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Abstract: The statistical modeling of discrete extremes has received less attention
than their continuous counterparts in the Extreme Value Theory (EVT) literature.
One approach to the transition from continuous to discrete extremes is the modeling
of threshold exceedances of integer random variables by the discrete version of the
generalized Pareto distribution. However, the optimal choice of thresholds defining
exceedances remains a problematic issue. Moreover, in a regression framework, the
treatment of the majority of non-extreme data below the selected threshold is either
ignored or separated from the extremes. To tackle these issues, we expand on the
concept of employing a smooth transition between the bulk and the upper tail of
the distribution. In the case of zero inflation, we also develop models with an ad-
ditional parameter. To incorporate possible predictors, we relate the parameters to
additive smoothed predictors via an appropriate link, as in the generalized additive
model (GAM) framework. A penalized maximum likelihood estimation procedure is
implemented. We illustrate our modeling proposal with a real dataset of avalanche
activity in the French Alps. With the advantage of bypassing the threshold selection
step, our results indicate that the proposed models are more flexible and robust than
competing models, such as the negative binomial distribution.

Key words: Extreme value theory; discrete extended generalized Pareto distribu-
tion; zero-inflated models; generalized additive models
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1 Introduction

Modeling count data, i.e., non-negative integers, in the presence of covariates is a very
common task in many research areas. The Poisson regression model is often of limited
use because count data typically exhibit overdispersion (i.e., the variance of the counts
appears larger than the mean) and/or an excessive number of zeros. Additional
parameters can be inserted to deal with overdispersion, e.g., the quasi-Poisson model
(Wedderburn, 1974), or different distributions, such as negative binomial distribution,
can be fitted. To model zero inflation, Lambert (1992) studied a two-component
mixture model, one component is a point mass at zero and the other component
is an assumed parametric count distribution. Lambert’s specification is an example
of a distributional regression model (Stasinopoulos et al., 2018; Kneib et al., 2023).
The term “distributional” emphasizes that several characteristics of the conditional
distribution of the data are modeled in terms of covariates, rather than only the mean.

So far, the main focus of the literature has been on the relationship between the
location, the scale, and the shape with the covariates (Rigby and Stasinopoulos,
2005), less attention has been paid to the tail of the count distribution.
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Figure 1: (a) Frequency table plot (log10 scale) of avalanche events in the Haute-
Maurienne massif of the French Alps, (b) Q-Q plot of randomized residuals from the
zero-inflated negative binomial model with additive covariates. The dotted lines show
the 95% point-wise confidence intervals.

As a motivating example, we consider a dataset on the avalanche activity in the
Haute-Maurienne region of the French Alps, The avalanche activity is measured by a
three-day moving sum of the avalanche events recorded from February 1982 to April
2021, see Evin et al. (2021) for details. Figure 1(a) shows a large relative frequency
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of zeros (meaning no avalanche has been reported) as well as heavy-tailed behavior.

We fit a zero-inflated negative binomial regression model under the framework of
generalized additive models for location, scale, and shape (GAMLSS) where the pa-
rameters are related to additive environmental covariates (see Section 4 for a detailed
description) via suitable link functions (Stasinopoulos et al., 2018). The randomized
quantile residuals (Dunn and Smyth, 1996) are used to check the adequacy of the fit-
ted model. Figure 1(b) clearly shows that the fitted models do not correctly estimate
the upper tail behavior of avalanche extremes. In addition, the number of zeros is
not correctly predicted in this example.

Extreme value theory, originally developed by Fisher and Tippett (1928), provides
a mathematical blueprint to model very high and very low-frequency events (e.g.,
extreme temperatures, heavy rainfall intensities, heavy floods, and extreme winds,
etc.), and monographs such as Coles (2001) or Beirlant et al. (2004) discuss the main
extreme value models. In particular, under the peak-over-threshold (POT) approach
(Pickands, 1975), the distribution of exceedances of a high threshold is often ap-
proximated by the Generalized Pareto Distribution (GPD). Modifications of GPD
to discrete data exist in the literature (Krishna and Pundir, 2009; Buddana and
Kozubowski, 2014; Kozubowski et al., 2015), and recently Hitz et al. (2024) discussed
discrete versions of GPD to approximate the tail behavior of integer-valued random
variables. This approach still requires the definition of a threshold at a high quantile,
which is not easy due to the discrete nature of the data (Daouia et al., 2023).

