

Simplicillium pech-merlensis, a new fungal species isolated from the air of the Pech-Merle show cave

Johann Leplat, Alexandre Francois, Faisl Bousta

▶ To cite this version:

Johann Leplat, Alexandre Francois, Faisl Bousta. Simplicillium pech-merlensis, a new fungal species isolated from the air of the Pech-Merle show cave. Phytotaxa, 2021, 521 (2), pp.80-94. 10.11646/phytotaxa.521.2.2 . hal-04615638

HAL Id: hal-04615638 https://hal.science/hal-04615638

Submitted on 18 Jun 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

- 1 Simplicillium pech-merlensis, a new fungal species isolated from the air of the
- **Pech-Merle show cave**
- 4 JOHANN LEPLAT^{1,2*}, ALEXANDRE FRANCOIS^{1,2}, FAISL BOUSTA^{1,2}
- 5 ¹ Laboratoire de Recherche des Monuments Historiques (LRMH), Ministère de la Culture, 29 rue
- 6 de Paris, 77420 Champs-sur-Marne, France
- ⁷ ² Sorbonne Universités, Centre de Recherche sur la Conservation (CRC, USR 3224), Museum
- 8 national d'Histoire naturelle, Ministère de la Culture, CNRS; CP21, 36 rue Geoffroy-Saint-Hilaire,

- 9 75005 Paris, France
- *johann.leplat@culture.gouv.fr*
- 11 <u>alxandre.francois@culture.gouv.fr</u>
- 12 <u>faisl.bousta@culture.gouv.fr</u>
- 13 *corresponding author e-mail: johann.leplate.com/e.gouv.fr

26 Abstract

27

An original fungal strain has been recovered during an aerobiological survey in the Pech-Merle 28 show cave (France). The use of multi-locus (ITS, LSU, SSU RPB1, RPB2 and TEF-1α) 29 phylogenetic analysis of the strain by maximum likelihood and by Bayesian inference coupled with 30 a morphological characterization allowed us to place it in the Simplicillium genus as Simplicillium 31 pech-merlensis sp. nov. This new species seems morphologically close to S. calcicola and S. album, 32 which were also first isolated from a cave habitat. This paper discusses the phylogenetic place of S. 33 pech-merlensis and some other species in the genus Simplicillium. 34 35 **Keywords** 36 37 38 Cave, Cordycipitaceae, new species, Simplicillium pech-merlensis 39 Introduction 40 41 Caves are generally considered as a quasi-extreme environment for microbial life, characterized by 42 a lack of natural light relatively low inputs of organic nutrients, high humidity and constant, usually 43 low temperatures (Bastian & Alabouvette 2009; Kuzmina et al. 2012; Northup & Lavoie 2001). The 44 environmental conditions of life in caves are usually affected by various factors such as air currents, 45 46 water movements, chemolithoautotrophy or human visitors (Barton & Jurado 2007; Kuzmina et al. 2012; Ogórek et al. 2013; Ortiz et al. 2014). However, a high microbial diversity is found in caves, 47 48 including a fungal diversity (Vanderwolf et al. 2013; Nováková 2009) that plays an important role in cave ecosystem, for example in the biomineralization process (Barton & Northup 2007). 49 Although it had been confirmed that the extreme and specific environment of caves meant that they 50

contain a highly specific fungal diversity, Zhang *et al.* (2018) found that the divergence time of the
new fungal species described in caves was incompatible with a cave-borne speciation. These authors
therefore concluded that these fungi had travelled from other environments, although they had not
yet been reported in terrestrial ecosystems. Whatever the origin of these species, caves are a
remarkable source for the discovery of new fungal species (Zhang *et al.* 2017; Zhang *et al.* 2020b;
Jiang *et al.* 2017).

The Pech-Merle show cave (Occitanie, France) is famous for its Palaeolithic rupestrian 57 representations dating back between 25 and 15 ka (Pastoors et al. 2017), and notably for its "dappled 58 horses" (Fig. 1). This paper focuses on a fungal species that was recovered from the air of this cave 59 during an aerobiological survey. The molecular identification of the strain through the use of the 60 nuclear ribosomal internal transcribed spacer (ITS) region was unsatisfactory, with the closest 61 species matching at a rate below 90 %. These species belonged to the genus Beauveria Vuill., the 62 morphological features of which bore no similarities to the isolated strain. Following this 63 misidentification, we decided to study the position of this new species among the Cordycipitaceae 64 family, of which Beauveria is a monophyletic group (Sung et al. 2007; Kepler et al. 2017). The 65 study of the new species in relation to the context of the Cordycipitaceae family leads us to consider 66 the Simplicillium Zare & W. Gams genus and related genera. 67

