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Abstract

We study the Bandits with Stochastic Corruption problem, i.e. a stochastic multi-armed
bandit problem with k unknown reward distributions, which are heavy-tailed and corrupted
by a history-independent stochastic adversary or Nature. To be specific, the reward ob-
tained by playing an arm comes from corresponding heavy-tailed reward distribution with
probability 1 − ε ∈ (0.5, 1] and an arbitrary corruption distribution of unbounded support
with probability ε ∈ [0, 0.5). First, we provide a problem-dependent lower bound on the
regret of any corrupted bandit algorithm. The lower bounds indicate that the Bandits with
Stochastic Corruption problem is harder than the classical stochastic bandit problem with
sub-Gaussian or heavy-tail rewards. Following that, we propose a novel UCB-type algorithm
for Bandits with Stochastic Corruption, namely HuberUCB, that builds on Huber’s estimator
for robust mean estimation. Leveraging a novel concentration inequality of Huber’s estima-
tor, we prove that HuberUCB achieves a near-optimal regret upper bound. Since computing
Huber’s estimator has quadratic complexity, we further introduce a sequential version of
Huber’s estimator that exhibits linear complexity. We leverage this sequential estimator to
design SeqHuberUCB that enjoys similar regret guarantees while reducing the computational
burden. Finally, we experimentally illustrate the efficiency of HuberUCB and SeqHuberUCB in
solving Bandits with Stochastic Corruption for different reward distributions and different
levels of corruptions.

1 Introduction

The multi-armed bandit problem is an archetypal setting to study sequential decision-making under incom-
plete information (Lattimore & Szepesvári, 2020). In the classical setting of stochastic multi-armed bandits,
the decision maker or agent has access to k ∈ N unknown reward distributions or arms. At every step, the
agent plays an arm and obtains a reward. The goal of the agent is to maximize the expected total reward
accumulated by a given horizon T ∈ N.

In this paper, we are interested in a challenging extension of the classical multi-armed bandit problem, where
the reward at each step may be corrupted by Nature, which is a stationary mechanism independent of the
agent’s decisions and observations. This setting is often referred as the Corrupted Bandits. Specifically, we
extend the existing studies of corrupted bandits (Lykouris et al., 2018; Bogunovic et al., 2020; Kapoor et al.,
2019) to the more general case, where the ‘true’ reward distribution might be heavy-tailed (i.e. with a finite
number of finite moments) and the corruption can be unbounded.

Bandits with Stochastic Corruption. Specifically, we model a corrupted reward distribution as (1−ε)P+
εH, where P is the distribution of inliers with a finite variance, H is the distributions of outliers with possibly
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unbounded support, and ε ∈ [0, 1/2) is the proportion of outliers. Thus, in the corresponding stochastic
bandit setting, an agent has access to k arms of corrupted reward distributions {(1 − ε)Pi + εHi}ki=1. Here,
Pi’s are uncorrupted reward distributions with heavy-tails and bounded variances, and Hi’s are corruption
distributions with possibly unbounded corruptions. The goal of the agent is to maximize the expected total
reward accumulated oblivious to the corruptions. This is equivalent to considering a setting where at every
step Nature flips a coin with success probability ε. The agent obtains a corrupted reward if Nature obtains
1 and otherwise, an uncorrupted reward. We call this setting Bandits with Stochastic Corruption as the
corruption introduced in each step does not depend on the present or previous choices of arms and observed
rewards. Our setting encompasses both heavy-tailed rewards and unbounded corruptions. We formally
define the setting and corresponding regret definition in Section 3.

Though this article primarily focuses on the theoretical understanding of the interplay between corruption,
heavytailedness and decision making, we find it relevant to pinpoint at a few applications for which this
setting may apply. Note that heavy-tail distributions are naturally motivated by applications in economy and
financial markets (Agrawal et al., 2021), while corrupted distributions are naturally motivated by robustness
issues in life sciences and applications in games or security, or when dealing with a misspecified model (Hotho,
2022; Golrezaei et al., 2021; Singh & Upadhyaya, 2012). Hence the combination of corrupted and heavy-tail
distributions naturally appears at the crossing of these classical application domains.

Bandits with Stochastic Corruption is different from the adversarial bandit setting (Auer et al., 2002). The
adversarial bandit assumes existence of a non-stochastic adversary that can return at each step the worst-
case reward to the agent depending on its history of choices. Incorporating corruptions in this setting,
Lykouris et al. (2018) and Bogunovic et al. (2020) consider settings where the rewards can be corrupted by
a history-dependent adversary but the total amount of corruption and also the corruptions at each step are
bounded. In contrast to the adversarial corruption setting in the literature, we consider a non-adversarial
proportion of corruptions (ε ∈ [0, 1/2)) at each step, which are stochastically generated from unbounded
corruption distributions

(
{Hi}ki=1

)
. To the best of our knowledge, only Kapoor et al. (2019) have studied

similar non-adversarial corruption setting with a history-independent proportion of corruption at each step
for regret minimization. But they assume that the probable corruptions at each step are bounded, and the
uncorrupted rewards are sub-Gaussian. On the other hand, Altschuler et al. (2019) study the same stochastic
unbounded corruption that we consider but they focus on best arm identification using the median of the
arms as a goal making this a different problem. Hence, we observe that there is a gap in the literature in
studying unbounded stochastic corruption for bandits with possibly heavy-tailed rewards and this article aims
to fill this gap. Specifically, we aim to deal with unbounded corruption and heavy-tails simultaneously, which
requires us to develop a novel sensitivity analysis of the robust estimator in lieu of a worst-case (adversarial
bandits) analysis.

Our Contributions. Specifically, in this paper, we aim to investigate three main questions:

1. Is the setting of Bandits with Stochastic Corruption with unbounded corruptions and heavy tails
fundamentally harder (in terms of the regret lower bound) than the classical sub-Gaussian and
uncorrupted bandit setting?

2. Is it possible to design an efficient and robust algorithm that achieves an order-optimal performance
(logarithmic regret) in the stochastic corruption setting?

3. Are robust bandit algorithms efficient in practice?

These questions have led us to the following contributions:

1. Hardness of Bandits with Stochastic Corruption with unbounded corruptions and heavy tails. In order to
understand the fundamental hardness of the proposed setting, we use a suitable notion of regret (Kapoor
et al., 2019), denoted by Rn (Definition 1), that extends the traditional pseudo-regret (Lattimore &
Szepesvári, 2020) to the corrupted setting. Then, in Section 4, we derive lower bounds on regret that reveal
increased difficulties of corrupted bandits with heavy tails in comparison with the classical non-corrupted
and light-tailed Bandits. (a) In the heavy-tailed regime (3), we show that even when the suboptimality gap
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∆i
1 for arm i is large, the regret increases with ∆i because of the difficulty to distinguish between two arms

when the rewards are heavy-tailed. (b) Our lower bounds indicate that when ∆i is large, the logarithmic
regret is asymptotically achievable, but the hardness depends on the corruption proportion ε, variance of Pi,
denoted by σ2

i , and the suboptimality gap ∆i. Specifically, if ∆i

σi
’s are small, i.e. we are in low distinguisha-

bility/high variance regime, the hardness is dictated by σ2
i

∆2
i,ε

. Here, ∆i,ε ≜ ∆i(1 − ε) − 2εσi is the ‘corrupted
suboptimality gap’ that replaces the traditional suboptimality gap ∆i in the lower bound of non-corrupted
and light-tailed bandits (Lai & Robbins, 1985). Since ∆i,ε ≤ ∆i, it is harder to distinguish the optimal and
suboptimal arms in the corrupted settings. They are the same when the corruption proportion ε = 0. In
this article, we exclude the case when ∆i,ε ≤ 0 as it essentially corresponds to the case when corruption is
large enough to render reward distributions hard to distinguish. Hence we limit our study to the case when
∆i,ε > 0.

Additionally, our analysis partially addresses an open problem in heavy-tailed bandits. Works on heavy-
tailed bandits (Bubeck et al., 2013; Agrawal et al., 2021) rely on the assumption that a bound on the
(1+η)-moment, i.e. E[|X|1+η], is known for some η > 0. We do not assume such a restrictive bound, as
knowing a bound on E[|X|1+η] implies the knowledge of a bound on the differences between the means of
the reward of the different arms. Instead, we assume that the centered moment, specifically the variance,
is bounded by a known constant. Thus, we partly address the open problem of Agrawal et al. (2021) by
relaxing the classical bounded (1+η)-moment assumption with the bounded centered moment one, for η ≥ 1.

2. Robust and Efficient Algorithm Design. In Section 5, we propose a robust algorithm, called HuberUCB,
that leverages the Huber’s estimator for robust mean estimation using the knowledge of ε and a bound on
the variances of inliers. We derive a novel concentration inequality on the deviation of empirical Huber’s
estimate that allows us to design robust and tight confidence intervals for HuberUCB. In Theorem 3, we show
that HuberUCB achieves the logarithmic regret, and also the optimal rate when the sub-optimality gap ∆ is
not too large. We show that for HuberUCB, Rn can be decomposed according to the respective values of ∆i

and σi:

Rn ≤ O

 ∑
i:∆i>σi

log(n)σi


︸ ︷︷ ︸

Error due to heavy-tail

+ O

 ∑
i:∆i≤σi

log(n)∆i
σ2
i

∆2
i,ε


︸ ︷︷ ︸

σ2/∆ error with corrupted sub-optimality gaps

.

Thus, our upper bound allows us to segregate the errors due to heavy-tail, corruption, and corruption-
correction with heavy tails. The error incurred by HuberUCB can be directly compared to the lower bounds
obtained in Section 4 and interpreted in both the high distinguishibility regime and the low distinguishibility
regime as previously mentioned.

3. Empirically Efficient and Robust Performance. To the best of our knowledge, we present the first
robust mean estimator that can be computed in a linear time in a sequential setting (Section 6). Existing
robust mean estimators, such as Huber’s estimator, need to be recomputed at each iteration using all the
data, which implies a quadratic complexity. Our proposal recomputes Huber’s estimator only when the
iteration number is a power of 2 and computes a sequential approximation on the other iterations. We
use the Sequential Huber’s estimator to propose SeqHuberUCB. We theoretically show that SeqHuberUCB
achieves similar order of regret as HuberUCB, while being computationally efficient. In Section 7, we also
experimentally illustrate that HuberUCB and SeqHuberUCB achieve the claimed performances for corrupted
Gaussian and Pareto environments.

We further elaborate on the novelty of our results and position them in the existing literature in Section 2.
For brevity, we defer the detailed proofs and the parameter tuning to Appendix.

1The suboptimality gap of an arm is the difference in mean rewards of an optimal arm and that arm. In our context
suboptimality gap refer to the gap between the inlier distributions which can be compared to suboptimality gap in heavy-tail
setting, as opposed to the corrupted gap that we define later.
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2 Related Work

Due to the generality of our setting, this work either extends or relates to the existing approaches in both
the heavy-tailed and corrupted bandits literature. While designing the algorithm, we further leverage the
literature of robust mean estimation. In this section, we connect to these three streams of literature. Table 1
summarizes the previous works and posits our work in lieu.

Algorithms Settings Corruption Type of outliers Heavy-tailed Adversarial/
Stochastic

Our work MAB Yes Unbounded Yes Stochastic
Bubeck et al. (2013);

Agrawal et al. (2021); Lee
et al. (2020)

MAB No x Yes Stochastic

Lykouris et al. (2018) MAB Yes Bounded No Stochastic
Bogunovic et al. (2020) GP Bandits Yes Bounded No Adversarial

Kapoor et al. (2019)
MAB &
Linear

Bandits
Yes Bounded No Stochastic

Medina & Yang (2016);
Shao et al. (2018)

Linear
Bandits No x Yes Stochastic

Bouneffouf (2021) Contextual
Bandits context only Unbounded No Stochastic

Agarwal et al. (2019) Control Yes Bounded x Adversarial
Hajiesmaili et al. (2020);

Auer et al. (2002); Pogodin
& Lattimore (2020)

MAB Yes Bounded x Adversarial

Table 1: Comparison of existing results on Corrupted and Heavy-tailed Bandits.

Heavy-tailed bandits. Bubeck et al. (2013) are one of the first to study robustness in multi-armed bandits by
studying the heavy-tailed rewards. They use robust mean estimator to propose the RobustUCB algorithms.
They show that under assumptions on the raw moments of the reward distributions, a logarithmic regret
is achievable. It sprouted research works leading to either tighter rates of convergence (Lee et al., 2020;
Agrawal et al., 2021), or algorithms for structured environments (Medina & Yang, 2016; Shao et al., 2018).
Our article uses Huber’s estimator which was already discussed in Bubeck et al. (2013). However, the chosen
parameters in Bubeck et al. (2013) were suited for heavy-tailed distributions, and thus, render their proposed
estimator non-robust to corruption. We address this gap in this work.

Corrupted bandits. The existing works on Corrupted Bandits (Lykouris et al., 2018; Bogunovic et al., 2020;
Kapoor et al., 2019) are restricted to bounded corruption. When dealing with bounded corruption, one can
use techniques similar to adversarial bandits (Auer et al., 2002) to deal with an adversary that can’t corrupt
an arm too much. The algorithms and proof techniques are fundamentally different in our article because the
stochastic (or non-adversarial) corruption by Nature allows us to learn about the inlier distribution on the
condition that corresponding estimators are robust. Thus, our bounds retain the problem-dependent regret,
while successfully handling probably unbounded corruptions with robust estimators.

Robust mean estimation. Our algorithm design leverages the rich literature of robust mean estimation,
specifically the influence function representation of Huber’s estimator. The problem of robust mean estima-
tion in a corrupted and heavy-tailed setting stems from the work of Huber (Huber, 1964; 2004). Recently,
in tandem with machine learning, there have been numerous advances both in the heavy-tailed (Devroye
et al., 2016; Catoni, 2012; Minsker, 2019), and in the corrupted settings (Lecué & Lerasle, 2020; Minsker
& Ndaoud, 2021; Prasad et al., 2019; 2020; Depersin & Lecué, 2022; Lerasle et al., 2019; Lecué & Lerasle,
2020). Our work, specifically the novel concentration inequality for Huber’s estimator, enriches this line of
work with a result of parallel interest. We also introduce a sequential version of Huber’s estimator achieving
linear complexity.
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3 Bandits with Stochastic Corruption: Problem formulation

In this section, we present the corrupted bandits setting that we study, together with the corresponding
notion of regret. Similarly to the classical bandit setup, the regret decomposition lemma allows us to focus
on the expected number of pulls of a suboptimal arm as the central quantity to control algorithmic standpoint.