It should also be noted that especially environmental time series are rarely stationary
and depend on environmental factors. A standard approach to modeling continuous
extremes of a non-stationary process focuses on maintaining a predetermined thresh-
old but treating parameters of the GPD as functions of covariates (Davison and Smith,
1990). An alternative approach (Eastoe and Tawn, 2009) uses preprocessing methods
to model the non-stationarity in the body of the process to produce transformed data
and then uses standard methods to model the extremes of the transformed data. The
first approach has been adapted to the discrete case by Ranjbar et al. (2022). The
second approach seems to be difficult to adapt. The distribution of the preprocessed
data cannot be connected to a distribution of count data.

The proposed model addresses the issue of the POT approach ignoring or separating
non-extreme data below the selected threshold from the extremes. The model utilizes
a smooth transition between the bulk and upper tail of the distribution, for the full
range of the data, while bypassing a threshold selection. The discrete extended version
of GPD (DEGPD) is derived by discretizing the cumulative distribution function
(CDF) of an extended GPD (Naveau et al., 2016). The model takes into account the
possible effects of covariates in a non-parametric way. Since it is possible to have a
dataset with an excess of zeros, such as in the motivating example, we also consider
a mixture of the previous distribution with a degenerate distribution at zero. This
results in a distribution named Zero-Inflated DEGPD (ZIDEGPD).
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The paper is organized as follows. Section 2 introduces the DEGPD. The extension
to deal with many zeros and covariate effects is given in Section 3. Section 4 discusses
applications of DEGPD and ZIDEGPD to avalanche data with environmental covari-
ates. Finally, Section 5 concludes with a summary of our results and a discussion of
future research directions.

2 Discrete extreme modelling

The distribution of exceedances (i.e., the amount of data that appears over a given
high threshold) is often approximated by the Generalized Pareto distribution (GPD)
defined by its CDF as

F (z;σ, ξ) =

{
1− (1 + ξz/σ)−1/ξ

+ ξ ̸= 0

1− exp (−z/σ) ξ = 0
, (2.1)

where (a)+ = max(a, 0). The σ > 0 and −∞ < ξ < +∞ represent the scale and
shape parameters of the distribution, respectively.

More precisely let X be a random variable taking values in [0, xF ) where xF ∈
(0,∞) ∪ {∞} Suppose that there exists a strictly positive sequence au such that
the distribution of a−1

u (X − u)|X ≥ u weakly converge to a non-degenerate proba-
bility distribution on [0,∞) as u → xF , then this distribution is the GPD (Balkema
and De Haan, 1974). Thus, for large u,

Pr(X − u > x|X ≥ u) = Pr(a−1
u (X − u) > a−1

u x|X ≥ u) ≈ 1− F (x; auσ, ξ).

The shape parameter, ξ, defines the tail behavior of the GPD. If ξ < 0, the upper
tail is bounded. If ξ = 0, we have the exponential distribution, where all moments
are finite. If ξ > 0, the upper tail is unbounded and the higher moments ultimately
become infinite. The three defined cases are labeled “short-tailed”, “light-tailed”,
and “heavy-tailed”, respectively. These categorizations enhance the flexibility of the
GPD and underscore its adaptability to various modeling scenarios.

Using the GPD to approximate the distribution tail for discrete data can be inappro-
priate, as pointed out in Hitz et al. (2024). These authors proposed to approximate
the distribution tail of a count random variable Y by discretizing the CDF defined
by (2.1) and, for large u,

Pr(Y − u = k|Y ≥ u) = F (k + 1;σ, ξ)− F (k;σ, ξ), k ∈ N0, (2.2)

with σ > 0 and ξ ≥ 0. The distribution is called discrete GPD (DGPD), and several
properties of discrete Pareto type distributions have been studied previously in the
literature (Krishna and Pundir, 2009; Buddana and Kozubowski, 2014; Kozubowski
et al., 2015).
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A drawback of GPD in the continuous case is that it only models observations that
occur above a certain high threshold. This imposes an artificial dichotomy in the data
(i.e., observations are either below or above the threshold), and finding the optimal
threshold remains complex for practitioners. The choice becomes more complicated
when the observations feature a substantial number of ties.

