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● Orphan genes are genes that have no identifiable homologs. They are systematically found in eukaryotic genomes, and represent up 
to 30% of the genes [1].  

● The emergence of such genes is an important mechanism of functional acquisition during evolution. They may originate from 
duplication or horizontal transfer events followed by rapid divergence. Another possibility is that they may emerge from non-genic 
regions, which is known as de novo gene birth [2]. Hence, there is a debate on the real origin of orphan genes [3].

● The most common method for identifying orphan genes involves the search for homologues (identification of their absence). Then, 
their origin can be studied by syntenic approaches. However, these approaches cannot always distinguish between de novo genes 
and the ones that diverged significantly from their ancestor.

● This study introduces a pipeline that combines homology, transcriptomics, and ancestral sequence 
reconstruction to identify and investigate the origin of orphan genes. This makes it possible to correctly 
distinguish between orphan genes that have diverged from pre-existing genes and those that have 
emerged de novo. To date, results indicate that 24% of Meloidogyne genomes consist of orphan genes. At 
least 7% of these are the result of de novo gene birth. Yet, it should be kept in mind that the results 
depend highly on the quality of genomes in disposition. 

● Despite the fact that some effectors in Meloidogyne are coded by non-homologous genes, there is still no 
connection between the orphan genes and their functions in Meloidogyne. Thus, we are exploring 
structural approaches to better characterize these gene-structure-functions associations.
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Identification of homology relationships in nematoda
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● The biological purpose is to apply the built pipeline to the genus 
Meloidogyne of root-knot nematodes, which cause a huge global 
crop loss. The species of this genus secrete parasitism effector, 
proteins, many of which are encoded by genes having no 
identifiable homologues [4].
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Figure 1: Developed bioinformatics pipeline to identify orphan genes and to study their evolution in Meloidogyne.
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● We developed a bioinformatics pipeline to identify orphan 
genes and investigate their emergence dynamics and 
possible de novo origin. 

Figure 3: Species tree of Meloidogyne species with their closest outgroup species P.penetrans. 
Species tree with 8 Meloidogyne species corresponding to three different clades (represented at the right of the species) of 

Meloidogyne genus along with  P. penetrans, which is  the closest outgroup to this genus. Each ancestral node is represented by a 
dot. Number of orphan orthogroups emerged in each node is given by a value next to it. 
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Figure 4: Example of a de novo gene birth that emerged inside the clade I 
A. Alignment of the reconstructed ancestral sequence of an example orthogroup common to all members of clade I except for M. 
enterolobii to the genome of M.enterolobii by Exonerate [15]. Brown represents exons and dark blue represents introns. Stop codons 
are represented by ***. Insertion-deletion positions (not a multiple of 3) are represented by #. Good splicing sites are in white, 
mutated ones in red. B. Verification of the syntenic conservation of the identified de novo gene. For the position where ancestral 
sequence aligns to M.enterolobii, closest 3 genes in both directions are studied to determine the conservation of the region. Lines 
corresponds to introns and boxes corresponds to genes. Blue boxes corresponds to the de novo gene and blue cross is where it 
aligns on M.enterolobii. The color code indicates where the same genes align on different species.
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Figure 2: Number of orphan and non 
orphan genes for 8 Meloidogyne species 

studied 
Barplot representing the number of orphan genes 
identified for each of the 8 Meloidogyne species. 

Each bar corresponds to the total number of 
genes of each species. Light blue represents 
orphans and dark blue represents non orphan 

genes.
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Meloidogyne orphan gene candidates in nematoda 

M. g
ram

ini
co

la

M. c
hit

woo
di

M. h
ap

la

M. e
nte

rol
ob

ii

M. a
ren

ari
a

M. ja
va

nic
a

M. in
co

gn
ita

M. lu
ci