Notations. We denote by P the set of probability distributions on the real line R and by P[q](M) ≜ {P ∈
P : EP [|X − EP [X]|q] ≤ M} the set of distributions with qth moment, q ≥ 1, bounded by M > 0. 1{A} is
the indicator function for the event A being true. We denote the mean of a distribution Pi as µi ≜ EPi [X].
For any D⊂P, we denote D(ε) ≜ {(1−ε)P + εH : P ∈ D, H ∈ P} the set of corrupted distributions from D.

Problem Formulation. In the setting of Bandits with Stochastic Corruption, a bandit algorithm faces
an environment with k ∈ N many reward distributions in the form νε = (νεi )ki=1 where νεi = (1 − ε)Pi + εHi

denotes the distribution of rewards of arm i. Here Pi, Hi are real-valued distributions and ε is a mixture
parameter assumed to be in [0, 1/2), that is Pi is given more weights than Hi in the mixture of arm i. For
this reason, the {Pi}ki=1 are called the inlier distributions and the {Hi}ki=1 the outlier distributions. We
assume the inlier distributions have at least 2 finite moments that is P1, . . . , Pk ∈P[2](M) for some M > 0,
while no restriction is put on the outlier distributions, that is H1, . . . ,Hk∈P. For this reason, we also refer
to the outlier distributions as the corrupted distributions, and to the inlier distributions as the non-corrupted
ones. ε is called the level of corruption. For convenience, we further denote by ν in lieu of ν0 = (Pi)ki=1 the
reward distributions of the non-corrupted environment.

The game proceed as follows: At each step t ∈ {0, . . . , n}, the agent policy π interacts with the corrupted
environment by choosing an arm At and obtaining a stochastically corrupted reward. To generate this reward,
Nature first draws a random variable Ct ∈ {0, 1} from a Bernoulli distribution with mean ε ∈ [0, 1/2).
If Ct = 1, it generates a corrupted reward Zt from distribution HAt corresponding to the chosen arm
At ∈ {1, . . . , k}. Otherwise, it generates a non-corrupted X ′

t from distribution PAt
. More formally, Nature

generates reward Xt = X ′
t1{Ct = 0} + Zt1{Ct = 1} which the learner observes. The learner leverages

this observation to choose another arm at the next step in order to maximize the total cumulative reward
obtained after n steps. In Algorithm 1, we outline a pseudocode of this framework.

Algorithm 1 Bandits with Stochastic Corruption
Require: ε ∈ [0, 1/2), q ≥ 2 and M > 0

1: Input: P1, . . . , Pk ∈ P[q](M) be the uncorrupted reward distributions and H1, . . . ,Hk ∈ P be the
corrupted reward distributions.

2: for t = 1, . . . , n do
3: Player plays an arm At ∈ {1, . . . , k}
4: Nature draws a Bernoulli Ct ∼ Ber(ε)
5: Generate a corrupted reward Zt ∼ HAt and an uncorrupted reward X ′

t ∼ PAt

6: Player observe the reward Xt = X ′
t1{Ct = 0} + Zt1{Ct = 1}

7: end for

Remark 1 (Non-adversarial corruption.) In the setting of Bandits with Stochastic Corruption, we con-
sider that the reward received by the learner is corrupted when Ct = 1 and non-corrupted otherwise. Since
the law of Ct is a Bernoulli Ber(ε), the corruption is stochastic, and independent on other variables. This
is in contrast with adversarial setups, where corruption is typically chosen by an opponent and possibly de-
pending on other variables. Assuming a non-adversarial behavior of the Nature seems more justified than
assuming an adversarial setup in applications, such as agriculture where corruption is often due to external
disturbances, such as pests appearance or weather hazards, whose occurrence are typically non-adversarial.
Now when corruption happens, we do not put restriction on the level of corruption. For example, we can
imagine a pest outburst or hail, that may have huge impact on a crop but does not occur adversarially.

Remark 2 (Weak assumption on inliers) Let us highlight that we do not assume sub-Gaussian behavior
for the inlier distributions Pi. Instead, we consider only a weak moment assumption, i.e. the inlier distri-
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butions Pi have a finite variance. Thus, our setting is capable of modeling both the moderately heavy-tailed
setting and the corrupted settings. We highlight this generality in the regret lower bounds and empirical
performance analysis in Section 4 and 7.

Corrupted regret. In this setting, we observe that a corrupted reward distribution ((1−ε)Pi+εHi) might
not have a finite mean, unlike the true Pi’s. Thus, the classical notion of regret with respect to the corrupted
reward distributions might fail to quantify the goodness of the policy and its immunity to corruption while
learning. On the other hand, in this setup, the natural notion of expected regret is measured with respect
to the mean of the non-corrupted environment ν specified by {Pi}ki=1.

Definition 1 (Corrupted Regret) In Bandits with Stochastic Corruption, we define the regret of a learn-
ing algorithm playing strategy π after n steps of interaction with the environment νε against constantly
playing an optimal arm ⋆ ∈ arg min

i
EPi [X ′] as

Rn(π, νε) ≜ nmax
i

EPi [X ′] − E

[
n∑
t=1

X ′
t

]
. (Corrupted regret)

We call this quantity the pseudo-regret under corrupted observation, or for short, the corrupted regret.

The expectation is crucially taken on X ′
i ∼ Pi and X ′

t ∼ PAt
but not on Xi and Xt. The expectation on the

right also incorporates possible randomization from the learner. Thus, (Corrupted regret) quantifies the loss
in the rewards accumulated by policy π from the inliers while learning only from the corrupted rewards and
also not knowing the arm with the best true reward distribution. Thus, this definition of corrupted regret
quantifies the rate of learning of a bandit algorithm as regret does for non-corrupted bandits. A similar
notion of regret is considered in (Kapoor et al., 2019) that deals with bounded stochastic corruptions.

Due to the non-adversarial nature of the corruption, the regret can be decomposed, as in classical stochastic
bandits, to make appear the expected number of pulls of suboptimal arms Eνε [Ti(n)], which allow us to
focus the regret analysis on bounding these terms.

Lemma 1 (Decomposition of corrupted regret) In a corrupted environment νε, the regret writes

Rn(π, νε) =
k∑
i=1

∆iEνε [Ti(n)] ,

where Ti(n) ≜
∑n
t=1 1{At = i} denotes the number of pulls of arm i until time n and the problem-dependent

quantity ∆i ≜ max
j
µj − µi is called the suboptimality gap of arm i.

4 Lower bounds for uniformly good policies under heavy-tails and corruptions

In order to derive the lower bounds, it is classical to consider uniformly good policies on some family of envi-
ronments, Lai & Robbins (1985). We introduce below the corresponding notion for corrupted environments
with the set of laws D⊗k = D1 ⊗ · · · ⊗ Dk, where Di ⊂ P for each i ∈ {1, . . . , k}.

Definition 2 (Robust uniformly good policies) Let D⊗k(ε) = D1(ε) ⊗ · · · ⊗ Dk(ε) be a family of cor-
rupted bandit environments on R. For a corrupted environment νε ∈ D⊗k(ε) with corresponding uncorrupted
environment ν, let µi(ν) denote the mean reward of arm i in the uncorrupted setting and µ⋆(ν) ≜ max

a
µi(ν)

denote the maximum mean reward. A policy π is uniformly good on D⊗k(ε) if for any α ∈ (0, 1],

∀ν ∈ D⊗k(ε),∀i ∈ {1, . . . , k}, µi(ν) < µ⋆(ν) ⇒ Eνε [Ti(n)] = o(nα).

Since the corrupted setup is a special case of stochastic bandits, a lower bound can be immediately recovered
with classical results, such as Lemma 2 below, that is a version of the change of measure argument (Burnetas
& Katehakis, 1997), and can be found in (Maillard, 2019, Lemma 3.4).

6



Published in Transactions on Machine Learning Research (01/2024)

Lemma 2 (Lower bound for uniformly good policies) Let D⊗k = D1 ⊗ · · · ⊗ Dk, where Di ⊂ P for
each i ∈ {1, . . . , k} and let ν ∈ D⊗k. Then, any uniformly good policy on D⊗k must pull arms such that,

∀i ∈ {1, . . . , k}, µ(νi) ≤ µ⋆(ν) ⇒ lim inf
n→∞

Eν [Ti(n)]
log(n) ≥ 1

Ki(νi, µ(P⋆))
.

with Ki(νi, µ(P⋆)) = inf{DKL(νi, P ∗) : νi ∈ Di, µ(νi) ≥ µ(P⋆)} where DKL denotes the Kullback-Leibler
divergence between distributions.

Lemma 2 is used in the traditional bandit literature to obtain lower bound on the regret using the decom-
position of regret from Lemma 1. In our setting, however, the lower bound is more complex as it involves
optimization on P[2](M), the set of distributions with a variance bounded by M > 0, and this set is not
convex. Indeed, for example taking the convex combination of two Dirac distributions, both distributions
have variance 0 but depending on where the Dirac distribution are located the variance of the convex combi-
nation is arbitrary. It also involves an optimization in both the first and second term of the KL because we
consider the worst-case corruption in both the optimal arm distribution ν⋆ and non-optimal arm distribution
νi. In this section, we do not solve these problems, but we propose lower bounds derived from the study
of a specific class of heavy-tailed distributions on one hand (Lemma 3) and the study of a specific class of
corrupted (but not heavy-tailed) distributions on the other hand (Lemma 4).

Using the fact that Ki(νi, µ(P⋆)) is an infimum that is smaller than the DKL for the choice ν = P⋆, Lemma 2
induces the following weaker lower-bound:

∀i ∈ {1, . . . , k}, µ(νi) ≤ µ⋆(ν) ⇒ lim inf
n→∞

Eν [Ti(n)]
log(n) ≥ 1

DKL(νi, P⋆)
. (1)

Equation (1) shows that it is sufficient to have an upper bound on the DKL-divergence of the reward distri-
butions interacting with the policy to get a lower bound on the number of pulls of a suboptimal arm.

In order to bound the DKL-divergence, we separately focus on two families of reward distributions, namely
Student’s distribution without corruption (Lemma 3) and corrupted Bernoulli distribution (Lemma 4), that
reflect the hardness due to heavy-tails and corruptions, respectively. Applying Lemma 3 and Lemma 4 in
Equation (1) yields the final regret lower bound in Theorem 1.

Shifted Student’s distribution without corruption. To obtain a lower bound in the heavy-tailed case
we use shifted Student distributions. Student distribution are well adapted because they exhibit a finite
number of finite moment which makes them heavy-tailed, and we can easily change the mean of Student
distribution by adding a shift without changing its shape parameter d. We denote by Td the set of shifted
Student distributions with d degrees of freedom,

Td =
{
P ∈ P : ∃µ ∈ RP has distribution p : t ∈ R 7→

Γ(d+1
2 )

Γ(d/2)
√
dπ

(
1 + (t− µ)2

d

)− d+1
2
}
.

Lemma 3 (Control of KL-divergence for Heavy-tails) Let P1, P2 be two shifted Student distributions
with d > 1 degrees of freedom with EP1 [X] = 0 and EP2 [X] = ∆ > 0. Then,

DKL(P1, P2) ≤


3d−1(d+1)2∆2

5
√
d

if ∆ ≤ 1 ,
(d+ 1) log (∆) + log

(
3d (d+1)2

5
√
d

)
if ∆ > 1 .

(2)

Corrupted Bernoulli distributions. We denote Bp(ε) = {(1 − ε)P + εH; H ∼ Ber(p′) and P ∼
Ber(p), p′ ∈ [0, 1]} the corrupted neighborhood of the Bernoulli distribution Ber(p). Let P0 ∈ Ber(p0)
and P1 ∈ Ber(p1) for some p0, p1 ∈ (0, 1) be two Bernoulli distributions. We corrupt both P0 and P1
with a proportion ε > 0 to get Q0 ∈ Bp0(ε) and Q1 ∈ Bp1(ε). We obtain Lemma 4 that illustrates
three bounds on DKL(Q0, Q1) as functions of the sub-optimality gap ∆ ≜ EP0 [X] − EP1 [X], variance
σ2 ≜ VarP0(X) = VarP1(X), and corruption proportion ε.
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Figure 1: Visualizing the KL and the corresponding bounds in Lemma 4 for σ = 1 and ε = 0.2 (x axis is in
log scale).

Lemma 4 (Control of KL-divergence for Corruptions) Let P0 ∈ Ber(p0) and P1 ∈ Ber(p1) be two
Bernoulli probability distributions with means p0, p1 ∈ (0, 1), such that ∆ = EP0 [X] − EP1 [X] = p0 − p1,
σ2 = VarP0(X) = VarP1(X) > 0, and ∆ ≥ 2σε

1−ε . Then, there exists Q0 ∈ Bp0(ε) and Q1 ∈ Bp1(ε), that have
corrupted suboptimality gap given by ∆ε = EQ0 [X] − EQ1 [X] = ∆(1 − ε) − 2εσ, such that

• Uniform Bound. Without further assumptions on ∆ and σ, we have

DKL(Q0, Q1) ≤ (1 − 2ε) log
(

1 + 1 − 2ε
ε

)
. (3)

• High Distinguishability/Low Variance Regime. If 2σ ε√
1−2ε < ∆ < 2σ, we get

DKL(Q0, Q1) ≤ ∆ε

2σ log
(

1 + ∆ε

2σ − ∆ε

)
. (4)

• Low Distinguishability/High Variance Regime. If ∆ ≤ 2σ ε√
1−2ε , there exists ε′ ≤ ε and Q′

0 ∈
Bp0(ε′), Q′

1 ∈ Bp1(ε′) such that DKL(Q′
0, Q

′
1) = 0.

Note that the corrupted sub-optimality gap ∆ε should not be confused with the sub-optimality gap ∆. Note
also that due to the assumption on the variance in Lemma 4, we must have p0 = 1 − p1 ≥ 1/2. The specific
pair of distributions mentioned Q0, Q1, Q

′
0, Q

′
1 can be found in the proof of the lemma, Section B.1.3.

Consequences of Lemma 4. We illustrate the bounds of Lemma 4 in Figure 1. The three upper bounds
on the KL-divergence of corrupted Bernoullis provide us some insights regarding the impact of corruption.

1. Three Regimes of Corruption: We observe that, depending on ∆/σ, we can categorize the corrupted
environment in three categories. For ∆/σ ∈ [2,+∞), we observe that the KL-divergence between corrupted
distributions Q0 and Q1 is upper bounded by a function of only corruption proportion ε and is independent
of the uncorrupted distributions. Whereas for ∆/σ ∈ (2ε/

√
1 − 2ε, 2), the distinguishability of corrupted

distributions depend on the distinguishibility of uncorrupted distributions and also the corruption level. We
call this the High Distinguishability/Low Variance Regime. For ∆/σ ∈ [0, 2ε/

√
1 − 2ε], we observe that the

KL-divergence can always go to zero. We refer to this setting as the Low Distinguishability/High Variance
Regime.