In the continuous extreme value setting, many authors have attempted to model
the full range of data without threshold selection (Frigessi et al., 2002; Carreau and
Bengio, 2009; MacDonald et al., 2011; Papastathopoulos and Tawn, 2013; Naveau
et al., 2016; Stein, 2021).

Notably, Papastathopoulos and Tawn (2013) proposed an extension of GPD that
incorporated an additional shape parameter without affecting the tail behavior. The
inclusion of this parameter stabilized the GPD parameter estimates for threshold
selection, allowing a lower threshold to be selected. In order to work with the modeling
of the lower tail and the bulk of the distribution, Naveau et al. (2016) identified two
conditions that ensured compliance with the EVT for the lower and upper tails.
The transition between the two tails was modeled by a function on [0, 1], which can
take different forms. For example, Tencaliec et al. (2020) worked with a Bernstein
polynomial base. de Carvalho et al. (2022) extended this type of approach to Bayesian
lasso structures. The main ingredient of all these constructions, called extended
generalized Pareto distributions (EGPDs), is the idea of the integral transformation to
simulate GPD random draws, i.e. F−1

σ,ξ (U), where U ∼ U(0, 1) represents a uniformly

distributed random variable on (0, 1) and F−1
σ,ξ denotes the inverse of the CDF (2.1).

This leads to the family of distribution for the random variable

Z = F−1
σ,ξ

(
G−1(U)

)
, (2.3)

where G is a CDF on [0, 1] and U ∼ U(0, 1). Clearly, the CDF of Z is G(F (z;σ, ξ)).
The key problem is to find a function G which preserves the upper tail behavior with
shape parameter ξ and also controls the lower tail behavior. Naveau et al. (2016)
defined restrictions for validity of G functions. For instance, the tail of G denoted by
Ḡ = 1−G has to satisfy

lim
u→0

Ḡ(1− u)

u
= a, for some finite a > 0 (upper tail behavior), (2.4)

lim
u→0

G(u)

uκ
= c, for some finite c > 0 (lower tail behavior). (2.5)

Four parametric examples for G have been proposed in Naveau et al. (2016) (see also
below). We follow the same idea and define the probability mass function (pmf) for
the count variable Y as

Pr(Y = y) = G (F (y + 1;σ, ξ))−G (F (y;σ, ξ)) , y ∈ N0. (2.6)

The distribution defined by (2.6) is referred to as the discrete extended generalized
Pareto distribution (DEGPD). The explicit formula of CDF of DEGPD is developed
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as

Pr(Y ≤ y) = G (F (y + 1;σ, ξ)) (2.7)

and the quantile function is derived as

qp =


⌈
σ
ξ

{
(1−G−1(p))

−ξ − 1
}⌉

− 1, if ξ > 0

⌈−σ log (1−G−1(p))⌉ − 1, if ξ = 0

(2.8)

with 0 < p < 1. In this paper, we use four parametric expressions of G(·) (Naveau
et al., 2016), namely

Model (i): G(u;ψ) = uκ, ψ = κ > 0;

Model (ii): G(u;ψ) = 1−Dδ{(1− u)δ}, ψ = δ > 0 where Dδ is the CDF of a Beta
random variable with parameters 1/δ and 2, that is:

Dδ(u) =
1 + δ

δ
u1/δ

(
1− u

1 + δ

)
;

Model (iii): G(u;ψ) = [1−Dδ{(1− u)δ}]κ/2, ψ = (δ, κ) with δ > 0 and κ > 0;

Model (iv): G(u;ψ) = puκ1 + (1 − p)uκ2 , ψ = (p, κ1, κ2) with κ2 ≥ κ1 > 0 and
p ∈ (0, 1).

The parametric family (i) leads to a pmf of DEGPD with three parameters (κ, σ and
ξ): κ deals the shape of the lower tail, σ is a scale parameter, and ξ controls the
rate of upper tail decay. Thus, Figure 2(a) shows the behavior of the pmf of DEGPD
with fixed scale and upper tail shape parameter (i.e., σ = 1 and ξ = 0.5) and with
different values of lower tail behaviors (κ=1, 2, 5). The DGPD is recovered when
κ = 1, and additional flexibility for low values is attained by varying κ. For instance,
more flexibility on the lower tail can be observed without losing upper tail behavior
in Figure 2(a) when κ = 5.