The genus *Simplicilium* was introduced by Zare & Gams (2001) to accommodate species 68 that are morphologically close to the genus *Lecanicillium* W. Gams & Zare, but lack branching 69 conidiophores and have mostly solitary phialides. These two genera were formerly placed in 70 71 Verticillium sect. Prostrata W. Gams, which was described by Gams (1971) for prostrate conidiophore-producing species. Simplicillium was recognized as a true clade among 72 73 Cordycipitaceae, while *Lecanicillium* is known to be a paraphylectic clade (Zare & Gams 2001; Kepler et al. 2017). Some species of the genus Lecanicillium were therefore transferred to the genus 74 Akanthomyces Lebert, but the name has been conserved for other species because of the difficulty 75

to place some of these species in other genera. Zare & Gams (2016) also underlined the molecular
closeness between *Simplicillium* genus and the new genus *Leptobacillium* Zare & W. Gams, which
is represented by its type species *L. leptobactrum* (W. Gams) Zare & W. Gams composed of strains
formerly identified as *Veticillium leptobactrum* W. Gams. Okane *et al.* (2020) therefore proposed
to move several *Simplicillium* species into the *Leptobacillium* genus.

The genus Simplicillium initially included four species: the type species Simplicillium 81 lanosoniveum (J.F.H. Beyma) Zare & W. Gams, S. obclavatum (W. Gams) Zare & W. Gams, S. 82 lamellicola (F.E.V. Sm.) Zare & W. Gams and S. wallacei H.C. Evans. Simplicitlium wallacei 83 (teleomorph: Torrubiella wallacei H.C. Evans) was later transferred into the Lecanicillium genus 84 on the basis of molecular studies (Sung et al. 2007; Zare & Gams 2008). Today, the genus 85 Simplicillium includes nearly 20 species, including already accepted species and recently proposed 86 species (Wei et al. 2019; Chen et al. 2019; Kondo et al. 2020; Zhang et al. 2020b). The first species 87 88 described in Simplicillium genus were mainly fungiculous (Zare & Gams 2001), but other species among the genus have since been isolated from various substrates including insects, plants, soil or 89 water (Gomes et al. 2018; Chen et al. 2019; Liu & Cai 2012; Nonaka et al. 2013). Several 90 Simplicillium species are known to be bioactive compound producers (Fukuda et al. 2014; Dong et 91 al. 2018; Liang et al. 2017). The genus therefore shows potential applications in medicine as an 92 producer of antibiotics against bacteria and yeasts (Uchida et al. 2019; Rukachaisirikul et al. 2019), 93 as a means to control fungal plant pathogens (Dai et al. 2018; Ward et al. 2012), and a tool in the 94 biocontrol of insects and nematodes (Zhao et al. 2020; Lim et al. 2014; Skaptsov et al. 2017). 95

The species isolated in this study was characterized from its morphological and phylogenetic features. The preliminary phylogenetic study in the Cordycipitaceae family placed the species between *Torrubiella wallacei* and *Simplicillium* clade. The phylogenetic position of the species was therefore closely studied in comparison to *Simplicillium* genus and its molecularly close Leptobacillum genus after verifying that the species was closer to these two genera than to the
 Lecanicillium complex.

102

103 Materials & Methods

104

105 *Collection and isolation*

The strain was collected on the 7th October 2016 during air samplings in the Palaeolithic show cave 106 of Pech-Merle (Cabrerets, France, 44° 30' 27" N, 1° 38' 40" E; Fig. 2). A Duo SAS Super 360 air 107 sampler (VWR-pbi, Milan, Italy) was used to detect cultivable microorganisms in cave air. 50 L of 108 air was collected using a 219-hole impactor containing appropriate culture media in 55 mm Petri 109 dishes. Fungi were isolated on malt extract agar (MEA; Merck KGaA, Darmstadt, Germany). The 110 Petri dishes containing impacted media were then taken to the laboratory for analysis. The plates 111 were incubated in a IPP55 incubators (Memmert GmBH + Co. KG, Büchenbach, Germany) for 112 seven days at 24 °C. Fungi were then isolated from each other using the same culture conditions. 113

114

115 *Morphological study*

The macroscopic features were assessed on Malt Extract Agar and on Potato Dextrose Agar (PDA, VWR International, Radnor, USA) after a 10-day incubation at 5 °C, 25 °C or 30 °C. The microscopic features were assessed on MEA after a 10-day incubation at 25 °C. Observations were performed with a Jenavert optical microscope (Zeiss, Oberkochen, Germany) after treatment with lactophenol cotton blue solution (Pro-Lab Diagnostics, Richmond Hill, Canada). Microscopic characteristics were captured with an Lt365R digital camera (Teledyne Lumenera, Ottawa, Canada) using the Archimed program (Microvision Instruments, Evry, France).