8
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2. High Distinguishability/Low Variance Regime: In Lemma 4, we observe that the effective gap to distinguish
the optimal arm to the closest suboptimal arm that dictates hardness of a bandit instance has shifted from
the uncorrupted gap ∆ to a corrupted suboptimality gap: ∆ε ≜ ∆(1 − ε) − 2εσ.

3. Low Distinguishability/High Variance Regime: We notice also that there is a limit for ∆ below which the
corruption can make the two distributions Q0 and Q1 indistinguishable, this is a general phenomenon in the
setting of testing in corruption neighborhoods (Huber, 1965).

4. Feasibility of the Bandits with Stochastic Corruption problem and ∆ε: In Lemma 4, we have assumed ∆ε

to be positive. If ∆ε is negative or zero, i.e. ∆
2σ ≤ ε

1−ε , we cannot achieve better than linear regret in the
corresponding Bandits with Stochastic Corruption problem. Lemma 4 additionally shows that we have to
concede linear regret even when ∆ε is positive but ∆

2σ ≤ ε√
1−2ε .

From KL Upper bounds to Regret Lower Bounds. Substituting the results of Lemma 3 and 4 in
Equation (1) yield the lower bounds on regret of any uniformly good policy in heavy-tailed and corrupted
settings, where reward distributions either belong to the class of corrupted student distributions or the class
of corrupted Bernoulli distributions, respectively. We denote

D⊗k
T2

≜ T2 ⊗ · · · ⊗ T2,

where T2 is the set of Student distributions with more than 2 degrees of freedoms. We also define

D⊗k
B(ε) ≜ B(ε) ⊗ · · · ⊗ B(ε),

where B(ε) = {(1 − ε)P + εH; H ∼ Ber(p) and P ∼ Ber(p′), p, p′ ∈ [0, 1]} is the set of corrupted Bernoulli
distributions.

Theorem 1 (Lower bound for heavy-tailed and corrupted bandit) Let i be a suboptimal arm such
that EPi

[X] ≤ max
a

EPa
[X] and denote ∆i ≜ max

a
EPa

[X] − EPi
[X] and ∆i,ε ≜ ∆i(1 − ε) − 2εσi, suppose

∆i,ε > 0.

Student’s distributions. Suppose that the arms are pulled according to a policy that is uniformly good on
D⊗k

T2
. Then, for all ν ∈ D⊗k

T2
,

lim inf
n→∞

Eν [Ti(n)]
log(n) ≥ σ2

i

51∆2
i

∨ 1
4 log(∆i/σi) + 22 . (5)

Corrupted Bernoulli distributions: Suppose that the arms are pulled according to a policy that is uni-
formly good on D⊗k

B(ε). Then, for all νε ∈ D⊗k
B(ε) such that 2σi ε√

1−2ε < ∆i < 2σi , then

lim inf
n→∞

Eνε [Ti(n)]
log(n) ≥ 2σi

∆i,ε log
(

1 + ∆i,ε

2σi−∆i,ε

) , (6)

and for ∆i > 2σi,
lim inf

n→∞

Eνε [Ti(n)]
log(n) ≥ 1

(1 − 2ε) log
( 1−ε

ε

) . (7)

For brevity, the detailed proof is deferred to Appendix A.1.

Small gap versus large gap regimes. Due to the restriction in the family of distributions considered
in Theorem 1, the lower bounds are not tight and may not exhibit the correct rate of convergence for all
families of distributions. However, this theorem provides some insights about the difficulties that one may
encounter in corrupted and heavy-tail bandits problems, including the logarithmic dependence on n.

In Theorem 1, if ∆i is small, we see that in the heavy-tailed case (Student’s distribution), we recover a term
very similar to the lower bound when the arms are from a Gaussian distribution. Now, in the case where

9



Published in Transactions on Machine Learning Research (01/2024)

∆i is large, the number of suboptimal pulls in the heavy-tail setting is Ω
(

1/ log
(

∆i

σi

))
. This is the price to

pay for heavy-tails.

If we are in the high distiguishability/low variance regime, i.e. ∆i,ε

2σi
∈ ( ε√

1−2ε , 1), we recover a logarithmic
lower bound which depends on a corrupted gap between means ∆i,ε = ∆i(1 − ε) − 2εσi. Since the corrupted
gap is always smaller than the true gap ∆i, this indicates that a corrupted bandit (ε > 0) must incur higher
regret than a uncorrupted one (ε = 0). For ε = 0, this lower bound coincides with the lower bound for
Gaussians with uncorrupted gap of means ∆i and variance σ2

i . On the other hand, if ∆i,ε

2σi
is larger than 1,

we observe that we can still achieve logarithmic regret but the hardness depends on only the corruption level
ε, specifically 1

(1−2ε) log( 1−ε
ε ) .

5 Robust bandit algorithm: Huber’s estimator and upper bound on the regret

In this section, we propose an UCB-type algorithm, namely HuberUCB, addressing the Bandits with Stochastic
Corruption problem (Algorithm 2). This algorithm uses primarily a robust mean estimator called Huber’s
estimator (Section 5.1) and corresponding confidence bound to develop HuberUCB (Section 5.2). We further
provide a theoretical analysis in Theorem 3 leading to upper bound on regret of HuberUCB. We observe that
the proposed upper bound matches the lower bound in Theorem 1 under some settings.

5.1 Robust mean estimation and Huber’s estimator

We begin with a presentation of the Huber’s estimator of mean (Huber, 1964).

As we aim to design a UCB-type algorithm, the main focus is to obtain an empirical estimate of the mean
rewards. Since the rewards are heavy-tailed and corrupted in this setting, we have to use a robust estimator
of mean. We choose to use Huber’s estimator (Huber, 1964), an M-estimator that is known for its robustness
properties and have been extensively studied (e.g. the concentration properties (Catoni, 2012)).

Huber’s estimator is an M-estimator, which means that it can be derived as a minimizer of some loss function.
Given access to n i.i.d. random variables Xn

1 ≜ {X1, . . . , Xn}, we define Huber’s estimator as

Hubβ(Xn
1 ) ∈ arg min

θ∈R

n∑
i=1

ρβ(Xi − θ), (8)

where ρβ is Huber’s loss function with parameter β > 0. ρβ is a loss function that is quadratic near 0 and
linear near infinity, with β thresholding between the quadratic and linear behaviors.

In the rest of the paper, rather than using the aforementioned definition, we represent the Huber’s estimator
as a root of the following equation (Mathieu, 2022):

n∑
i=1

ψβ (Xi − Hubβ(Xn
1 )) = 0. (9)

Here, ψβ(x) ≜ x1{|x| ≤ β}+β sign(x)1{|x| > β} is called the influence function. Though the representations
in Equation (8) and (9) are equivalent, we prefer to use representation Equation (9) as we prove the properties
of Huber’s estimator using those of ψβ .

β plays the role of a scaling parameter. Depending on β, Huber’s estimator exhibits a trade-off between the
efficiency of the minimizer of the square loss, i.e. the empirical mean, and the robustness of the minimizer
of the absolute loss, i.e. the empirical median.

5.2 Concentration of Huber’s estimator in corrupted setting

Let use denote the true Huber mean for a distribution P as Hubβ(P ). This means that, for a random
variable Y with law P , Hubβ(P ) satisfies E[ψβ(Y − Hubβ(P ))] = 0.

10
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We now state our first key result on the concentration of Huber’s estimator around Hubβ(P ) in a corrupted
and heavy-tailed setting.

Theorem 2 (Concentration of Empirical Huber’s estimator) Suppose that X1, . . . , Xn are i.i.d.
with law (1 − ε)P + εH for some P,H ∈ P and proportion of outliers ε ∈ (0, 1/2), and P has a finite
variance σ2. Then, with probability larger than 1 − 5δ,

|Hubβ(Xn
1 ) − Hubβ(P )| ≤

σ
√

2 ln(1/δ)
n + β ln(1/δ)

3n + 2βε
√

ln(1/δ)
n + 2βε(

p−
√

ln(1/δ)
2n − ε

)
+

.

Here, p = PP (|Y − EP [Y ]| ≤ β/2) with p > 5ε, β > 4σ, ε =
√

(1−2ε)
log( 1−ε

ε ) , and δ ≥ exp
(

−n 128(p−5ε)2

49(1+2ε
√

2)2

)
.

Theorem 2 gives us the concentration of Hubβ(Xn
1 ) around Hubβ(P ), i.e. the Huber functional of the

inlier distribution P . This theorem allows us to construct a UCB-type algorithm to solve the Bandits with
Stochastic Corruption.

For convenience of notation, hereafter, we denote the rate of convergence of Hubβ(Xn
1 ) to Hubβ(P ) as

rn(δ) ≜
σ
√

2 ln(1/δ)
n + β ln(1/δ)

3n + 2βε
√

ln(1/δ)
n + 2βε(

p−
√

ln(1/δ)
2n − ε

)
+

. (10)

Discussion. Now, we provide a brief discussion on the implications of Theorem 2.

1. Value of p: For most laws that exhibit concentration properties, the constant p is close to 1 as β ≥ 4σ.
One might also use Markov inequality to lower bound p, depending on the number of finite moments P has.
Bounding p then becomes a trade-off on the value of β, where large values of β implies that p is close to 1.
But larger β also leads to a less robust estimator, since the error bound in Theorem 2 increases with β.

2. Tightness of constants: If there are no outliers (ε = 0), the optimal rate of convergence in such a setting
is at least of order σ

√
2 ln(1/δ)/n due to the central limit theorem. Theorem 2 shows that we are very close

to attaining this optimal constant in the leading 1/
√
n term. This result for Huber’s estimator echoes the

one presented in Catoni (2012).

3. Value of β: β is a parameter that achieve a trade-off between accuracy in the light-tailed uncorrupted
setting and robustness. For our result, β must be at least of the order of 4σ. We provide a detailed discussion
on the choice of β in Section 5.4.

4. Restriction on the values of δ: In Theorem 2, δ must be at least of order e−n. This restriction may seem
arbitrary but it is in fact unavoidable as shown in Theorem 4.3 of Devroye et al. (2016). This is a limitation
of robust mean estimation that enforces our algorithm to perform a forced exploration in the beginning.

5. Restriction on the values of ε: In Theorem 2, ε can be at most p/5, which implies that it is smaller
than 1/5. This restriction is common in robustness literature. In particular, in Kapoor et al. (2019), ε is
supposed smaller than ∆/σ. In robustness literature, Lecué & Lerasle (2020) and Dalalyan & Thompson
(2019) assumed that ε ≤ 1/768 and 1/400 respectively. In contrast, our analysis can handle ε up to 0.2,
which is significantly higher than the existing restrictions.

Bias of Huber’s Estimate. If P is symmetric, we have Hubβ(P ) = E[X]. When P is non-symmetric,
we need to control the distance of the Huber’s estimate from the true mean, i.e. |Hubβ(P ) −E[X]|. We call
it the bias of Huber’s estimate. We need to bound this bias to get a concentration of the empirical Huber’s
estimate Hubβ(Xn

1 ) around the true mean E[X]. We control the bias using the following lemma, which is a
direct consequence of Lemma 4 from Mathieu (2022).

11
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Lemma 5 (Bias of Huber’s estimator) Let Y be a random variable with E[|Y |q] < ∞ for q ≥ 2 and
suppose that β2 ≥ 9Var(Y ). Then

|E[Y ] − Hubβ(P )| ≤ 2E[|Y − E[Y ]|q]
(q − 1)βq−1 .

Using Lemma 5 and Theorem 2, we can control the deviations of Hubβ(Xn
1 ) from E[X]. This allows us to

formulate an index-based algorithm (UCB-type algorithm) for corrupted Bandits. We present this algorithm
in Section 5.3.

5.3 HuberUCB: Algorithm and regret bound

In this section, we describe a robust, UCB-type algorithm called HuberUCB. We denote µi as the mean of arm
i and its variance as σ2

i . We assume that we know the variances of the reward distributions, i.e. {σ2
i }ki=1,

and hence, we define by construction M ≜ max
i
σ2
i . We refer to Section 5.4 for a discussion on the choice of

the parameters when the reward distributions are unknown.

HuberUCB: The algorithm. In order to deploy the Huber’s estimator in the multi-armed bandits setting,
we need to estimate the mean of the rewards of each arm separately. We do that by defining a parameter βi
for each arm and estimating separately each µi using

Hubi,s = Hubβi
(Xt, 1 ≤ t ≤ s such that At = i, ) .

Now, at each step t, we define a confidence bound for arm i with s number of pulls as

Bi(s, t) ≜
{
rs(1/t2) + bi if s ≥ slim(t)
∞ if s < slim(t)

, (11)

where rs(1/t2) is defined by Equation (10), slim(t) = log(t) 98
128(p−5ε)2

(
1 + 2

√
2
(
ε ∨ 9

14
√

2

))2
, ε =

√
(1−2ε)

log( 1−ε
ε ) ,

and bi is a bound on the bias |E[X] − Hubβi
(Pi)|. Hence bi can be set to zero if Pi is known to be symmetric

and controlled by Lemma 5 otherwise. Here, we assign bi = 2σ2
i /βi as a conservative choice by imposing

q = 2, i.e. finite second moment, in Lemma 5.

Now, we propose HuberUCB that selects an arm at at step t based on the index

IHuberUCB
i (t) = Hubi,Ti(t−1) +Bi(Ti(t− 1), t). (12)

The index of HuberUCB together with the confidence bound defined in Equation (11) dictates that if an arm
is less explored, i.e. Ti(t− 1) < slim(t), we choose that arm, and if multiple arms satisfy this, we break the
tie randomly. As t grows and for all the arms Ti(t− 1) ≥ slim(t) is satisfied, we choose the arms according
to the adaptive bonus. Thus, HuberUCB induces an initial forced exploration to obtain confident-enough
robust estimates, followed by a time-adaptive selection of arms. We present a pseudocode of HuberUCB in
Algorithm 2. We discuss the choices of the hyperparameters and the computational details in Section 5.4.

