness of

the proposed pruning techniques. These results are obtained
with a probability threshold of θ = 10%. They show that our
approach is able to drastically reduce the search space by 5 to
6 orders of magnitude. As a comparison, we show the size of
the explored space when following the approach of Szafarczyk
et al. [7] in the last column of Table II. Our results show that
our approach is much more scalable, while natively supporting
both control-flow and memory speculation.

The last column of Table II shows the runtime for per-
forming the DSE alone. Results show that even for complex
benchmarks, our approach is able to carry out the whole
analysis in less than twenty minutes.

2) Performance evaluation: The left-most part of Table II
provides area and performance metrics, comparing the baseline
implementation with the one found by our exploration process.
As for previous work on speculative loop pipelining, results
demonstrate that the II is reduced, at the cost of additional
hardware and lower clock frequency. Part of the area overhead
is due to the additional logic used to handle mispeculations, the
rest is a direct consequence of reaching a lower II, leading to
fewer resource-sharing opportunities. Two of our benchmarks
reach II = 2, while our exploration found that it should
achieve II = 1. This is due to a mismatch between our delay
model and that of Vitis HLS, which we hope to fix for the
final version of the paper.

V. DISCUSSION

Many research works have addressed the problem of
pipelining complex loops, either through advanced static
schedules [23], [25], runtime schedules [3], [4], or both [1],
[5], [8]. In this section we focus the discussion on research
work that shares the most resemblance to ours.

Szafarczyk et al. [7] automatically expose dynamism in
HLS code through a compiler analysis that operates at the
basic block level. Their approach uses a greedy algorithm
that iterates over all basic blocks in every elementary circuit
of the control-flow graph to identify dynamic scheduling
opportunities. Contrary to our approach, they neither support
speculation nor handle data-dependent memory accesses. Our
approach supports both, thanks to the use of a unifying model
for control flow and memory speculation [11]. Additionally,



the elementary cycle enumeration in the CFG may not scale
on large benchmarks, as shown by the results in Section IV-B.

In their Dynamatic toolchain, Josipović et al. [4], [9] operate
at the basic block level to coordinate execution between
dynamically scheduled and speculative regions in the gener-
ated hardware. Our finer-grain representation exposes more
speculation opportunities but dramatically increases the search
space, as demonstrated in Section IV-B. This large design
space size motivates the need for a fast and scalable DSE
algorithm. Dynamatic also delegates memory speculation and
dependency management to an external load-store queue [26].
Our approach treats memory speculation as a particular case of
control-flow speculation and can, therefore, integrate it into our
DSE process. Speculative execution support in Dynamatic [9]
seems to have been put on hold, and the toolchain focuses
on dynamic scheduling. Our approach unifies dynamic and
speculative scheduling in a single framework.

Recent work has focused on reducing the area overhead of
dynamically-scheduled hardware by introducing static islands
in elastic circuits [13]–[15]. These works tackle a somewhat
similar problem, but follow the opposite approach to ours:
rather than weaving dynamicity in a static-schedule, they
instead try to eliminate dynamicity when it can be shown that
it cannot improve performance. The main limitation of these
approaches is their inability to take advantage of speculation,
and to provide early performance estimates.

Cheng et al. [6] propose a probabilistic scheduling model
for HLS. Their approach models schedules as stochastic Petri
Nets, and relies on control-flow profiling data obtained through
Dynamatic [4], coupled to their own memory access profiler.
The authors apply probabilistic scheduling to the static is-
lands problem discussed previously. While their approach uses
probabilities to drive their scheduling exploration, the model
proposed in their paper does not capture the potential corre-
lations between control-flow decisions in the input program.
Our approach maps profiling data to execution paths instead
of individual control-flow decisions, capturing any potential
correlation in the process.

VI. CONCLUSION

Speculative High-Level Synthesis opens interesting new
design perspectives, as it allows the acceleration of complex,
control-dominated kernels. Determining when and where to
apply speculation raises new issues in term of design space
exploration. In this paper, we propose a design space explo-
ration flow that takes advantage of static analysis and profiling
information to efficiently explore large design spaces with hun-
dreds of thousands of solutions in a matter of minutes without
the need for costly RTL-level simulations. Our approach is
scalable enough to automatically infer the set of speculation
decisions that enable the automatic generation of an in-order
superscalar RISC-V core from an algorithmic description.
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