123

The strains used by Wei *et al.* (2019) and by Zare & Gams (2008) were chosen as reference for *Simplicillium* and *Leptobacillium* genera respectively (Table 1). Additional strains and sequences related to species not included in Wei *et al.* (2019) and in Zare & Gams (2008) were also included by gathering information about these strains in the respective studies. For all these reference strains, any sequences relative to DNA regions that were not studied in these original studies were also added whenever they were available in the GeneBank. The names of the fungal species were updated with the current names of the species, as they are defined in the Mycobank (Crous *et al.* 2004).

133

134 DNA extraction, PCR amplification and sequencing

Fungal DNA was extracted as described by Edel et al. (2001). Appropriate primers (Table 2) were 135 used to amplify the nuclear ribosomal internal transcribed spacer (ITS) region, the large subunit of 136 nuclear encoded ribosomal DNA (LSU), the small subunit of nuclear encoded ribosomal DNA 137 (SSU), the translation elongation factor 1-alpha gene (TEF1- α), the largest subunit of RNA 138 polymerase II (RPB1) and the second largest subunit of RNA polymerase II (RPB2). PCR was 139 performed in 25 µl reactions, with 1 µl of template DNA, 1 U of Taq DNA polymerase (Invitrogen, 140 Carlsbad, USA), 2.5 µl of 10X Taq DNA polymerase buffer, 1 µl of 2 mmol l⁻¹ dNTPs (Thermo 141 Fisher Scientific, Waltham, USA) and 1.5 µl of each 10 µmol l⁻¹ primer (Eurogentec, Seraing, 142 Belgium). Amplifications were performed on a PrimeG thermocycler (Bibby Scientific, Stone, UK) 143 using the following parameters: a 4-minute step at 94 °C, followed by 30 cycles of 30 s at 94 °C, 30 144 s at the appropriate annealing temperature for each primer pair (Table 3), 40 s at 72 °C, and a final 145 10-minute extension step at 72 °C. PCR products were sequenced by Genoscreen (Lille, France) 146 using the same primer set. Generated sequences were submitted to the NCBI Genbank database 147 (Clark et al. 2016). 148

150 Sequence alignment and phylogenetic analyses

The sequences generated in this study were verified and assembled with BioEdit v. 7.2.5 (Hall 151 1999). The sequences related to reference strains were downloaded from the NCBI GenBank 152 database. Multiple sequence alignments for each studied DNA region were performed using the 153 FFT-NS-i alignment strategy from the MAFFT v. 7 web server (Katoh et al. 2019). The 154 uninformative gaps and ambiguous regions were removed using the Gblocks program v. 0.91.1 155 implemented in the NGPhylogeny.fr service, with the program set for a lightly stringent selection 156 (Minimum number of sequences for a conserved position: 50 % of the sequences + 1; Minimum 157 length of a block: 5; Allowed gap position: "with half";(Talavera & Castresara 2007; Lemoine et 158 al. 2019). The maximum likelihood (ML) analyses of concatenated regions were performed using 159 the graphical interface of RAxML v. 8 set to 1000 bootstrap iterations and the GTRGAMMA 160 substitution model (Stamatakis 2014; Edler et al. 2019). Bayesian inference (BI) analyses of 161 concatenated regions were performed using MrBayes v. 3.2.6 implemented in PhyloSuite v. 1.2.1, 162 based on a Markov Monte Carlo Chain (MCMC) set to two simultaneously executed runs for 163 10,000,000 generations with the GTRGAMMA substitution model (Ronquist et al. 2012; Zhang et 164 al. 2020a). Trees were sampled every 1000 generations, with 25 % of obtained trees being burned. 165 Generated trees were edited using MEGA X (Kumar et al. 2018). 166

167

168 **Results**

169

The phylogenetic study of *Simplicillium pech-merlensis* among 85 taxa of *Simplicillium* and *Leptobacillium* genera produced slight differences between the maximum likelihood and the Bayesian inference studies (Fig. 3 and 4). In both phylogenetic strategies, *Simplicillium pechmerlensis* was clearly separated of all other species known in *Simplicillium* and *Leptobacillium* genera.