Algorithm 2 HuberUCB

Require: Parameter ε ∈ [0, 1/2) and βi > 4σi for all i ≤ K
1: for t = 1, . . . , n do
2: Compute index IHuberUCB

i (t) (Equation (12)) for i ∈ {1, . . . , k} using X1, . . . , Xt−1.
3: Choose arm at ∈ arg maxi Ii(t).
4: Observe a reward Xt.
5: end for

Regret Analysis. Now, we provide a regret upper bound for HuberUCB.
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Theorem 3 (Upper Bound on number of pulls of suboptimal arms with HuberUCB) Let us con-
sider a set of k reward distributions {Pi}ki=1 with known and finite variances {σ2

i }ki=1, i.e. for all
i ∈ {1, . . . , k}, Pi ∈ P[2](M) such that M ≜ max

i∈{1,...,k}
σ2
i . Let us also consider some βi ≥ 4σi and p ≜

inf1≤i≤k PPi(|X −EPi [X]| ≤ βi/2) such that p > 5ε and ε < 1/5. We denote ∆̃i,ε ≜ (∆i − 2bi)(p− ε) − 8βiε,
which we assume positive and

√
(1−2ε)

log( 1−ε
ε ) ≤ ε.

• If ∆̃i,ε > 12σ
2
i

βi

(√
2 + 2βi

σi
ε
)2

, then HuberUCB pulls in expectation arm i at most

E[Ti(n)] ≤ log(n) max
(

32βi
3∆̃i,ε

,
4

(p−5ε)2

(
1 + 2

√
2
(
ε ∨ 9

14
√

2

))2
)

+ 10(log(n)+1)

• If ∆̃i,ε ≤ 12σ
2
i

βi

(√
2 + 2βi

σi
ε
)2

, then HuberUCB pulls in expectation arm i at most

E[Ti(n)] ≤ log(n) max
(

50σ2
i

9∆̃2
i,ε

(√
2+2βi

σi
ε

)2
,

4
(p−5ε)2

(
1+2

√
2
(
ε ∨ 9

14
√

2

))2
)

+ 10(log(n)+1).

Using Theorem 3 and Lemma 1, a bound on the corrupted regret of HuberUCB follows immediately.

We now state a simplified version of Theorem 3 with worse but explicit constants for easier comprehension.
Let us fix β2

i = 16σ2
i and ε≤ 1/10 such that ε = 4/(5

√
ln(9)) ≃ 0.54, and p ≥ 1− 4σ2

i

β2
i

≥ 3
4 ≥ 5ε+ 1

4 . Now, if
we further assume that Pi symmetric leading to bi=0, it yields the following upper bounds.

Corollary 1 (Simplified version of Theorem 3) Suppose that for all i, Pi is a symmetric distribution
with finite variance σ2

i . Let also denote ∆̃i,ε ≜ ∆i (p− ε) − 32σiε which is assumed to be positive and let
ε < 1/10.

• If ∆̃i,ε > 6σi
(
1 + 4

√
2ε
)2, then HuberUCB pulls in expectation arm i at most

E[Ti(n)] ≤ 43 log(n) max
(

σi

∆̃i,ε

, 10
)

+ 10(log(n) + 1).

• If ∆̃i,ε ≤ 6σi
(
1 + 4

√
2ε
)2, then HuberUCB pulls in expectation arm i at most

E[Ti(n)] ≤ 23 log(n) max
(
σ2
i

∆̃2
i,ε

(
1 + 32ε2) , 18

)
+ 10(log(n) + 1).

Remark that in this corollary, we replaced some occurrences of ε by its upper bound, which is also an upper
bound on ε. Thus, the presented result is loose up to constants but lend itself to easier comprehension.

Discussions on the Upper Bound. Here, we discuss how this proposed upper bound of HuberUCB
matches and mismatches with the lower bounds in Theorem 1.

1. Order-optimality of Upper Bound. HuberUCB achieves the logarithmic regret prescribed by the lower
bound (Theorem 1) plus some additive error due to the fact that this is a UCB-type algorithm. Thus,
HuberUCB is order optimal with respect to n.

2. Two Regimes of Upper Bound. When ∆i is small compared to σi, we obtain an upper bound E[Ti(n)] =
n→∞

O
(

log(n)
(

σ2
i

∆̃2
i,ε

ε2
))

from Corollary 1. ε2 is of the same order of magnitude as Equation (7) because we

take ε strictly smaller than 1/2. ε2 acts as an indicator of the corruption level. The term σ2
i

∆̃2
i,ε

indicates
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the hardness due to the corrupted gaps ∆̃i,ε and echoes the hardness term σ2
i

∆2
i

that appears in regret upper

bound of UCB for uncorrupted bandits. The hardness term σ2
i

∆̃2
i,ε

also appears in the corrupted lower bound

(Equation (6)) as well as the heavy-tailed lower bound (Equation (5)) for ∆i ≪ σi
2.

On the other hand, if ∆i is larger than σi, we get that E[Ti(n)] = O

(
log(n)

(
σi

∆̃i,ε

∨ ε2 ∨ 1
))

. This upper

bound reflects the lower bound in Equation (7) that holds for ∆i > 2σi. This reinstates the fact that for
large enough suboptimality gaps, the regret of HuberUCB depends solely on the corruption level than the
suboptimality gap.

3. Deviation from the Lower Bound. The two regimes defined in the upper bound does not follow the exact
distinctions made in the lower bounds. We observe that in the upper bound, the distinction between regimes
depend on a corrupted suboptimality gap ∆̃i,ε ≜ ∆i (p− ε) − 32σiε, while the lower bound depends on
the corrupted suboptimality gap ∆i,ε ≜ ∆i (1 − ε) − 2σiε. This difference in constants hinder the hardness
regimes and corresponding constants in upper and lower bounds to match for all ∆i, σi, and ε. This deviation
also comes from the fact that the lower bounds proposed in Theorem 1 consider effects of heavy-tails and
corruptions separately, while the upper bound of HuberUCB consider them in a coupled manner.

Additionally, we observe that regret of HuberUCB is suboptimal due to the constant additive error, which
appears due to the initial forced exploration of HuberUCB up to slim(t). Our concentration bounds and
corresponding regret analysis shows that this forced exploration phase is unavoidable in order to be able to
handle the case ∆i ≤ σi with HuberUCB. Removing this discrepancy between the lower and upper bounds
would constitute an interesting future work.

5.4 Computational Details

Here, we discuss the three hyperparameters that HuberUCB depends on and also its computational cost.

Choice of σ and ε. In Theorem 3, we assume to know the σ and ε. In practice, these are unknown and
we estimate σ2 with a robust estimator of the variance, such as the median absolute deviation. In contrast,
estimating ε is hard. There exists some heuristics, for example using the proportion of point larger than 1.5
times the inter-quartile range or using more complex algorithms like Isolation Forest algorithm but these
methods work in general using the hypothesis that outliers are in some way points that are located outside of
“the bulk of the data" which conflicts with the fact that we don’t suppose anything on the outliers. Moreover
even though there are heuristics, the problem of finding what constitute “the bulk of the data" is closely
linked to problems such as finding a “Robust minimum volume ellipsoid" which is NP-hard in general (Mittal
& Hanasusanto, 2022). We refer to Appendix C.1 for an ablation study on the choice of ε.

Choice of βi. Ideally, βi should be larger than 4σi. We recommend using an estimator of σi to estimate a
good value of βi. The choice of βi reflects the difference between heavy-tailed bandits and corrupted bandits.
When the data are heavy-tailed but not corrupted, Catoni (2012) shows that βi≃σi

√
n is a good choice for

the scaling parameter. However, this choice is not robust to outliers and yields a linear regret in our setup
(see Section 7) and a trade-off between Heavy-tailed and corrupted setting would dictate βi ≃ σ

√
n ∧ ε−1/2

(see Proposition 2 in Mathieu (2022)). In Appendix C.1, we present an ablation study on the choice of ε.

Computational Cost. Huber’s estimator has linear complexity due to the involved Iterated Re-weighting Least
Squares algorithm, which is not sequential. We have to do this at every iteration, which leads HuberUCB to
have a quadratic time complexity. This is the computational cost of using a robust mean estimator, i.e. the
Huber’s estimator.

2We observe that the lower bound in Equation (5) depends on σ2
i

∆i,ε
2 for ∆i ≪ σi, since the first order approximation of

log(1 + x) is x as x → 0.
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6 SeqHuberUCB: A Faster Robust Bandit Algorithm

In this section, we present a sequential approximation of the Huber’s estimator, and we leverage it further
to create a robust bandit algorithm with linear-time complexity algorithm. Here, we describe the algorithm
(SeqHuberUCB) and its theoretical properties.

A sequential approximation of Huber’s estimator. The central idea is to compute the Huber’s
estimator using the full historical data only in logarithmic number of steps than at every step, and in between
two of these re-computations, update the estimator using only the samples observed at that step. This allows
us to propose a sequential approximation of Huber’s estimator, i.e. SeqHubt, with lower computational
complexity.

By fixing the update step P2(t) = 2
⌊

log(t)
log(2)

⌋
before a given step t > 0, we define the estimator SeqHubt by

SeqHub0 = 0 and

SeqHubt =

Ht if t = P2(t),

Ht +
∑t

i=P2(t)
ψ(Xi−Ht)∑t

i=1
ψ′(Xi−Ht)

otherwise.
(13)

Here, Ht ≜ Hub(XP2(t)
1 ) and ψ is the influence function defined in Equation (9). SeqHubt can be conceptu-

alized as a first order Taylor approximation of Hub(Xt
1) around Hub(XP2(t)

1 ).

One might argue that SeqHubt is not fully sequential rather a phased estimator as we still recompute the
Huber’s estimator following a geometric schedule. Thus, we still need to keep all the data in memory, leading
to linear space complexity as the non-sequential Huber’s estimator. But it features the good property of
having a linear time complexity when computed using the prescribed geometric schedule. This implies that
the SeqHuberUCB algorithm leveraging the sequential Huber’s estimator achieves a linear time complexity.

Concentration Properties of SeqHub. Now, in order to propose SeqHuberUCB we first aim to derive the
rate of convergence of SeqHubt towards the true Huber’s mean Hub(P ).

Theorem 4 If the assumptions of Theorem 2 hold true, with probability larger than 1 − 14δ, we have

|SeqHubt − Hub(P )| ≤ rt(δ) +

 1

p−
√

log(1/δ)
2t − ε

− 1

 rP2(t)(δ) (14)

for any t > 0, and δ ≥ exp
(

−P2(t) 128(p−5ε)2

49(1+2ε
√

2)2

)
. Here, rt(δ) is defined as in Equation (10).

We observe that the confidence bound of SeqHubt includes the confidence bound of Hubt, i.e. rt(δ),
and an additive term proportional to rP2(t)(δ). Since rP2(t)(δ) ≥ rt(δ) for t ≥ P2(t), we can show that

|SeqHubt − Hub(P )| ≤
(
p−

√
log(1/δ)

2t − ε

)−1
rP2(t)(δ). Thus, we obtain larger confidence bounds for

SeqHub than that of Hub, and they differ approximately by a multiplicative constant (p− ε)−1 as t → ∞.

SeqHuberUCB: The algorithm. Now, we plug-in the sequential Huber’s estimator, SeqHub, and the cor-
responding confidence bound (Equation (14)), instead of the Huber’s estimator and the corresponding con-
fidence bound in the HuberUCB algorithm. This allows us to construct the SeqHuberUCB algorithm that we
present hereafter.

Specifically, we define the index of SeqHuberUCB as

ISeqHuberUCB
i (t) = SeqHubi,Ti(t−1) +BSeqHuberUCB

i (Ti(t− 1), t). (15)

where
SeqHubi,s = SeqHub (Xt, 1 ≤ t ≤ s such that At = i, ) ,
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and a confidence bound for arm i with s number of pulls is

B
SeqHuberUCB
i (s, t) ≜

rs(1/t2) +
(

1
p−
√

log(1/δ)
2s −ε

− 1
)
rP2(s)(1/t2) + bi if P2(s) ≥ slim(t)

∞ if P2(s) < slim(t).

Here, slim(t), ε and bi are same as defined for HuberUCB.

Similar to Corollary 1, we now present a simplified regret upper bound for SeqHuberUCB. Retaining the setting
of Corollary 1, we assume that β2

i =16σ2
i , ε≤1/10 implying ε = 4/(5

√
ln(9)) ≃ 0.54, p ≥ 1−4σ2

i

β2
i

≥ 3
4 ≥ 5ε+1

4 ,
and Pi symmetric so that bi=0. Further simplifying the constants yields the following regret upper bound
for SeqHuberUCB.

Lemma 6 (Simplified Upper Bound on Regret of SeqHuberUCB) Suppose that for all i, Pi is a dis-
tribution with finite variance σ2

i . Let us also denote ∆̃i,ε = ∆i (p− ε) − 32σiε,

• If ∆̃i,ε > 18σi
(
1 + 4

√
2ε
)2, then

E[Ti(n)] ≤ 128 log(n) max
(

σi

∆̃i,ε

, 2
)

+ 28(log(n) + 1).

• If ∆̃i,ε ≤ 18σi
(
1 + 4

√
2ε
)2, then

E[Ti(n)] ≤ 80 log(n) max
(
σ2
i

∆̃2
i,ε

(
1 + 32ε2) , 3)+ 28(log(n) + 1).

Comparison between Regrets of HuberUCB and SeqHuberUCB. Lemma 6 yields similar regret bounds
for SeqHuberUCB as the ones obtained for HuberUCB in Corollary 1. We observe that the regrets of these two
algorithms only differ in n-independent constants. Specifically, regret of SeqHuberUCB can be approximately
3−4 times higher than that of HuberUCB. For simplicity of exposition, we present approximate constants in our
results. A more careful analysis might yield more fine-tuned constants. Theorem 4 and experimental results
(Figure 2) indicate that it is possible to have very close performances with SeqHuberUCB and HuberUCB.

7 Experimental Evaluation

In this section, we assess the experimental efficiency of HuberUCB and SeqHuberUCB by plotting the empirical
regret. Contrary to the uncorrupted case, we cannot really estimate the corrupted regret in (Corrupted
regret) only using the observed rewards. Instead, we use the true uncorrupted gaps that we know because
we are in a simulated environment, and we estimate the corrupted regret Rn using

∑k
i=1 ∆iTi

∧
(n), where

Ti
∧

(n) = 1
M

∑M
m=1(Ti(n))m is a Monte-Carlo estimation of Eνε [Ti(n)] over M experiments. We use rlberry

library (Domingues et al., 2021) and Python3 for the experiments. We run the experiments on an 8 core
Intel(R) Core(TM) i7-8665U CPU@1.90GHz. For each algorithm, we perform each experiment 100 times to
get a Monte-Carlo estimate of regret.

Comparison with Bandit Algorithms for Heavy-tailed and Adversarial Settings. To the best of
our knowledge, there is no existing bandit algorithm for handling unbounded stochastic corruption prior
to this work. Hence, we focus on comparing ourselves to the closest settings, i.e. bandits in heavy-tailed
setting and adversarial bandit algorithms. We empirically and competitively study five different algorithms:
HuberUCB, SeqHuberUCB, two RobustUCB algorithms with Catoni-Huber estimator and Median of Means
(MOM) (Bubeck et al., 2013). In particular, we compare to algorithms assuming bounded centered moments
and not bounded raw moment such as Truncated Mean from Bubeck et al. (2013), and KLinf-UCB from
Agrawal et al. (2021). See also Appendix C for further experimental results.