The parametric family (ii) is another interesting choice for constructing DEGPDs.
This choice is more complex than the previous two. Figure 2(b) illustrates the be-
havior of pmf with different values of δ. In the continuous setting, we observe that
the EGPD associated with this G family converges to GPD as δ increases to infin-
ity. Furthermore, the conditions (2.4) and (2.5) are also satisfied with δ = 2, see
Naveau et al. (2016) for more details. In discrete settings, the DEGPD corresponding
G(u;ψ) = 1 − Dδ{(1 − u)δ} also become very close to the pmf of DGPD when δ
increases to infinity. In general, the parameter δ describes the central part of the
distribution. Thus, this parameter relatively improves the flexibility for the central
part of the distribution. The δ parameter can be interpreted as a threshold tuning
parameter. One of the drawbacks of DEGPD (ii) is that it models only the central
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Figure 2: Probability mass function corresponding to model (2.6) for σ = 1, ξ = 0.5.
(a) Model (i): G(u;ψ) = uκ, κ = 1, 3, 5; (b) Model (ii): G(u;ψ) = 1 − Dδ(1 − u)δ

δ = 1, 3, 5; (c) Model (iii): G(u;ψ) = [1−Dδ(1−u)δ]κ/2 for δ = 1, 2, 2 and κ = 1, 3, 5,
and (d) Model (iv): G(u;ψ) = puκ1 + (1− p)uκ2 for p = 0.2, 0.2, 0.8, κ1 = 1, 3, 3 and
κ2 = 2, 2, 2.
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and upper parts of the distribution. On the other hand, the behavior of the lower tail
could not be estimated directly.

The parametric family (iii) supports the lower tail of the distribution with the κ > 0
parameter. Interestingly, this family also tends to the DEGPD with parameters
(κ, δ, σ and ξ). The (κ, δ and ξ) represents the lower, central, and upper parts
of the distribution, respectively, and σ is a scale parameter as usual. In partic-
ular, Figure 2(c) shows the behavior of pmf of DEGPD linked with G(u;ψ) =[
1−Dδ{(1− u)δ}

]κ/2
at different settings of the parameters. Changing the values

of κ also reveals flexibility of the lower tail.

The parametric family (iv) is the mixture of power laws: κ1 identifies the lower tail
shape, κ2 modifies the central distribution shape, and σ and ξ are scale and upper
tail parameters, respectively. It can be observed from Figure 2(d) that the DEGPD
related to G(u;ψ) = puκ1 + (1 − p)uκ2 is also showing flexibility with p = 0.2, 0.8,
σ = 1, ξ = 0.5, κ1 = 1, 3, constant values of κ2 = 2.

3 Zero-inflation and regression modeling

As we have seen for our motivating example, many zeros can be found in various real
data sets. In that case, the current model with a flexible lower and upper tail cannot
be adjusted for the excessive zeros. We follow Lambert (1992) and change DEGPD’s
pmf to

Pr(Y = y) =

{
π + (1− π)G(F (1, σ, ξ) ;ψ) y = 0
(1− π) [G (F (y + 1, σ, ξ);ψ)−G (F (y, σ, ξ);ψ))] y ∈ N (3.1)

where 0 ≤ π ≤ 1 is the mixing proportion, determining from which state Y is gener-
ated. In the following, we coin (3.1) as the ZIDEGPD model.

Suppose now that x ∈ Rq is a vector of covariates measured with Y . In a continuous
framework, the inclusion of flexible forms of dependence of extreme values on covari-
ates is well established (Davison and Smith, 1990). Chavez-Demoulin and Davison
(2005) used the Generalized Additive Model (GAM) (Hastie and Tibshirani, 1990)
to flexibly estimate GPD parameters. More recently, by coupling GAM forms with
penalized likelihood, Youngman (2019) modeled threshold exceedances with GPD
parameters of GAM forms.