Simplicillium pech-merlensis was located between the Leptobacillium and the Simplicillium 175 clades in 84% of the trees generated by the maximum likelihood study (Fig. 3), the closest diverging 176 species after S. pech-merlensis being S. formicidae W.H. Chen, C. Liu, Y.F. Liang & Z.Q. Liang. 177 Simplicillium chinense F. Liu & L. Cai, S. coffeaneum A.A.M. Gomes & O.L. Pereira and S. 178 filiforme R.M.F. Silva, R.J.V. Oliveira, Souza-Motta, J.L. Bezerra & G.A. Silva, were located in the 179 Leptobacillium clade in this study. 180 The Bayesian inference study placed Simplicillium pech-merlensis in the Simplicillium clade 181 between S. formicidae and the other species of the clade (Fig. 4). This placement was moderately 182 supported by a posterior probability of 0.61. Simplicillum chinense, Socoffeaneum and S. filiforme 183 184 were also located in the Leptobacillium clade in the Bayesian interence study as in the study led through maximum likelihood. 185 186 Taxonomy 187

- 189 Simplicillium pech-merlensis J. Leplat. sp. nov. (Fig. 5)
- **190** *CBS: 147188*
- 191 GenBank: MW031272 (MS), MW031268 (LSU), MW031740 (SSU), MW033222 (RPB1),
- 192 MW033223 (RPB2), MW033224 (TEF1-α), MW033221 (Tub)
- 193 Systematic position: Fungi, Dikarya, Ascomycota, Pezizomycotina, Sordariomycetes,
- 194 Hypocreophycetidae, Hypocreales, Cordycipitaceae
- **Holotype** FRANCE. Cabrerets, 44° 30' 27" N, 1° 38' 40" E, 07 October 2016. CBS 147188.
- 196 Isolated from the air of Pech-Merle cave.
- 197 *Etymology:* —The epithet *pech-merlensis* refers to the place where the species was isolated, namely
- 198 Pech-Merle cave.

Colonies on PDA reaching 20–22 mm diam. after 10 days at 25 °C, cottony, low convex,
margin entire to slightly undulated, white. Reverse white to pale yellow. No growth at 5 °C nor at
30 °C.

Colonies on MEA reaching 21–25 mm diam. after 10 days at 25 °C, cottony, low convex to raise with concave edge, margin entire, white. Reverse pale yellow to orangey. No growth at 5 °C nor at 30 °C.

Asexual morph: Hyphae hyaline and smooth-walled, Phialides $16-31 \times 0.9-1.2$ µm, mostly solitary, arising from prostrate hyphae, straight to slightly curved, tapering to the apex. *Conidia* 1celled, smooth-walled, variable in size and shape, Microconidia $1.8-3 \times 0.9-1.5$ µm, adhering in globose slimy heads, subglobose to ellipsoidal. Macroconidia $5-8 \times 1-1.6$ µm, fusiform. Octahedral crystals absent.

Notes: —Simplicillium pech-merlensis seems morphologically close to S. calcicola Z.F. Zhang, F. 210 211 Liu & L. Cai, S. album Z.F. Zhang & L. Cai and S. lamellicola. Furthermore, S. pech-merlensis, S. calcicola and S. album were isolated from the same habitat, i.e. karst cave. While S. pech-merlensis 212 213 was isolated from the cave air, S. calcicola was isolated from the limestone (Zhang et al. 2017) and S. album was isolated from the soil (Zhang et al. 2020b). Each species produces both microconidia 214 and macroconidia. Simplicillium lamellicola is distinguished from the three other species by the 215 production of octahedral crystals. Simplicillium album produces larger macroconidia (8.0-11.0 (-216 $(13.0) \times 2.0 - 3.5 \text{ µm})$ than S. pech-merlensis $(5-8 \times 1-1.6 \text{ µm})$ and S. calcicola $(4.5-8.0 \times 1.0-2.0 \text{ µm})$ 217 μm). Finally, Simplicillium pech-merlensis grows slower in culture media (20–22 mm diam after 10 218 days on PDA) than S. calcicola (34–38 mm diam after 10 days on PDA). 219

- 220
- 221
- 222
- 223

The phylogenetic study of the species isolated in the air of the Pech-Merle cave placed it in the 226 Simplicillium genus as the new species S. pech-merlensis. The Simplicillium genus is characterized 227 by the absence of branching conidiophores and by mostly solitary phialides (Zare & Gams 2001), 228 features that are also expressed by S. pech-merlensis. While S. pech-merlensis matched with the 229 Simplicillium clade when the phylogeny was studied through Bayesian inference, the study through 230 maximum likelihood raised the possibility that this new species could belong to Leptobacillum 231 genus due to the switch of placement between S. pech-merlensis and S. formicidae, S. pech-232 merlensis being placed between S. formicidae and the Leptobacillium clade. Different results 233 obtained with these two phylogenetic methods often stem from insufficient data in which case each 234 method treats ambiguities differently (Brooks et al. 2007). The DNA sequences available regarding 235 S. formicidae are ITS, RPB1, RPB2 while ITS, SSULSU, and TEF-1α sequences are mainly used 236 for other species included in this study, RPB1 and RPB2 sequences being scarcely available. This 237 difference in available DNA sequences could be the cause of the uncertain placement of S. 238 formicidae. Every species described to date in the genus *Leptobacillium* is characterized by chains 239 of conidia (Okane et al. 2020; Zare & Gams 2016; Sun et al. 2019), and this does not correspond to 240 the features of S. pech-merlensis. The new species was therefore described as a Simplicillium genus 241 242 member.