HuberUCB is closely related to the RobustUCB with Catoni Huber estimator, which also uses Huber’s esti-
mator but with another set of parameters and confidence intervals. The RobustUCB algorithms are tuned
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Figure 2: Cumulative regret plot of the algorithms on a corrupted Bernoulli (above), Student’s (middle)
and Pareto (below) reward distributions with various corruption levels ε. Lower corrupted regret indicates
better performance for an algorithm.

for uncorrupted heavy-tails. Hence, they incur linear regret in a corrupted setting. This is reflected in the
experiments. We also improve upon Bubeck et al. (2013) as we can handle arm-dependent variances.

Corrupted Bernoulli setting: In Figure 2 (above), we study a 3-armed bandits with corrupted Bernoulli
distributions with means 0.1, 0.97, 0.99. The corruption applied to this bandit problem are Bernoulli dis-
tributions with means 0.999, 0.999, 0.001, respectively. For HuberUCB and SeqHuberUCB, we choose to use
βi = 0.1σi, which seems to work better despite the theory presented before. We plot the mean plus/minus
the standard error of the result in Figure 2. We do that for the three corruption proportions ε equal to 0%,
3% and 5%. We notice that there is a short linear regret phase at the beginning due to the forced exploration
performed by the algorithms. Followed by that, HuberUCB and SeqHuberUCB incur logarithmic regret. On
the other hand, Catoni Huber Agent and MOM Agent incur logarithmic regret only in the uncorrupted
setting. When the data are corrupted, i.e. ε > 0, their regret grow linearly.

Corrupted Student setting: In Figure 2 (middle), we study a 3-armed bandits with corrupted Student’s
distributions with 3 degrees of freedom (finite second moment) and with means 0.1, 0.95, 1. The corruption
applied to this bandit problem are Gaussians with variance 1, and means 100, 100,−1000 respectively. For
HuberUCB and SeqHuberUCB, we choose to use βi = σi. The results echo the observations for the Bernoulli
case except that the corruption is more drastic and affect the performance even more.

Corrupted Pareto setting: In Figure 2 (bottom), we illustrate the results for a 3-armed bandits with
corrupted Pareto distributions having shape parameters 3, 3, 2.1 (i.e. they have finite second moments),
and scale parameters 0.1, 0.2, 0.3 respectively. Thus, the corresponding means are 0.15, 0.3 and 0.57 and
the standard deviations are 0.09, 0.17, 1.25, respectively. The corruption applied to this bandit problem are
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Gaussians with variance 1, and centered at 100, 100,−1000 respectively. For HuberUCB and SeqHuberUCB,
we choose to use β = 1.5σi and we also bound the bias bi by σ2

i /βi. The results echo the observations for
the Student’s distributions.

Thus, we conclude that HuberUCB incur the lowest regret among the competing algorithms in the Bandits with
Stochastic Corruption setting, specially for higher corruption levels ε. Also, performances of SeqHuberUCB
and HuberUCB are very close, except for the Pareto distributions with high corruption level.

8 Conclusion
In this paper, we study the setting of Bandits with Stochastic Corruption that encompasses both the heavy-
tailed rewards with bounded variance and unbounded corruptions in rewards. In this setting, we prove
lower bounds on the regret that shows the heavy-tailed bandits and corrupted bandits are strictly harder
than the usual sub-Gaussian bandits. Specifically, in this setting, the hardness depends on the suboptimality
gap/variance regimes. If the suboptimality gap is small, the hardness is dictated by σ2

i /∆
2
i,ε. Here, ∆i,ε is the

corrupted sub-optimality gap, which is smaller than the uncorrupted gap ∆ and thus, harder to distinguish.
To complement the lower bounds, we design a robust algorithm HuberUCB that uses Huber’s estimator for
robust mean estimation and a novel concentration bound on this estimator to create tight confidence intervals.
HuberUCB achieves logarithmic regret that matches the lower bound for low suboptimality gap/high variance
regime. We also present a sequential Huber estimator that could be of independent interest and we use it
to state a linear-time robust bandit algorithm, SeqHuberUCB, that presents the same efficiency as HuberUCB.
Unlike existing literature, we do not need any assumption on a known bound on corruption and a known
bound on the (1 + η)-uncentered moment, which was posed as an open problem in Agrawal et al. (2021).

Since our upper and lower bounds disagree in the high gap/low variance regime, it will be interesting to
investigate this regime further. From multi-armed bandits, we know that the tightest lower and upper
bounds depend on the KL-divergence between optimal and suboptimal reward distributions. Thus, it would
be imperative to study KL-divergence with corrupted distributions to better understand the Bandits with
Stochastic Corruption problem. In this paper, we have focused on a problem-dependent regret analysis for
a given ε. In future, it would be interesting to get some insight on how to adapt to an unknown ε, and to
perform a problem-independent “worst-case" analysis. Also, following the reinforcement learning literature, it
will be natural to extend HuberUCB to contextual and linear bandit settings with corruptions and heavy-tails.
This will facilitate its applicability to practical problems, such as choosing treatments against pests.
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A Proof of Theorems

A.1 Proof of Theorem 1: Regret Lower Bound

The theorem is a consequence of Lemmas 2, 3 and 4.
From Lemma 2, we have

lim inf
n→∞

Eν [Ti(n)]
log(n) ≥ 1

DKL(P0, P1) (16)

Student distributions

Let P0, P1 be student distributions with parameter d = 3 and gap ∆i as in Lemma 3. From Lemma 3, we
get

DKL(P0, P1) ≤

{
17∆2

i if ∆i ≤ 1
4 log (∆i) + log (50) if ∆i > 1

(17)

Then, using that log(50) ≤ 17,

DKL(P0, P1) ≤ 17∆2
i ∧ 4 log (∆i) + 17.

Finally, use that the variance of a student with three degrees of freedom is σ2
i = 3 to get that

DKL(P0, P1) ≤ 51∆2
i

σ2
i

∧ 4 log
(

∆i

σi

)
+ 22.

Bernoulli distributions

Let P0, P1 be as in Lemma 4 with gap ∆i and variance σi. If 2σi ε√
1−2ε < ∆i < 2σi, then

DKL(P0, P1) ≤ ∆i,ε

2σi
log
(

1 + ∆i,ε

2σi − ∆i,ε

)
∧ (1 − 2ε) log

(
1 + 1 − 2ε

ε

)
(18)

Use Equation (16) to conclude.

A.2 Proof of Theorem 2: Concentration of Huber’s Estimator

First, we control the deviations of Huber’s estimator using the deviations of ψβ(X − Hubβ(Xn
1 )). We will

need the following lemma to control the variance of ψβ(X − Hubβ(Xn
1 )), which will in turn allow us to

control its deviation with Lemma 8.

Lemma 7 (Controlling Variance of Influence of Huber’s Estimator) Suppose that Y1, . . . , Yn are
i.i.d with law P . Then

Var(ψβ(Y − Hubβ(P ))) ≤ Var(Y ) = σ2

Lemma 8 (Concentrating Huber’s Estimator by Concentrating the Influence) Suppose that X1,
. . . , Xn are i.i.d with law (1 − ε)P + εH for some H ∈ P and proportion of outliers ε ∈ (0, 1/2). Then, for
any η > 0 and λ ∈ (0, β/2], we have

P(|Hubβ(Xn
1 ) − Hubβ(P )| ≥ λ) ≤ P

(∣∣∣∣∣ 1n
n∑
i=1

ψβ(Xi − Hubβ(P ))
∣∣∣∣∣ ≥ λ (p− η − ε)+

)
+ 2e−2nη2

where p = P(|Y − E[X]| ≤ β/2).

Then, using these Lemmas, we can prove the theorem.
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Step 1. For any δ ∈ (0, 1), with probability larger than 1 − 3δ,∣∣∣∣∣ 1n
n∑
i=1

ψβ(Xi − Hubβ(P ))
∣∣∣∣∣ ≤ σ

√
2 log(1/δ)

n
+ β

log(1/δ)
2n + 2βε+ 2β

√
log(1/δ)(1 − 2ε)
n log

( 1−ε
ε

) . (19)

Proof: Write that Xi = (1 − Wi)Yi + WiZi where W1, . . . ,Wn are i.i.d {0, 1} Bernoulli random variable
with mean ε, Y1, . . . , Yn are i.i.d ∼ P and Z1, . . . , Zn are i.i.d with law H, we have∣∣∣∣∣ 1n

n∑
i=1

ψβ(Xi − Hubβ(P ))
∣∣∣∣∣

=
∣∣∣∣∣ 1n

n∑
i=1

ψβ(Yi − Hubβ(P )) + 1
n

n∑
i=1

1{Wi = 1} (ψβ(Zi − Hubβ(P )) − ψβ(Yi − Hubβ(P )))
∣∣∣∣∣

≤

∣∣∣∣∣ 1n
n∑
i=1

ψβ(Yi − Hubβ(P ))
∣∣∣∣∣+ 2β 1

n

n∑
i=1

1{Wi = 1}

Remark that by definition of Hubβ(P ), it is defined as the root of the equation E[ψβ(Y − Hubβ(P ))] = 0.
From Bernstein’s inequality, for any δ ∈ (0, 1),

P

(∣∣∣∣∣ 1n
n∑
i=1

ψβ(Yi − Hubβ(P ))
∣∣∣∣∣ ≥

√
2Vψβ

log(1/δ)
n

+ β
log(1/δ)

3n

)
≤ 2δ

where Vψβ
= Var(ψβ(Yi − Hubβ(P ))).

Then, using that Bernoulli random variables with mean ε are sub-Gaussian with variance parameter
1−2ε

2 log((1−ε)/ε) (see Lemma 6 of Bourel et al. (2020)),

P

(
1
n

n∑
i=1

1{Wi = 1} ≤ ε+
√

log(1/δ)(1 − 2ε)
n log

( 1−ε
ε

) )
≥ 1 − δ.

Then, using Lemma 7 we get for any δ ∈ (0, 1), with probability larger than 1 − 3δ,∣∣∣∣∣ 1n
n∑
i=1

ψβ(Xi − Hubβ(P ))
∣∣∣∣∣ ≤ σ

√
2 log(1/δ)

n
+ β

log(1/δ)
2n + 2βε+ 2β

√
log(1/δ)(1 − 2ε)
n log

( 1−ε
ε

) . (20)

Step 2. Using η =
√

log(1/δ)
2n , the hypotheses of Lemma 8 are verified.

Proof: To apply Lemma 8, it is sufficient that

σ

√
2t
n

+ β
log(1/δ)

3n + 2βε+ 2β
√

log(1/δ)(1 − 2ε)
n log

( 1−ε
ε

) ≤ β

2

(
p−

√
log(1/δ)

2n − ε

)
(21)

and using that 4σ ≤ β, we have that it is sufficient that√
log(1/δ)

2n + log(1/δ)
3n + 2

√
log(1/δ)(1 − 2ε)
n log

( 1−ε
ε

) ≤ 1
2 (p− 5ε) . (22)

This is a polynomial in
√

log(1/δ)/n that we need to solve. We use the following elementary algebra lemma.

Lemma 9 (2nd order polynomial root bound) let a, b, c be three positive constants and x verify ax2+
bx− c ≤ 0. Suppose that 4ac

b2 ≤ d, then x must verify

x ≥ 2c(
√
d+ 1 − 1)
db

.
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Observe that we have
2 (p− 5ε)

3
(

1√
2 + 2

√
1−2ε√

log( 1−ε
ε )

)2 ≤ 4
3

and (
√

4/3 + 1 − 1)/(4/3) ≥ 8/7, hence, from Lemma 9, we get the following sufficient condition for
Equation (22) to hold:

√
log(1/δ)/n ≤ 8

√
2 (p− 5ε)

7
(

1 + 2
√

2(1−2ε)√
log( 1−ε

ε )

) .
Hence, taking this to the square,

log(1/δ) ≤ n
128 (p− 5ε)2

49
(

1 + 2
√

2(1−2ε)√
log( 1−ε

ε )

)2 .

Step 3. Using Lemma 8 and Step 1 prove that the theorem is true.
Proof: The hypotheses of Lemma 8 are verified and we can use its result and together with Equation (19)
we get with probability larger than 1 − 5δ,

|Hubβ(Xn
1 ) − Hubβ(P )| ≤

σ
√

2 log(1/δ)
n + β log(1/δ)

3n + 2β
√

log(1/δ)(1−2ε)
n log( 1−ε

ε ) + 2βε(
p−

√
log(1/δ)

2n − ε

)
+

.

A.3 Proof of Theorem 4: Concentration of Sequential Huber’s Estimator

In this proof, we denote

rt(δ) :=
σ
√

2 log(1/δ)
t + β log(1/δ)

3t + 2βε
√

log(1/δ)
t + 2βε(

p−
√

log(1/δ)
2t − ε

)
+

this is the rate of convergence of Hubβ(Xt
1) to Hubβ(P ), as stated by Theorem 2.

Let P2(t) < t < P2(t+ 1), define

ft(u) = 1
t

t∑
i=1

ψβ(Xi − u).

ft is a continuous function, we take its derivative in distribution to get that

ft(Hubβ(P )) = ft(Ht) + (Hubβ(P ) −Ht)f ′
t(Ht) +

∫ Hubβ(P )

Ht

f ′′
t (u) (Hubβ(P ) − u)du

Then, by definition of SeqHubt, we also have

0 = ft(Ht) + (SeqHubt −Ht)f ′
t(Ht).

Hence,

ft(Hub(P )) = (Hubβ(P ) − SeqHubt)f ′
t(Ht) +

∫ Hubβ(P )

Ht

f ′′
t (u) (Hubβ(P ) − u)du. (23)

where f ′
t(u) = − 1

t

∑t
i=1 1{|Xi − u| ≤ β} and f ′′

t (u) = − 1
t

∑t
i=1(δXi−u−β − δXi−u+β) where δx is the Dirac

mass in x.

25



Published in Transactions on Machine Learning Research (01/2024)

f ′
t(Ht) is a sum of indicator functions and should be close to P(|X − E[X]| ≤ β), which is close to 1.

Bound on f ′
t(Ht)

We bound |f ′
t(Ht)|. We have

|f ′
t(Ht)| = 1

t

t∑
i=1

1{|Xi −Ht| ≤ β}

≥ 1
t

t∑
i=1

1{|Xi − Hubβ(P )| ≤ β − |Ht − Hubβ(P )|}.