By allowing the parameters to depend on covariates, we extend the pmf (3.1) to
the zero-inflated count regression setting. More specifically, we identify the vector
of parameters (ξ, σ, ψ, π) with θ = (θ1, ..., θd). The parameters of the distribution
of Y can depend on the covariates x, i.e. θ(x) = (θ1(x), . . . , θd(x)). To relate
the distribution parameters (θ1(x), . . . , θd(x)) to the covariates, we consider additive
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predictors of the form

ηi(x) = si1(x) + · · ·+ siJi(x), i = 1, . . . , d, (3.2)

where si1(·), . . . , siJi(·) are smooth functions of the covariates x. The predictors are
linked to the parameters via known monotonic and twice differentiable link functions
hi(·).

θi(x) = hi(ηi(x)), i = 1, . . . , d. (3.3)

For instance, we use the following linking functions for the model (i) associated with
G(u;ψ) = uκ. The parameters can be written as

ξ(x) = exp(ηξ(x)), σ(x) = exp(ησ(x)), κ(x) = exp(ηκ(x)), π(x) = exp

(
ηπ(x)

1 + ηπ(x)

)
.

The functions sij(·) in (3.2) are approximated by a set ofKij basis functions {Bk,ij(x) k =
1, . . . , Kij}, namely

sij(x) =

Kij∑
k=1

βij,kBk(x). (3.4)

The basis functions can be of different types (see Wood, 2017, for instance). The
basis function expansions can be written as sij(x) = tij(x)

Tβij where tij(x) is still
a vector of transformed covariates that depends on the basis functions and βij =
(βij,1, . . . , βij,Kij

)T is a parameter vector to be estimated.

The penalized maximum likelihood estimation (MLE) method is used to estimate the
parameters of the proposed models. More precisely, let y1, . . . , yn be n independent
observations from (2.6) and x1, . . . ,xn the related covariates. The log-likelihood
function is given by

l(β) =
n∑

i=1

I{0}(yi) log [π(xi) + (1− π(xi))G(F (1;σ(xi), ξ(xi));ψ(xi))]

+
n∑

i=1

(1− I{0}(yi)) log(1− π(xi)))×

[G(F (yi + 1;σ(xi), ξ(xi));ψ(xi))−G(F (yi;σ(xi), ξ(xi));ψ(xi))] ,(3.5)

where IA(·) is the indicator function of the set A. To ensure regularization of the func-
tions sij(x) so-called penalty terms are added to the objective log-likelihood function.
Usually, the penalty for each function sij(x) is a quadratic penalty βT

ijP ij(λij)βij

where P ij(λij) is a known semi-definite matrix and the vector λij regulates the
amount of smoothing needed for the fit. A special case that we use in the real
data application is when P ij(λij) = λijP ij, for a scalar λij > 0 and a semi-definite
matrix P ij. The entries of the penalty matrix Pij are the integrals of the products of
the second derivatives of pairs of cubic spline functions, see Wood (2011, Section 5.3)
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for more details. The penalized log-likelihood function for the latter models reads:

lp(β) = l(β)− 1

2

d∑
i=1

Ji∑
j=1

λijβ
T
ijP ijβij. (3.6)

We apply the restricted maximum likelihood (REML) approach to estimate βij and
λij following Wood (2011). Our current implementation exploits the R package evgam
(Youngman, 2022) and adds two new families of distributions named degpd and
zidegpd. Note that within the degpd family, all four models for G(,̇ψ) have been
implemented. By contrast, for the zidegpd family, only models (i), (ii), and (iii)
have been implemented, since the evgam package allows the simultaneous estimation
of only five distribution parameters θ(x) = (θ1(x), . . . , θ5(x))

T .

4 Avalanche data example

Let us return to the example introduced with Figure 1. The data comes from the
Enquête Permanente sur les Avalanches. This survey collects avalanche data from
the French Alps and has monitored about 3900 routes by local observers since the
beginning of the 20th century (see Mougin, 1922; Evin et al., 2021). Quantitative
(run-out elevations, deposit volumes, etc.) and qualitative (flow regime, snow quality,
etc.) information is collected for each event.

Report quality of avalanches observed by local observers varies over time and space.
For example, an avalanche event may be recorded a few days after it occurs, and the
estimated day of the event by the observer may be approximate. It is too restrictive
to select only the events for which the day is known, as too many events would be lost.
However, if the avalanche occurred several days before the observation, including the
observation could lead to biased analysis, such as an inaccurate count of avalanches
for that day and difficulty in linking the event to snow and meteorological conditions
(Evin et al., 2021). Therefore, we only consider avalanche events that occurred within
three days before of their observation.