The morphological study highlighted the proximity between *S. pech-merlensis*, *S. album* and *S. calcicola* since each species produces both microconidia and macroconidia and is characterized by an absence of octahedral crystals (Zhang *et al.* 2017; Zhang *et al.* 2020b). Furthermore, the three species were first isolated from caves. However, the slower growth rate of *S. pech-merlensis* compared to *S. calcicola*, its smaller macroconidia compared to *S. album* and the significant differences noticed between the DNA sequences of these three species supported the description of a new species. Since only one specimen of the new species *S. pech-merlensis* has been isolated to
date, further isolations of other specimens of the same species are necessary in the future.

Besides these three species first isolated from a cave habitat, other *Simplicillium* species have also often been recovered in sediments, in bat guano, on bats or on insect cadavers in the cave environment (Vanderwolf *et al.* 2016; Kubátová & Dvorák 2005; Mitova *et al.* 2017; Nováková 2009). *Simplicillium* species were first described as fungiculous fungi (Zare & Gams 2001), but several species are known for their association with arthropods (Chen *et al.* 2019; Lim *et al.* 2014; Wei *et al.* 2019). It is therefore not surprising to frequently isolate *Simplicillium* species from caves, as arthropods are generally abundant in this type of environment (Jurado *et al.* 2008).

258 The number of new species proposed in the genus Simplicillium has rapidly increased over the past years. Since the description of S. calcicola in 2017 (Zhang et al. 2017), S. coffeaneum and 259 S. filiforme were described in 2018 (Gomes et al. 2018; Crous et al. 2018), S. cicadellidae W.H. 260 Chen, C. Liu, Y.F. Han, J.D. Liang & Z.Q. Liang, S. formicae D.P. Wei & K.D. Hyde, S. formicidae 261 and S. lepidopterum W.H. Chen, C. Liu, Y.F. Han, J.D. Liang & Z.Q. Liang were described in 2019 262 (Chen et al. 2019; Wei et al. 2019), and S. spumae N. Kondo, H. Iwasaki & Nonaka, S. album, S. 263 humicola and very recently S. vunnanense H. Yu, Y.B. Wang, Y. Wang & Zhu L. Yang were 264 described in 2020 (Kondo et al. 2029, Zhang et al. 2020b; Wang et al. 2020). Unfortunately, the 265 description of this last species was subsequent to our phylogenetic study. However, the chains of 266 conidia observed in S. yunnaense are not formed in S. pech-merlensis, leading to the reasonable 267 conclusion that these two species are different. 268

Changes occur rapidly in *Simplicillium* genus: Okane *et al.* (2020) have already proposed to move the recently described species *S. coffeaneum*, as well as *S. chinense*, to the *Leptobacillium* genus with the respective new names *L. coffeaneum* and *L. chinense* following an ITS and LSU sequencing study that placed these two species in the *Leptobacillium* clade. The results of our study confirmed this place in the *Leptobacillum* clade and a similar result was found concerning *S.*

filliforme, which could therefore also be moved to the *Leptobacillium* genus as *L. filiforme comb*. 274 nov. As we noted previously, with the exception of S. coffeaneum, all of these species and other 275 species that have already been described as belonging to the genus *Leptobacillium* produce chains 276 277 of conidia, which could therefore be a good phylogenetic marker to differentiate Leptobacillium from Simplicillium. It would also be interesting to examine the affiliation of the new species S. 278 yunnanense to Leptobacillium genus because this species also produces chains of conidia, and the 279 original study describing this species mainly focuses on the Cordycipitadeae family and did not 280 focus on Simplicillium and Leptobacillium genera. 281