Choose the limiting δ which is δ = exp
(

−P2(t) 128(p−5ε)2

49(1+2ε
√

2)2

)
, from Equation (21), we get that rt(δ) ≤ β/2.

Then, we have from Theorem 2, with probability larger than 1 − 5 exp
(

−P2(t) 128(p−5ε)2

49(1+2ε
√

2)2

)
, that |Ht −

Hubβ(P )| ≤ β/2, and then,

|f ′
t(Ht)| ≥ 1

t

t∑
i=1

1{|Xi − Hubβ(P )| ≤ β/2}. (24)

Bound on the integral of f ′′
t .

We have, ∫ Hubβ(P )

Ht

f ′′
t (u) (Hubβ(P ) − u)du

= 1
t

t∑
i=1

∫ Hubβ(P )

Ht

(δXi−u−β − δXi−u+β) (Hubβ(P ) − u)du

= 1
t

t∑
i=1

(Hubβ(P ) −Xi − β)1{Xi ∈ I−} − (Hubβ(P ) −Xi + β)1{Xi ∈ I+}

where I− and I+ are the two undirected intervals
I− = [Ht − β,Hubβ(P ) − β] and I+ = [Ht + β,Hubβ(P ) + β].

Hubβ(P ) − β Ht − β Hub(P ) Ht Hubβ(P ) + β Ht + β

I− I+

Figure 3: Illustration I− and I+

Having that |Hubβ(Xt
1) − Ht| ≤ β/2, we have that I− ∩ I+ = ∅. Then, choosing either the sum

1
t

∑t
i=1(Hubβ(P ) −Xi − β)1{Xi ∈ I−} or 1

t

∑t
i=1(Hubβ(P ) −Xi − β)1{Xi ∈ I+} according to which one is

larger. If Xi ∈ I+, we have |Hubβ(P ) − Xi + β| ≤ |Hubβ(P ) − Ht| and if Xi ∈ I−, |Hubβ(P ) − Xi − β| ≤
|Hubβ(P ) −Ht|, hence we have∣∣∣∣∣1t

t∑
i=1

∫ Hubβ(P )

Ht

(δXi−u−β − δXi−u+β) (Hubβ(P ) − u)du
∣∣∣∣∣

≤ |Hubβ(P ) −Ht| max
(

1
t

t∑
i=1

1{Xi ∈ I−}, 1
t

t∑
i=1

1{Xi ∈ I+}

)
.

26



Published in Transactions on Machine Learning Research (01/2024)

Now, remark that by Equation (24), we have,

t∑
i=1

1{Xi −Ht} = |f ′
t(Ht)| ≥ 1

t

t∑
i=1

1{|Xi − Hubβ(P )| ≤ β/2}

Let us denote pt(β) = 1
t

∑t
i=1 1{|Xi − Hubβ(P )| ≤ β/2}.

There cannot be more than 1 − pt(β) fraction of the Xi’s that are outside [Ht − β,Ht + β]. Similarly, there
cannot be more than 1 −pt(β) fraction of the X ′

is that are outside [Hubβ(P ) −β/2,Hubβ(P ) +β/2]. Hence,
if Ht ≤ Hubβ(P ), then I− ⊂ [Ht−β,Ht+β]c and the proportion of Xi’s in I− can’t be larger than 1−pt(β).

If Hubβ(P ) ≤ Ht, then I− ⊂ [Hubβ(P ) − β,Hubβ(P ) + β]c which is itself a subset of [Hubβ(P ) −
β/2,Hubβ(P ) + β/2]c and the proportion of Xi’s included in [Hubβ(P ) − β/2,Hubβ(P ) + β/2]c cannot
be larger than 3/10.

In both cases, 1
t

∑t
i=1 1{Xi ∈ I−} ≤ 1 − pt(β). A similar reasoning holds for I+, hence∣∣∣∣∣
∫ Hubβ(P )

Ht

f ′′
t (u) (Hubβ(P ) − u)du

∣∣∣∣∣ ≤ (1 − pt(β))|Hubβ(P ) −Ht|

Then, using Equation (24) and Equation (23), we get with probability larger than 1 −

5 exp
(

−P2(t) 128(p−5ε)2

49(1+2ε
√

2)2

)
,

|Hubβ(P ) − SeqHubt| ≤
ft(Hubβ(P )) +

∣∣∣∫ Hubβ(P )
Ht

f ′′
t (u) (Hubβ(P ) − u)du

∣∣∣
f ′
t(Ht)

≤ ft(Hubβ(P )) + (1 − pt(β))|Hubβ(P ) −Ht|
pt(β) . (25)

Then let δ ≤ exp
(

−P2(t) 128(p−5ε)2

49(1+2ε
√

2)2

)
, we use Equation (20) to say that with probability larger than 1−3δ,

we have

ft(Hubβ(P )) ≤ σ

√
2 log(1/δ)

t
+ β

log(1/δ)
2t + 2βε+ 2β

√
log(1/δ)(1 − 2ε)
t log

( 1−ε
ε

) .

Then, using Hoeffding’s inequality after taking out the outliers, we get with probability larger than 1 − δ,
that

pt(β) = 1
t

t∑
i=1

1{|Xi − Hub(P )| ≤ β/2} ≥ p−
√

log(1/δ)
2t − ε

to recover that the first term of the right-hand-side of Equation (25) is smaller than rt(δ). Then, using

Theorem 2, we get that with probability larger than 1 − 5 exp
(

−P2(t) 128(p−5ε)2

49(1+2ε
√

2)2

)
− 9δ ≥ 1 − 14δ,

|Hubβ(P ) − SeqHubt| ≤ rt(δ) +

 1

p−
√

log(1/δ)
2t − ε

− 1

 rP2(t)(δ).

A.4 Proof of Theorem 3: Regret Upper bound of HuberUCB

If At = i then at least one of the following four inequalities is true:

Hub
∧

1,T1(t−1) +B1(T1(t− 1), t) ≤ µ1 (26)

or
Hub
∧

i,Ti(t−1) ≥ µi +Bi(Ti(t− 1), t) (27)
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or
∆i < 2Bi(Ti(t− 1), t) (28)

or

T1(t− 1) < slim(t) = 98 log(t)
128 (p− 5ε)2

(
1 + 2

√
2
(
ε ∨ 9

14
√

2

))2
(29)

Indeed, if Ti(t − 1) < slim(t), then Bi(Ti(t − 1), t) = ∞ and Inequality (28) is true. On the other hand, if
Ti(t− 1) ≥ slim(t), then we have Bi(Ti(t− 1), t) is finite and all four inequalities are false, then,

Hub
∧

1,T1(t−1) +B1(T1(t− 1), t) > µ1

= µi + ∆i

≥ µi + 2Bi(Ti(t− 1), n)
≥ µi + 2Bi(Ti(t− 1), t)
≥ Hub
∧

i,Ti(t−1) +Bi(Ti(t− 1), t)

which implies that At ̸= i.

Step 1. We have that P ((26) is true) ≤ 5/t.
Proof:
Then, we have that,

P
(

Hub
∧

1,T1(t−1) +B1(T1(t− 1), t) ≤ µ1

)
≤

t∑
s=1

P
(

Hub
∧

1,s +B1(s, t) ≤ µ1

)
=

t∑
s=⌈slim(t)⌉

P
(

Hub
∧

1,s − µ1 ≤ −B1(s, t)
)

Then, use Theorem 2, we get

P
(

Hub
∧

1,T1(t−1) +B1(T1(t− 1), t) ≤ µ1

)
≤

t∑
s=⌈slim(t)⌉

5e− log(t2)

≤
t∑

s=⌈slim(t)⌉

5
t2

≤ 5
t
.

Step 2. Similarly, for arm i, we have

P
(

Hub
∧

i,Ti(t−1) ≥ µi +Bi(Ti(t− 1), t)
)

≤ 5
t

Proof: We have,

P
(

Hub
∧

i,Ti(t−1) ≥ µi +Bi(Ti(t− 1), t)
)

≤
t∑

s=⌈slim(t)⌉

P
(

Hub
∧

i,s − µi ≥ Bi(s, t)
)

≤
t∑

s=⌈slim(t)⌉

5e− log(t2) ≤ 5
t
.
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Step 3. Let v ∈ N. If one of the two following conditions are true, then for all t such that Ti(t− 1) ≥ v, we
have ∆i ≥ 2Bi(Ti(t− 1), t) (i.e. Equation (28) is false).
Condition 1: if ∆̃i,ε > 12σ

2
i

βi

(√
2 + 2βi

σi
ε
)2

and v ≤ log(n) 96βi

9∆̃i,ε

.

Condition 2: if ∆̃i,ε ≤ 12σ
2
i

βi

(√
2 + 2βi

σi
ε
)2

and v ≤ 50
9∆̃2

i,ε

(
σi

√
2 + 2βiε

)2 log(n).

Proof: We search for the smallest value v ≥ slim(t) such that ∆i verifies

∆i ≥ 2Bi(v, t) = 2
σi

√
2 log(t2)

v + β log(t2)
3v + 2εβi

√
log(t2)
v + 2βiε(

p−
√

log(t2)
2v − ε

) + 2bi.

First, we simplify the expression, having that v ≥ slim(t), we have

log(t2)
2v ≤ 128(p− 5ε)2

98(1 + 9/7)2 ≤ (p− ε)2

4 ,

hence we simplify to

∆i ≥ 4
(p− ε)

(
σi

√
2 log(t2)

v
+ βi

log(t2)
3v + 2βiε

√
log(t2)
v

+ 2βiε
)

+ 2bi

let us denote ∆̃i,ε = (∆i − 2bi)(p− ε) − 8βiε, we are searching for v such that

βi
log(t2)

3v +
√

log(t2)
v

(
σi

√
2 + 2βiε

)
− ∆̃i,ε

4 ≤ 0

This is a second order polynomial in
√

log(t2)/v.
If ∆̃i,ε > 0, then the smallest v > 0 is

√
log(t2)
v

= 3
2βi

−
(
σi

√
2 + 2εβi

)
+

√(
σi

√
2 + 2βiε

)2
+ ∆̃i,εβi

3

 .

First setting: if ∆̃i,ε > 12σ
2
i

βi

(√
2 + 2βi

σi
ε
)2

,

In that case, we have

√
log(t2)
v

≥ 3
2βi

−
(
σi

√
2 + 2βiε

)
+

√
βi∆̃i,ε

3

 ≥ 3
2βi

√
βi∆̃i,ε

12 =

√
9∆̃i,ε

48βi

Hence, v ≤ log(t) 96βi

9∆̃i,ε

.

Second setting: if ∆̃i,ε ≤ 12σ
2
i

βi

(√
2 + 2βi

σi
ε
)2

, then we use Lemma 9, using that

∆̃i,εβi

3
(
σi

√
2 + 2βiε

)2 ≤ 4

and the fact that
√

1+4−1
4 ≥ 3

10 , we get,√
log(t2)
v

≥ 3∆̃i,ε

5
(
σi

√
2 + 2βiε

)
29
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Hence,
v ≤ 50

9∆̃2
i,ε

(
σi

√
2 + 2βiε

)2
log(t).

Step 4. Using All the previous steps, we prove the theorem. Proof: We have

E[Ti(t)] = E

[
t∑
t=1

1{At = i}

]

≤ ⌊max(v, slim(t))⌋ + E

 t∑
t=⌊max(v,slim(t))⌋+1

1{At = i and (28) is false}


≤ ⌊max(v, slim(t))⌋ + E

 t∑
t=⌊max(v,slim(t))⌋+1

1{(26) or (27) or (29) is true}


= ⌊max(v, slim(t))⌋ +

t∑
t=⌊min(v,slim(t))⌋+1

P ((26) or (27) is true)

≤ ⌊max(v, slim(t))⌋ + 2
t∑

t=⌊min(v,slim(t))⌋+1

5
t

using the harmonic series bound by log(t) + 1, we have

E[Ti(t)] ≤ max(v, slim(t)) + 10(log(t) + 1)

Then, we replace the value of v,

First setting: ∆̃i,ε > 12σ
2
i

βi

(√
2 + 2βi

σi
ε
)2

E[Ti(t)] ≤ log(t) max
(

96βi
9∆̃i,ε

,
4

(p− 5ε)2

(
1 + 2

√
2
(
ε ∨ 9

14
√

2

))2
)

+ 10(log(t) + 1)

Second setting: if ∆̃i,ε ≤ 12σ
2
i

βi

(√
2 + 2βi

σi
ε
)2

, then

E[Ti(t)] ≤ log(n) max
(

50
9∆̃2

i,ε

(
σi

√
2 + 2βiε

)2
,

4
(p− 5ε)2

(
1 + 2

√
2
(
ε ∨ 9

14
√

2

))2
)

+ 10(log(t) + 1).

This concludes the proof of Theorem 3.
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B Proof of Technical Lemmas and Corollaries

B.1 Preliminary lemmas

B.1.1 Proof of Lemma 1: Regret Decomposition

From Equation (Corrupted regret), we have

Rn =
k∑
a=1

n∑
t=1

E
[
(max

a
EPa

[X ′] −X ′
t)1 {At = a}

]
Then, we condition on At

E
[
(max

a
EPa

[X ′] −X ′
t)1 {At = a} |At

]
= 1{At = a}E[max

a
EPa

[X ′] −X ′
t|At]

= 1{At = a}(max
a

EPa
[X ′] − µAt

)

= 1{At = a}(max
a

EPa
[X ′] − µa) = 1{At = a}∆a

and this stays true whatever the policy, because the policy at time t use knowledge up to time t− 1, hence
its decision does not depend on Xt. Hence, we have

Rn(π) =
k∑
a=1

∆aEπ(·|Xn
1 ,A

n
1 ) [Ta(n)]

where Ta(n) is with respect to the randomness of π, which is to say that we compute E[Ti(n)] in the corrupted
setting and not in the uncorrupted one.

Rn =
k∑
a=1

∆aEνε
[Ta(n)] .

B.1.2 Proof of Lemma 3: KL for Student’s Distribution

First, we compute the χ2 divergence between the two laws fa and f0. We have, for any a ≥ 0

dχ2(fa, f0) =
∫ (fa(x) − f0(x))2

f0(x) dx

=
Γ
(
d+1

2
)

Γ
(
d
2
)√

dπ

∫
R

 1(
1 + (x−a)2

d

) d+1
2

− 1(
1 + x2

d

)+1
2


2(

1 + x2

d

) d+1
2

dx

=
Γ
(
d+1

2
)

Γ
(
d
2
)√

dπ

∫
R

((
1 + (x−a)2

d

) d+1
2 −

(
1 + x2

d

) d+1
2
)2

(
1 + (x−a)2

d

)d+1 (
1 + x2

d

) d+1
2

dx

=
Γ
(
d+1

2
)

Γ
(
d
2
)√

dπ

∫
R

dx(
1 + x2

d

) d+1
2

− 2
∫
R

dx(
1 + (x−a)2

d

) d+1
2

+
∫
R

(
1 + x2

d

) d+1
2

(
1 + (x−a)2

d

)d+1 dx

 .