Natural avalanche activity is also uncertain because records tend to record paths vis-
ible from valleys, so the high-elevation activity may be underestimated. Avalanches
are usually caused by severe storms that bring high snowfalls coupled with snow
drifting, but substantial variations of environmental covariates causing snow melt
and/or fluctuations of the freezing point can also be involved. For instance, precip-
itation amounts, air temperatures during storms, and prior snow stratigraphy influ-
ence avalanche types and frequency. Although overall avalanche frequency is likely
to decrease globally (Strapazzon et al., 2021), more extreme environmental condi-
tions during winter storms can cause more intensive avalanche events. For instance,
a shallow snow-pack and warmer temperatures have become increasingly influential
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in the Alps. Since extreme events have potentially terrible consequences, it is crucial
to anticipate future avalanche activity in the short-term and long-term management,
possibly relating this activity to environmental variables.

In our example the total number of avalanches in the Haute Maurienne massif was
considered within a three-day observation window between January 1982 and April
2021. Only days between October 15th and May 15th were included. A total of 2839
observations were made during this period Dkengne et al. (2016).

The related environmental variables are maximum wind speed (WS) at 10 meters in
m/s, relative humidity (RH) at 2 meters in percentage, precipitation (PREC) in mm
per day, maximum (MxT) and minimum (MnT) temperatures at 2 meters in oC. Envi-
ronmental covariates have been downloaded from https://power.larc.nasa.gov/data-
access-viewer/ by specifying latitude and longitude information. Three-day sum-
maries are calculated by averaging RH and PREC and taking the maximum for MxT
and WS and the minimum for MnT.
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Figure 3: Scatterplots of avalanche counts (log scale) versus environmental vari-
ables. The smoothing lines are obtained by jittering the count and fitting three
non-parametric regression quantile models at the 0.5, 0.75, and 0.90 quantiles.

The scatterplots of avalanche counts (log scale) versus environmental variables (Figure
3) do not highlight clear relationships, mainly masked by the presence of many zeros.

https://power.larc.nasa.gov/data-access-viewer/
https://power.larc.nasa.gov/data-access-viewer/
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Figure 4: Correlation between environmental variables.

Figure 4 shows the correlation plot between the covariates, highlighting that maxi-
mum temperature (MxT) and minimum temperature (MnT) are positively strongly
correlated. At the same time, precipitation (PREC) has no significant correlation
with MxT. On the other hand, relative humidity (RH) has a low and moderate pos-
itive correlation with wind speed (WS) and PREC, while it has a weak negative
correlation with temperature variables. Furthermore, wind speed and precipitation
have a weak correlation with minimum and maximum temperature variables.

We fit the ZIDEGPD model under specifications (i), (ii), and (iii) for G(u;ψ), and
a backward variable selection procedure based on AIC is performed for selecting the
covariates. The shape parameter ξ is kept constant to avoid numerical instability
in the estimation of ψ. The results of the selection are given in Table 1, where s(·)
indicates the smoothed predictor.

To assess the overall adequacy of ZIDEGPD model, we used the randomized residuals
(Dunn and Smyth, 1996) defined as

ri = Φ−1
(
(1− ui)F (yi − 1; θ̂(xi)) + uiF (yi; θ̂(xi))

)
where Φ−1 is the inverse of CDF of a standard Gaussian distribution function, ui is
drawn from a uniform distribution, and F (.;θ) is the CDF of the current model. Aside
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Table 1: Selected predictors for ZIDEGPD model a

Model log σ(x) log κ(x) log δ(x) logit(π(x))
(i) s(WS)+s(MxT)+s(PREC) s(RH) - s(MxT)

(ii) s(WS)+s(MxT)+s(RH) - cst s(MxT) + s(PREC)

(iii) s(WS)+s(MxT)+s(RH)+s(PREC) cst cst s(MxT)

a cst denotes the constant parameters.
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Figure 5: Q-Q plot of randomized residuals of different ZIDEGPD models: (a) Model
(i); (b) Model (ii); (c) Model (iii). The dotted lines show the 95% point-wise confi-
dence intervals.

from sampling variation in the parameter estimates, randomized residuals should fol-
low a standard Gaussian distribution if the model is correctly identified. The ran-
domized residuals derived from our proposed model show no apparent departure from
normality (Figure 5) and fit both tails (lower and upper) correctly when compared
to the existing models in the literature, as shown in Figure 1.