282

283 Acknowledgment

284

285 We thank Joanna Lignot for English language editing.

286 **References**

- Barton H.A., Jurado V. (2007) What's up down there? Microbial diversity in caves. *Microbe- American Society for Microbiology* 2: 132-138.
- Barton H.A., Northup D.E. (2007) Geomicrobiology in cave environments: past, current and
- future perspectives. *Journal of Cave and Karst Studies* 69 (1): 163-178.
- Bastian F., Alabouvette C. (2009) Lights and shadows on the conservation of a rock art cave:
 the case of Lascaux Cave. *International Journal of Speleology* 38 (1): 55-60.
 https://doi.org/10.5038/1827-806X.38.1.6
- 295 Brooks D.R., Bilewitch J., Condy C., Evans D.C., Folinsbee, K.E., Fröbisch J., Halas D., Hill
- S., McLennan D.A., Mattern M. (2007) Quantitative phylogenetic analysis in the 21st
 century. *Revista Mexicana de Biodiversidad* 78 (2): 225-252.
- Castlebury L.A., Rossman A.Y., Gi-Ho S., Hyten A.S., Spatafora J.W. (2004) Multigene
 phylogeny reveals new lineage for *Stachybotrys chartarum*, the indoor air fungus.
- 300 *Mycological Research* 108 (8): 864-872. https://doi.org/10.1017/S0953756204000607
- Chen W.-H., Liu C., Han Y.-P. Liang J.-D., Tian W.-Y., Liang Z.-Q. (2019) Three novel insect associated species of *Simplicillium* (Cordycipitaceae, Hypocreales) from Southwest
- 303 China. *MycoKeys* 58: 83-102. https://doi.org/10.3897/mycokeys.58.37176
- Clark K., Karsch-Mizrachi I., Lipman D.J., Ostell J., Sayers E.W. (2016) GenBank. *Nucleic Acids Research* 44 (D1): D67-D72. <u>https://doi.org/10.1093/nar/gkv1276</u>
- 306 Crous P., Luangsa-Ard J., Wingfield M., Carnegie A., Hernández-Restrepo M., Lombard L.,
- 307 Roux J., Barreto R., Baseia I., Cano-Lira J. (2018) Fungal Planet description sheets:
- 308 785–867. Persoonia: Molecular Phylogeny and Evolution of Fungi 41: 238-417.
- 309 <u>https://doi.org/10.3767/persoonia.2018.41.12</u>

- Crous P.W., Gams W., Stalpers J.A., Robert V., Stegehuis G. (2004) MycoBank: an online
 initiative to launch mycology into the 21st century. *Studies in Mycology* 50 (1): 19-22.
- 312 Dai Y., Lin Y., Pang X., Luo X., salendra L., Wang J., Zhou X., Lu Y., Yang B., Liu Y. (2018)
- Peptides from the soft coral-associated fungus *Simplicillium sp.* SCSIO41209. *Phytochemistry* 154: 56-62. https://doi.org/10.1016/j.phytochem.2018.06.014
- 315 Dong Q., Dong R., Xing X., Li Y. (2018) A new antibiotic produced by the cyanobacterium-
- 316 symbiotic fungus Simplicillium lanosoniveum. Natural Product Research 32 (11):
 317 1348-1352. https://doi.org/10.1080/14786419.2017.1343320
- Edel V., Steinberg C., Gautheron N., Recorbet G., Alabouvette C. (2001) Genetic diversity of
- Fusarium oxysporum populations isolated from different soils in France. FEMS
 Microbiology Ecology 36: 61-71. https://doi.org/10.1014/s0168-6496(01)00119-2
- 321 Edler D., Klein J., Antonelli A., Silvestro D. (2019) raxmlGUI 2.0 beta: a graphical interface
- and toolkit for phylogenetic analyses, using RAxML. *BioRxiv*: 800912.
 https://doi.org/10.1101/800912
- Fukuda T., Sudoh Y., Tsuchiya Y., Okuda T., Igarashi Y. (2014) Isolation and biosynthesis of
 preussin B, a pyrrolidine alkaloid from *Simplicillium lanosoniveum*. *Journal of Natural*

326 *Products* 77 (4): 813-817. https://doi.org/10.1021/np400910r

- 327 Gams W. (1971) *Cephalosporium-artige schimmelpilze (Hyphomycetes)*. Gustav Fischer
 328 Verlag, Stuttgart, 262 pp.
- Gardes M., Bruns T.D. (1993) ITS primers with enhanced specificity for basidiomycetes application to the identification of mycorrhizae and rusts. *Molecular Ecology* 2 (2): 113-
- **331 118**. <u>https://doi.org/10.1111/j.1365-294X.1993.tb00005.x</u>
- Gomes A.A., Pinho D.B., Cardeal Z., Menezes H.C., De Queiroz M.V., Pereira O.L. (2018)
- 333 Simplicillium coffeanum, a new endophytic species from Brazilian coffee plants,

emitting antimicrobial volatiles. *Phytotaxa* 333 (2): 188-198.
https://doi.org/10.11646/phytotaxa.333.2.2

- Hall T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis
 program for Windows 95/98/NT. *Nucleic Acids Symposium Series* 41 (41): 95-98.
- Jiang J.-R., Cai L., Liu F. (2017) Oligotrophic fungi from a carbonate cave, with three new
- 339
 species
 of
 Cephalotrichum.
 Mycology
 8
 (3):
 64177.