The first two terms are respectively equal to 1 and −2 using the fact that the student distribution integrate
to 1. Then, we do the change of variable y = x− a in the last integral to get

dχ2(fa, f0) =
Γ
(
d+1

2
)

Γ
(
d
2
)√

dπ

∫
R

(
1 + (y+a)2

d

) d+1
2

(
1 + y2

d

)d+1 dy − 1.

this is a polynomial of degree d in the variable a. We have the following Lemma proven in Section B.3.4.
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Lemma 10 For a ≥ 0 and d ≥ 0, we have the following algebraic inequality.

∫
R

(
1 + (y+a)2

d

) d+1
2

(
1 + y2

d

)d+1 dy ≤ a2

2
√
d

(d+ 1)2
(

2 + a√
d

)d−1
+
∫
R

(1 + y2/d) d+1
2(

1 + y2

d

)d+1 dy.

Using this lemma, and because we recognize up to a constant the integral of the student distribution on R
in the right-hand side, we have

dχ2(fa, f0) =
Γ
(
d+1

2
)

Γ
(
d
2
)√

dπ

 a2

2
√
d

(d+ 1)2
(

2 + a√
d

)d−1
+
∫
R

(1 + y2/d) d+1
2(

1 + y2

d

)d+1 dy

− 1

≤
Γ
(
d+1

2
)

Γ
(
d
2
)√

dπ

a2

2
√
d

(d+ 1)2
(

2 + a√
d

)d−1

then, use that for any d ≥ 1, Γ(d+1
2 ) ≤ Γ(d2 )

√
d/2 from Wendel (1948), hence

dχ2(fa, f0) ≤ a2(d+ 1)2

2
√

2dπ

(
2 + a√

d

)d−1
≤ a2(d+ 1)2

5
√
d

(
2 + a√

d

)d−1
,

using 2
√

2π ≥ 5· Then, we use the link between KL divergence and χ2 divergence to get the result.

DKL(fa, f0) ≤ log(1 + dχ2(fa, f0))

≤ log
(

1 + a2(d+ 1)2

5
√
d

(
2 + a√

d

)d−1
)

(30)

Then, we have,

log
(

1 + a2(d+ 1)2

5
√
d

(
2 + a√

d

)d−1
)

≤


log
(

1 + 3d−1 (d+1)2

5
√
d
a2
)

if a < 1

log
(

1 + (d+1)2

5
√
d
ad+1

(
(d+1)2

√
d

+ 1√
d

)d−1
)

if a ≥ 1

hence, using that 1 ≤ 3d−1 (d+1)2

d ad+1

log
(

1 + a2(d+ 1)2

d

(
2 + a√

d

)d−1
)

≤

3d−1 (d+1)2

5
√
d
a2 if a < 1

(d+ 1) log (a) + log
(

3d (d+1)2

5
√
d

)
if a ≥ 1.

Inject this in Equation (30) to get the result.

B.1.3 Proof of Lemma 4: KL for Corrupted Bernoulli Distribution

Let α ∈ (0, 1/2) and denote δx the Dirac distribution in x. Define
P0 = (1 − α)δ0 + αδ1,
P1 = αδ0 + (1 − α)δ1,
Q0 = (1 − ε)(1 − α)δ0 + (1 − (1 − ε)(1 − α))δ1,
Q1 = (1 − (1 − ε)(1 − α))δ0 + (1 − ε)(1 − α)δ1.

One can check that Q0 = (1−ε)P0 +εδ1 and Q1 = (1−ε)P1 +εδ0 and hence Q0 and Q1 are in the ε-corrupted
neighborhood of respectively P0 and P1.
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We have

DKL(Q0, Q1) =
∑

k∈{0,c}

PQ0 (X = k) log
(
PQ0 (X = k)
PQ1 (X = k)

)

= (1 − ε)(1 − α) log
(

(1 − ε)(1 − α)
1 − (1 − ε)(1 − α)

)
+ (1 − (1 − ε)(1 − α)) log

(
1 − (1 − ε)(1 − α)

(1 − ε)(1 − α)

)
= ((1 − ε)(1 − α) − (1 − (1 − ε)(1 − α))) log

(
(1 − ε)(1 − α)

1 − (1 − ε)(1 − α)

)
= (1 − 2ε− 2α+ 2εα) log

(
1 + 1 − 2ε− 2α+ 2εα

ε+ α− εα

)
Then, note that ∆ = EP1 [X] −EP0 [X] = (1 − 2α) and σ2 = VarP0(X) = VarP1(X) = α(1 − α). Hence, with
α = 1

2 (1 − ∆).

DKL(Q0, Q1) = (1 − 2ε− (1 − ∆) (1 − ε)) log
(

1 + 1 − 2ε− (1 − ∆) (1 − ε)
ε+ 1

2 (1 − ∆) (1 − ε)

)
(31)

= (∆(1 − ε) − ε) log
(

1 + ∆(1 − ε) − ε
1
2 (1 + ε) − 1

2 ∆(1 − ε)

)
(32)

Uniform bound: if ε > 0, we have

DKL(Q0, Q1) ≤ (1 − 2ε) log
(

1 + 1 − 2ε
ε

)
.

High distinguishibility regime: in the setting 2σ > ∆, we have the bound

DKL(Q0, Q1) ≤
(

∆
2σ (1 − ε) − ε

)
log
(

1 + 2
∆
2σ (1 − ε) − ε

1 −
( ∆

2σ (1 − ε) − ε
))

=
(

∆(1 − ε) − 2σε
2σ

)
log
(

1 + 2 ∆(1 − ε) − 2σε
2σ − (∆(1 − ε) − 2σε)

)

Low distinguishibility regime: if ∆ ≤ 2σ ε√
1−2ε . Then there exists ε′ ≤ ε such that ∆ = 2σ ε′

√
1−2ε′

and then, from Equation (31), there exists Q′
0, Q

′
1 which are ε′-corrupted versions of P0 and P1 such that

KL(Q′
0, Q

′
1) = 0
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B.2 Lemmas for Regret upper bound

B.2.1 Proof of Corollary 1: Simplified Upper Bound of HuberUCB

Replacing βi by 4σi, we have

• If ∆̃i,ε > 6σi
(
1 + 4

√
2ε
)2, then

E[Ti(n)] ≤ log(n) max
(

128σi
3∆̃i,ε

,
4

(p− 5ε)2

(
1 + 2

√
2
(
ε ∨ 9

14
√

2

))2
)

+ 10(log(n) + 1)

• If ∆̃i,ε > 6σi
(
1 + 4

√
2ε
)2, then

E[Ti(n)] ≤ log(n) max
(

50σ2
i

9∆̃2
i,ε

(√
2 + 8ε

)2
,

4
(p− 5ε)2

(
1 + 2

√
2
(
ε ∨ 9

14
√

2

))2
)

+ 10(log(n) + 1).

Then, we use that(
1 + 2

√
2
(
ε ∨ 9

14
√

2

))2
≤ 2

(
1 +

(
2
√

2
(
ε ∨ 9

14
√

2

))2
)

= 2 + 8
(
ε2 ∨ 81

392

)
≤ 8ε2 + 2 + 648

392 ≤ 8ε2 + 4

and that p− 5ε ≥ 1/4, to get

• If ∆̃i,ε > 6σi
(
1 + 4

√
2ε
)2, then

E[Ti(n)] ≤ log(n) max
(

128σi
3∆̃i,ε

, 512ε2 + 256
)

+ 10(log(n) + 1)

= 128
3 log(n) max

(
σi

∆̃i,ε

, 12ε2 + 6
)

+ 10(log(n) + 1)

≤ 43 log(n) max
(

σi

∆̃i,ε

, 12ε2 + 6
)

+ 10(log(n) + 1)

• If ∆̃i,ε > 6σi
(
1 + 4

√
2ε
)2, then

E[Ti(n)] ≤ log(n) max
(

50σ2
i

9∆̃2
i,ε

(√
2 + 8ε

)2
, 512ε2 + 256

)
+ 10(log(n) + 1)

≤ log(n) max
(

100σ2
i

9∆̃2
i,ε

(
2 + 64ε2) , 512ε2 + 256

)
+ 10(log(n) + 1)

≤ 23 log(n) max
(
σ2
i

∆̃2
i,ε

(
1 + 32ε2) , 24ε2 + 12

)
+ 10(log(n) + 1)

B.2.2 Proof of Lemma 6: Regret Upper bound for SeqHuberUCB

In this section we virtually copy the proof of the regret for HuberUCB done in Section A.4 with modified
constants and using the crude bound P2(s) ≥ s/2 whenever necessary.
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If At = i then at least one of the following four inequalities is true:

SeqHub
∧

1,T1(t−1) +B1(T1(t− 1), t) ≤ µ1 (33)

or
SeqHub
∧

i,Ti(t−1) ≥ µi +Bi(Ti(t− 1), t) (34)
or

∆i < 2Bi(Ti(t− 1), t) (35)
or

P2(T1(t− 1)) < slim(t) = 98 log(t)
128 (p− 5ε)2

(
1 + 2

√
2
(
ε ∨ 9

14
√

2

))2
(36)

Indeed, if P2(Ti(t− 1)) < slim(t), then Bi(Ti(t− 1), t) = ∞ and Inequality (35) is true. On the other hand,
if P2(Ti(t− 1)) ≥ slim(t), then we have Bi(Ti(t− 1), t) is finite and all four inequalities are false, then,

SeqHub
∧

1,T1(t−1) +B1(T1(t− 1), t) > µ1

= µi + ∆i

≥ µi + 2Bi(Ti(t− 1), n)
≥ µi + 2Bi(Ti(t− 1), t)
≥ SeqHub
∧

i,Ti(t−1) +Bi(Ti(t− 1), t)

which implies that At ̸= i.

Step 1. We have that P ((33) is true) ≤ 14/t.
Proof:
Then, we have that,

P
(

SeqHub
∧

1,T1(t−1) +B1(T1(t− 1), t) ≤ µ1

)
≤

t∑
s=1

P
(

SeqHub
∧

1,s +B1(s, t) ≤ µ1

)
=

t∑
s=⌈slim(t)⌉

P
(

SeqHub
∧

1,s − µ1 ≤ −B1(s, t)
)

Then, use Theorem 4, we get

P
(

SeqHub
∧

1,T1(t−1) +B1(T1(t− 1), t) ≤ µ1

)
≤

t∑
s=⌈slim(t)⌉

14e− log(t2)

≤
t∑

s=⌈slim(t)⌉

14
t2

≤ 14
t
.

Step 2. Similarly, for arm i, we have

P
(

SeqHub
∧

i,Ti(t−1) ≥ µi +Bi(Ti(t− 1), t)
)

≤ 14
t

Proof: We have,

P
(

SeqHub
∧

i,Ti(t−1) ≥ µi +Bi(Ti(t− 1), t)
)

≤
t∑

s=⌈slim(t)⌉

P
(

SeqHub
∧

i,s − µi ≥ Bi(s, t)
)

≤
t∑

s=⌈slim(t)⌉

14e− log(t2) ≤ 14
t
.
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Step 3. Let v ∈ N. If one of the two following conditions are true, then for all t such that P2(Ti(t− 1)) ≥ v,
we have ∆i ≥ 2Bi(Ti(t− 1), t) (i.e. Equation (35) is false).
Condition 1: if ∆̃i,ε > 12σ

2
i

βi

(√
2 + 2βi

σi
ε
)2

and v ≤ log(t) 96βi

9∆̃i,ε

.

Condition 2: if ∆̃i,ε ≤ 12σ
2
i

βi

(√
2 + 2βi

σi
ε
)2

and v ≤ 50
9∆̃2

i,ε

(
σi

√
2 + 2βiε

)2 log(t).

Proof: We search for the smallest value v ≥ slim(t) such that ∆i verifies

∆i ≥ 2Bi(v, t) = 2rv(1/t2) + 2

 1

p−
√

log(t2)
2v − ε

− 1

 rP2(v)(1/t2) + 2bi.

First, we simplify the expression, having that v ≥ slim(t), we have

log(t2)
2v ≤ 128(p− 5ε)2

98(1 + 9/7)2 ≤ (p− ε)2

4 ,

hence rv(1/t2) ≤ 2
(p−ε)

(
σi

√
2 log(t2)

v

)
and we simplify the condition to

∆i ≥ 4
(p− ε)

(
σi

√
2 log(t2)

v
+ βi

log(t2)
3v + 2βiε

√
log(t2)
v

+ 2βiε
)

+ 4
p− ε

(
σi

√
2 log(t2)
P2(v) + βi

log(t2)
3P2(v) + 2βiε

√
log(t2)
P2(v) + 2βiε

)
+ 2bi

≥ 12
(p− ε)

(
σi

√
2 log(t2)

v
+ βi

log(t2)
3v + 2βiε

√
log(t2)
v

+ 2βiε
)

+ 2bi

where we used that P2(v) ≥ v/2.

Let us denote ∆̃i,ε = (∆i − 2bi)(p− ε) − 24βiε, we are searching for v such that

βi
log(t2)

3v +
√

log(t2)
v

(
σi

√
2 + 2βiε

)
− ∆̃i,ε

12 ≤ 0

This is a second order polynomial in
√

log(t2)/v.

If ∆̃i,ε > 0, then the smallest v > 0 is

√
log(t2)
v

= 3
2βi

−
(
σi

√
2 + 2εβi

)
+

√(
σi

√
2 + 2βiε

)2
+ ∆̃i,εβi

9

 .

First setting: if ∆̃i,ε > 36σ
2
i

βi

(√
2 + 2βi

σi
ε
)2

,

In that case, we have

√
log(t2)
v

≥ 3
2βi

−
(
σi

√
2 + 2βiε

)
+

√
βi∆̃i,ε

9

 ≥ 3
2βi

√
βi∆̃i,ε

36 =

√
∆̃i,ε

16βi

Hence, v ≤ log(t) 32βi

∆̃i,ε

.
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Second setting: if ∆̃i,ε ≤ 36σ
2
i

βi

(√
2 + 2βi

σi
ε
)2

, then we use Lemma 9, using that

∆̃i,εβi

9
(
σi

√
2 + 2βiε

)2 ≤ 4

and the fact that
√

1+4−1
4 ≥ 3

10 , we get,√
log(t2)
v

≥ ∆̃i,ε

20
(
σi

√
2 + 2βiε

)
Hence,

v ≤ 40
∆̃2
i,ε

(
σi

√
2 + 2βiε

)2
log(t).