In Table 2, we report the final values of the AIC and values of the Anderson-Darling
test for the normality of the randomized residuals. Since looking at just one real-
ization can be misleading, we compute the Anderson-Darling test statistic for 1,000
realizations of the randomized residuals, take the median of the test statistic, and
evaluate the corresponding P-value. As we can see, Model (i) is slightly preferred in
terms of goodness of fit, and Table 3 summarizes the output of the fitting procedure
for this model. Note that the smoothing terms are all statistically significant, in par-
ticular, there is no indication for κ(x) = 1, i.e. when the DEGPD reduces to a DGPD
in the mixture.

A broad interpretation of the results (see also Figure 6) is that meteorological condi-
tions have an increasing effect on avalanche occurrence, except for the maximum of
temperature, which shows a non-monotonic pattern around 0 degrees. Only the tem-
perature affects the mixing proportion π, with an increment for temperatures above
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Table 2: AIC values and Anderson-Darling normality test statistics of the different
ZIDEGPD models.

Model AIC Statistics P-value
(i) 6121 0.287 0.623
(ii) 6151 0.367 0.432
(iii) 6152 0.315 0.543

Table 3: Estimated coefficients and smooth terms for ZIDEGPD model (i) fitted to
avalanches data. The p-values of the smoothed terms s(·) indicate the significance
of their presence.

ZIDEGPD with G(u;ψ) = uκ

Constant terms
Estimate Std Error t value P-value

log(κ) -1.62 0.22 -7.42 <0.001
log(σ) 1.62 0.15 10.71 <0.001
log(ξ) -1.63 0.43 -3.83 <0.001
logit(π) -1.25 0.73 -1.71 0.044

Smooth terms for log(κ)
edf max.df Chi.sq Pr(> |t|)

s(RH) 1.02 9 11.78 <0.001
Smooth terms for log(σ)

edf max.df Chi.sq Pr(> |t|)
s(WS) 1.88 7 14.80 0.005
s(MxT) 4.81 7 26.76 <0.001
s(PREC) 1.10 4 7.16 0.008

Smooth terms for logit(π)
edf max.df Chi.sq Pr(> |t|)

s(MxT) 1.16 7 7.32 0.013
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0oC. The value of κ increases with relative humidity, which is associated (see Figure
2-(a)) with an increasing probability of extreme avalanches. Our results are in agree-
ment with those of the existing literature (Dreier et al., 2013) where, for example,
snow surface, air temperatures, and changes in snow height and relative humidity
strongly influenced snow slides in spring periods.
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Figure 6: Estimated non-parametric effects of covariates in parameters of ZIDEGPD
(i).

5 Conclusions

There are many examples of distributions for count data. Motivated by the avalanche
real data example, we attempt to properly model the lower limit of the distribution
and the upper tail without neglecting the bulk part of the data.

The family of distributions deriving from an efficient choice of the function G(u;ψ)
in the DEGPD offers great flexibility in their behavior in both tails. Additionally, we
apply mixture models within this framework to further enhance modeling capabilities,
particularly in addressing excess zeros commonly observed in such datasets.

We have developed and implemented R functions to fit DEGPD and ZIDEGPD pa-
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rameters in GAM forms that allow for non-identically distributed discrete extremes.
These functions use the functions in evgam (Youngman, 2022). As a result, it is possi-
ble to consider non-additive model formulations and fit them using thin-plate splines,
which are particularly attractive for modeling isotropic spatial dependence, or tensor
products of splines for modeling interactions between covariates.

In terms of application, the variability of avalanche activity has been statistically
related to other environmental variables (e.g., temperature, wind, precipitation, and
humidity). Although this model does not allow for short-term predictions, it does
allow for the association of specific weather conditions with avalanche risk by allowing
experts to account for possible nonlinearity. Indeed the GAMs proposed in this study
allow parametric and non-parametric functional forms, which would most likely be
required for larger data sets. Compared to other competing models available in the
literature our proposed models are more flexible in estimating both tail behavior and
achieving a better fit for avalanche data when environmental conditions are considered
as covariates.
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