 340
 https://doi.org/10.1080/21501203.2017
- Jurado V., Sanchez-Moral S., Saiz-Jimenez C. (2008) Entomogenous fungi and the
 conservation of the cultural heritage: A review. *International Biodeterioration &*
- 343
 Biodegradation 62 (4): 325-330. <u>https://doi.org/10.10100.ibiol.2008.05.002</u>
- Katoh K., Rozewicki J., Yamada K.D. (2019) MAFFT online service: multiple sequence
 alignment, interactive sequence choice and visualization. *Briefings in Bioinformatics* 20
 (4): 1160-1166. https://doi.org/10.1093/bit/bbx108
- Kepler R.M., Luangsa-Ard J.J., Hywel-Jones N.L., Quandt C.A., Sung G.-H., Rehner S.A.,
 Aime M.C., Henkel T.W., Sanjuan T., Zare R. (2017) A phylogenetically-based
 nomenclature for Cordycipitaceae (Hypocreales). *IMA fungus* 8 (2): 335-353.
- 350 <u>https://doi.org/105598/ima.ungus.2017.08.02.08</u>
- Kondo N., Iwasaki H., Tokiwa T., Ōmura S., Nonaka K. (2020) *Simplicillium spumae*(Cordycipitaceae, Hypocreales), a new hyphomycetes from aquarium foam in Japan. *Mycoscience* 61 (3): 116-121. https://doi.org/10.3897/mycokeys.72.55088
- Kubátová A., Dvorák L. (2005) Entomopathogenic fungi associated with insect hibernating in
 underground shelters. *Czech Mycology* 57 (3/4): 221-237.
 <u>https://doi.org/10.33585/cmy.57303</u>

- Kumar S., Stecher G., Li M., Knyaz C., Tamura K. (2018) MEGA X: molecular evolutionary
 genetics analysis across computing platforms. *Molecular Biology and Evolution* 35 (6):
 1547-1549. https://doi.org/10.1093/molbev/msy096
- Kuzmina L., Galimzianova N., Abdullin S., Ryabova A. (2012) Microbiota of the
 Kinderlinskaya cave (South Urals, Russia). *Microbiology* 81 (2): 251-258.
 https://doi.org/10.1134/S0026261712010109
- 363 Lemoine F., Correia D., Lefort V., Doppelt-Azeroual O., Mareuil F., Cohen-Boulakia S.,
- 364 Gascuel O. (2019) NGPhylogeny.fr: new generation phylogenetic services for non-365 specialists. *Nucleic Acids Research* 47 (W1): W260-W265.
- 366 <u>https://doi.org/10.1093/nar/gkz303</u>
- 367 Liang X., Nong X.-H., Huang Z.-H., Qi S.-H. (2017) Antifungal and antiviral cyclic peptides
- from the deep-sea-derived fungus *Simplicillium obclavatum* EIODSF 020. *Journal of Agricultural and Food Chemistry* 65 (25): 5114-5121.
 https://doi.org/10.1021/acs.jafe/bb/1238
- Lim S.Y., Lee S., Kong H.G., Lee J. (2014) Entomopathogenicity of *Simplicillium lanosoniveum* isolated in Korea. *Mycobiology* 42 (4): 317-321.
 https://doi.org/105941/MYCO.2014.42.4.317
- Liu F., Cai L. (2012) Morphological and molecular characterization of a novel species of
 Simplicillium from China. *Cryptogamie*, *Mycologie* 33 (2): 137-144.
 haps.rdoi.org/10.7872/crym.v33.iss2.2012.137
- Liu Y.J., Whelen S., Hall B.D. (1999) Phylogenetic relationships among ascomycetes: evidence
 from an RNA polymerse II subunit. *Molecular Biology and Evolution* 16 (12): 17991808. https://doi.org/10.1093/oxfordjournals.molbev.a026092
- 380 Lorblanchet M. (2018) Art pariétal : grottes ornées du Quercy. Ed. du Rouergue, Rodez, 480
 381 pp.