Step 4. Using All the previous steps, we prove the theorem.
Proof: We have

E[Ti(t)] = E

[
t∑
t=1

1{At = i}

]

≤ ⌊max(v, 2slim(t))⌋ + E

 t∑
t=⌊max(v,2slim(t))⌋+1

1{At = i and (35) is false}


≤ ⌊max(v, 2slim(t))⌋ + E

 t∑
t=⌊max(v,2slim(t))⌋+1

1{(33) or (34) or (36) is true}


= ⌊max(v, 2slim(t))⌋ +

t∑
t=⌊min(v,2slim(t))⌋+1

P ((33) or (34) is true)

≤ ⌊max(v, 2slim(t))⌋ + 2
t∑

t=⌊min(v,2slim(t))⌋+1

14
t

using the harmonic series bound by log(t) + 1, we have

E[Ti(t)] ≤ max(v, 2slim(t)) + 28(log(t) + 1)

Then, we replace the value of v,

First setting: ∆̃i,ε > 36σ
2
i

βi

(√
2 + 2βi

σi
ε
)2

E[Ti(t)] ≤ log(t) max
(

32βi
∆̃i,ε

,
8

(p− 5ε)2

(
1 + 2

√
2
(
ε ∨ 9

14
√

2

))2
)

+ 28(log(t) + 1)

Second setting: if ∆̃i,ε ≤ 36σ
2
i

βi

(√
2 + 2βi

σi
ε
)2

, then

E[Ti(t)] ≤ log(n) max
(

40
∆̃2
i,ε

(
σi

√
2 + 2βiε

)2
,

8
(p− 5ε)2

(
1 + 2

√
2
(
ε ∨ 9

14
√

2

))2
)

+ 28(log(t) + 1).

Finish the proof of the Theorem using the given values for the constants βi, ε, p.
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B.3 Lemmas for concentration of robust estimators

B.3.1 Proof of Lemma 7: Controlling Variance of Influence of Huber’s Estimator

Let ρβ be Huber’s loss function, with ψβ = ρ′
β . We have that for any x > 0, ψβ(x)2 ≤ 2ρβ(x). Hence,

Var(ψβ(Y − Hubβ(P ))) = E[ψβ(Y − Hubβ(P ))2] ≤ 2E[ρβ(Y − Hubβ(P ))].

Then, use that by definition of Hubβ(P ), Hubβ(P ) is a minimizer of θ 7→ E[ρβ(Y − θ)], hence,

Var(ψβ(Y − Hubβ(P ))) ≤ 2E[ρβ(Y − E[Y ])].

and finally, use that ρβ(x) ≤ x2/2 to conclude.

B.3.2 Proof of Lemma 8 : Concentrating Huber’s Estimator by Concentrating the Influence

For all n ∈ N∗, λ > 0, let

fn(λ) = sign(∆n)
n

n∑
i=1

ψβ(Xi − Hubβ(P ) − λ sign(∆n)),

where ∆n = Hubβ(P ) − Hubβ(Xn
1 ).

Step 1. For any λ > 0, P(|∆n| ≥ λ) ≤ P(fn(λ) ≥ 0).
Proof: For all y ∈ R, let Jn(y) = 1

n

∑n
i=1 ρβ(Xi − y) we have,

J ′′
n(y) = 1

n

n∑
i=1

ψ′
β (Xi − y) .

In particular, having fn(λ) = − sign(∆n)J ′(Hubβ(P ) + λ sign(∆n)) if we take the derivative of fn with
respect to λ, we have the following equation

∂

∂λ
fn(λ) = − sign(∆n)2J ′′

n(Hubβ(P ) + λ sign(∆n))

≤ − 1
n

n∑
i=1

ψ′
β(Xi − Hubβ(P ) − λ sign(∆n)). (37)

Then, because ψ′
β is non-negative, the function λ 7→ fn(λ, ) is non-increasing. Hence, for all n ∈ N∗ and

λ > 0,
|∆n| ≥ λ ⇒ fn(|∆n|) = 0 ≤ fn(λ),

Hence,

P(|∆n| ≥ λ) ≤ P(fn(λ) ≥ 0). (38)

Step 2. For all λ > 0,
fn(λ) ≤ fn(0) − λ inf

t∈[0,λ]
|f ′
n(t)| .

Proof: We apply Taylor’s inequality to the function fn. As fn is non-increasing (because its derivative
is non-positive, see Equation (37)), we get

fn(λ) ≤ fn(0) − λ inf
t∈[0,λ]

|f ′
n(t)| .
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Step 3. Let mn = E
[
inft∈[0,λ]

1
n

∑n
i=1 ψ

′
β(X ′

i − Hubβ(P ) − t)
]
. With probability larger than 1 − 2e−2nη2 ,

inf
t∈[0,λ]

|f ′
n(t))| ≥ mn − 2η − ε,

Proof: Write that Xi = (1 − Wi)Yi + WiZi where W1, . . . ,Wn are i.i.d Bernoulli random variable with
mean ε, Y1, . . . , Yn are i.i.d ∼ P and Z1, . . . , Zn are i.i.d with law H.

From equation (37),

|f ′
n(t))| ≥ 1

n

n∑
i=1

ψ′
β(Xi − Hubβ(P ) − t sign(∆))

≥ 1
n

n∑
i=1

1{Wi = 0}ψ′
β(Yi − Hubβ(P ) − t sign(∆)) (39)

+ 1
n

n∑
i=1

1{Wi = 1}ψ′
β(Zi − Hubβ(P ) − t sign(∆)) (40)

≥ 1
n

n∑
i=1

ψ′
β(Yi − Hubβ(P ) − t sign(∆)) (41)

+ 1
n

n∑
i=1

1{Wi = 1}
(
ψ′
β(Zi − Hubβ(P ) − t sign(∆)) − ψ′

β(Wi − Hubβ(P ) − t sign(∆))
)

(42)

Hence, because ψ′
β ∈ [0, 1], we have

|f ′
n(t))| ≥ 1

n

n∑
i=1

ψ′
β(Yi − Hubβ(P ) − t sign(∆)) − 1

n

n∑
i=1

1{Wi = 1}) (43)

The right-hand side depends on the infimum of the mean of n i.i.d random variables in [0, 1]. Hence, the
function

Z(Xn
1 ) 7→ sup

t∈[0,λ]

n∑
i=1

ψ′
β(X ′

i − Hubβ(P ) − t)

satisfies, by sub-linearity of the supremum operator and triangular inequality, the bounded difference prop-
erty, with differences bounded by 1. Hence, by Hoeffding’s inequality, we get with probability larger than
1 − e−2nη2 ,

inf
t∈[0,λ]

|f ′
n(t))| ≥E

[
inf

t∈[0,λ]

1
n

n∑
i=1

ψ′
β(X ′

i − Hubβ(P ) − t)
]

− η − 1
n

n∑
i=1

1{Wi = 1})

and using Hoeffding’s inequality to control 1
n

∑n
i=1 1{Wi = 1}, we have with probability larger than 1 −

2e−2η2/n,

inf
t∈[0,λ]

|f ′
n(t))| ≥E

[
inf

t∈[0,λ]

1
n

n∑
i=1

ψ′
β(X ′

i − Hubβ(P ) − t)
]

− 2η − ε

Step 4. For λ ∈ (0, β/2),

P ( |∆n| ≥ λ) ≤ P

( ∣∣∣∣∣ 1n
n∑
i=1

ψβ(Xi − Hubβ(P ))
∣∣∣∣∣ ≥ λ (mn − η − ε)

)
+ 2e−2nη2

.
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Proof: For any λ > 0, we have

P(|∆n| ≥ λ) ≤ P(fn(λ) ≥ 0) (from Step 1)

≤ 1 − P
(
fn(0) − λ inf

t∈[0,λ]
|f ′
n(t)| ≤ 0

)
(from Step 2)

≤ 1 − P (fn(0) ≤ λ (mn − 2η − ε)) + 2e−2nη2
(from Step 3)

= P

(∣∣∣∣∣ 1n
n∑
i=1

ψβ(Xi − Hubβ(P ))
∣∣∣∣∣ ≥ λ (mn − η − ε)

)
+ 2e−2nη2

. (44)

Step 5. We prove that mn ≥ p, and hence

P (|∆n| ≥ λ) ≤ P

(∣∣∣∣∣ 1n
n∑
i=1

ψβ(Xi − Hub(P ))
∣∣∣∣∣ ≥ λ (p− η − ε)

)
+ 2e−2nη2

Proof: For all λ ≤ β/2,

E

[
inf

t∈[0,λ]

1
n

n∑
i=1

ψ′
β(X ′

i − Hubβ(P ) − t)
]

= E

[
inf

t∈[0,λ]

1
n

n∑
i=1

1{|X ′
i − Hubβ(P ) − t| ≤ β}

]

≥ E

[
1
n

n∑
i=1

1{|X ′
i − Hubβ(P )| ≤ β − λ}

]

≥ E

[
1
n

n∑
i=1

1{|X ′
i − Hubβ(P )| ≤ β/2}

]
= p

Then, we plug the bound on mn found in the previous step in equation (44), we get for any η > 0 and
λ ∈ (0, β/2],

P(|∆n| ≥ λ) ≤ P

(∣∣∣∣∣ 1n
n∑
i=1

ψβ(Xi − Hubβ(P ))
∣∣∣∣∣ ≥ λ (p− η − ε)

)
+ 2e−2nη2

B.3.3 Proof of Lemma 9: Algebra tool for bounding polinomial roots

The solutions of the second order polynomial indicate that x must verify

x ≥ −b+
√
b2 + 4ac

2a ≥ b

2a

(
−1 +

√
1 + 4ac

b2

)
.

Then, use that the function x 7→
√
x+ 1 is concave and hence the graph of x 7→

√
x+ 1 is above its chords

and we have for any x ∈ [0, d],
√

1 + x ≥ 1 + x
√
d+1−1
d . Hence,

x ≥ b

2a

(
4ac(

√
d+ 1 − 1)
db2

)
= 2c(

√
d+ 1 − 1)
db

.
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B.3.4 Proof of Lemma 10: Algebra on Student’s distribution

We have,

∫
R

(
1 + (y+a)2

d

) d+1
2

(
1 + y2

d

)d+1 dy =
∫
R

d+1
2∑
l=0

(d+1
2
l

)
(y + a)2l

dl
(

1 + y2

d

)d+1 dy

=
∫
R

d+1
2∑
l=0

2l∑
j=0

(d+1
2
l

)(
2l
j

)
yja2l−j

dl
(

1 + y2

d

)d+1 dy

=
d+1

2∑
l=0

2l∑
j=0

(d+1
2
l

)(
2l
j

)∫
R

yja2l−j

dl
(

1 + y2

d

)d+1 dy

Remark that the integral is 0 if j is odd. Hence,

∫
R

(
1 + (y+a)2

d

) d+1
2

(
1 + y2

d

)d+1 dy =
d+1

2∑
l=0

l∑
j=1

(d+1
2
l

)(
2l
2j

)
a2l−2j

dl

∫
R

y2j(
1 + y2

d

)d+1 dy

Then, we compute the integrals. By change of variable u = y/d, we have∫
R

y2j(
1 + y2

d

)d+1 dy = dj+1/2
∫
R

u2j

(1 + u2)d+1 du ≤ 2dj+1/2

and for l = j,
d+1

2∑
l=0

(d+1
2
l

)
1
dl

∫
R

y2l(
1 + y2

d

)d+1 dy =
∫
R

(1 + y2/d) d+1
2(

1 + y2

d

)d+1 dy

Hence,

∫
R

(
1 + (y+a)2

d

) d+1
2

(
1 + y2

d

)d+1 dy ≤ 2
d+1

2∑
l=1

l−1∑
j=0

(d+1
2
l

)(
2l
2j

)
a2l−2j

dl
dj+1/2 +

∫
R

(1 + y2/d) d+1
2(

1 + y2

d

)d+1 dy

= 2
d+1

2∑
l=1

a2l
l−1∑
j=0

(d+1
2
l

)(
2l
2j

)
a−2j

dl
dj+1/2 +

∫
R

(1 + y2/d) d+1
2(

1 + y2

d

)d+1 dy

≤ 2
d+1

2∑
l=1

a2l
l−1∑
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Using that
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C Additional experimental results

C.1 Sensitivity to β and ε

In this section, we illustrate the impact of the choice of β and ε on the estimation.

Choice of β (Figure 5(b)): The choice of β is a trade-off between the bias (distance |Hubβ(P ) − E[X]|
which decreases as β go to infinity) and robustness (when β goes to 0, Hubβ(P ) goes to the median). To
illustrate this trade-off we use the Weibull distribution for which can be very asymmetric. We use a 3-
armed bandit problem with shape parameters (2, 2, 0.75) and scale parameters (0.5, 0.7, 0.8) which implies
that the means are approximately (0.44, 0.62, 0.95). These distributions are very asymmetric, hence the bias
|Hubβ(P ) −E[X]| is high and in fact even though arm 3 has the optimal mean, arm 2 will have the optimal
median, the medians are given by (0.41, 0.58, 0.49). In this experiment we don’t use any corruption as we
don’t want to complicate the interpretation. As expected by the theory, we get that βi should not be too
small or too large but it should be around 4σi.

Choice of ε (Figure 5(a)): To illustrate the dependency in ε, we also use the Weibull distribution to
show the dependency in ε with the same parameters as in the previous Weibull example, except that we
choose βi = 5σi which is around the optimum found in the previous experiment and we corrupt with 2%
of outliers (this is the true ε while we will make the ε used in the definition of the algorithm vary). The
outliers are constructed as in Section 7. The effect of the parameter ε is difficult to assess because ε has an
impact on the length of force exploration that we impose at the beginning of our algorithm (the slim).

Figure 4: Cumulative regret plots for different values of the parameters ε and β on a Weibull dataset.
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C.2 Corrupted bandits with adversarial algorithms

To illustrate the performances of classical algorithms on corrupted bandits problems, we redo the experiments
from Section 7 with algorithms from the adversarial literature (Exp3 and FTRL with log-barrier). We also
include Thompson sampling in the case of Bernoulli inlier distributions. The results are rendered in Figure 5.
These results show that adversarial algorithms like EXP3 and FTRL, and also Thompson Sampling are very
inefficient when the corruption is important as in the case of the Pareto experiments with ε = 0.03 and
ε = 0.05.
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Figure 5: Cumulative regret plot of the algorithms on a corrupted Bernoulli (above), Student’s (middle)
and Pareto (below) reward distributions with various corruption levels ε. Lower corrupted regret indicates
better performance for an algorithm.
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