- Matheny P.B., Liu Y.J., Ammirati J.F., Hall B.D. (2002) Using RPB1 sequences to improve
 phylogenetic inference among mushrooms (Inocybe, Agaricales). *American Journal of Botany* 89 (4): 688-698. https://doi.org/10.3732/ajb.89.4.688
- 385 Mitova M.M., Iliev M., Nováková A., Gorbushina A.A., Groudeva V.I., Martin-Sanchez P.M.
- 386 (2017) Diversity and biocide susceptibility of fungal assemblages dwelling in the Art
- 387 Gallery of Magura Cave, Bulgaria. *International Journal of Speleology* 46 (1): 67-80.
- 388 <u>https://doi.org/10.5038/1827-806X</u>
- 389 Nonaka K., Kaifuchi S., Ōmura S., Masuma R. (2013) Five new Simplicitium species
- 390 (Cordycipitaceae) from soils in Tokyo, Japan. *Mycoscience* 54 (1): 42-53.
 391 <u>https://doi.org/10.1016/j.myc.2012.07.002</u>
- Northup D.E., Lavoie K.H. (2001) Geomicrobiology of caves: a review. *Geomicrobiology journal* 18 (3): 199-222. <u>https://doi.org/10.1080/01490450152467741</u>
- Nováková A. (2009) Microscopic fungi isolated from the Domica Cave system (Slovak Karst
 National Park, Slovakia). A review. *International Journal of Speleology* 38 (1): 71-82.
 https://doi.org/10.5038/1827 06X.38.1.8
- Ogórek R., Lejman A., Matkowski K. (2013) Fungi isolated from Niedźwiedzia Cave in Kletno
 (Lower Silesia, Poland). *International Journal of Speleology* 42 (2): 161-166.
- 399
 http://dx.dci.org/10.5038/1827-806X.42.2.9
- Okane I., Nonaka K., Kurihara Y., Abe J.P., Yamaoka Y. (2020) A new species of *Leptobacillim, L. symbioticum*, isolated from mites and sori of soybean rust. *Mycoscience* 61 (4): 165-171. https://doi.org/10.1016/j.myc.2020.04.006
- 403 Ortiz M., Legatzki A., Neilson J.W., Fryslie B., Nelson W.M., Wing R.A., Soderlund C.A.,
- 404 Pryor B.M., Maier R.M. (2014) Making a living while starving in the dark:
 405 metagenomic insights into the energy dynamics of a carbonate cave. *The ISME Journal*
- 406 8 (2): 478-491. <u>https://doi.org/10.1038/ismej.2013.159</u>

- 407 Pastoors A., Lenssen-Erz T., Breuckmann B., Ciqae T., Kxunta U., Rieke-Zapp D., Thao T.
 408 (2017) Experience based reading of Pleistocene human footprints in Pech-Merle.
- 409 *Quaternary International* 430: 155-162. <u>http://dx.doi.org/10.1016/j.quaint.2016.02.056</u>
- 410 Rehner S., Buckley E. (2005) A *Beauveria* phylogeny inferred from nuclear ITS and EF1-a
- 411 sequences: evidence for cryptic diversification and links to *Cordyceps* teleomorphs.
- 412 *Mycologia* 97 (1): 84-98. <u>https://doi.org/10.1080/15572536.2006.11832842</u>
- 413 Ronquist F., Teslenko M., Van Der Mark P., Ayres D.L., Darling A., Höhna S., Larget B., Liu
- L., Suchard M.A., Huelsenbeck J.P. (2012) MrBayes 3.2: efficient Bayesian
 phylogenetic inference and model choice across a large model space. *Systematic Biology*
- 416 61 (3): 539-542. <u>https://doi.org/10.1093/sysbio/sys029</u>
- Rukachaisirikul V., Chinpha S., Saetang P., Phongpaicht S., Jungsuttiwong S., Hadsadee S.,
 Sakayaroj J., Preedanon S., Temkitthawon P., Ingkaninan K. (2019) Depsidones and a
 dihydroxanthenone from the endophytic fungi *Simplicillium lanosoniveum* (J.F.H.
 Beyma) Zare & W. Gams PSU4H168 and PSU-H261. *Fitoterapia* 138: 104286.
 https://doi.org/10.1016/j.fitot.2019.104286
- 422 Skaptsov M., Smirnov S., Kutsev M., Uvarova O., Sinitsyna T., Shmakov A., Matsyura A.
- 423 (2017) Pathogenicity of *Simplicillium lanosoniveum* to *Coccus hesperidum*. Ukrainian
- 424 *Journal of Ecology* 7 (4): 689-691. <u>https://doi.org/10.15421/2017_1801</u>
- 425 Stamatakis A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of
 426 large phylogenies. *Bioinformatics* 30 (9): 1312-1313.
 427 https://doi.org/10.1093/bioinformatics/btu033
- Sun J.-Z., Ge Q.-Y., Zhu Z.-B., Zhang X.-L., Liu X.-Z. (2019) Three dominating hypocrealean
 fungi of the 'white mold spots' on acrylic varnish coatings of the murals in a Koguryo
 tomb in China. *Phytotaxa* 397 (3): 225-236. <u>https://doi.org/10.11646/phytotaxa.397.3</u>

- 431 Sung G.-H., Hywel-Jones N.L., Sung J.-M., Luangsa-ard J.J., Shrestha B., Spatafora J.W.
- 432 (2007) Phylogenetic classification of *Cordyceps* and the clavicipitaceous fungi. *Studies*433 *in Mycology* 57: 5-59. <u>https://doi.org/10.3114/sim.2007.57.01</u>
- 434 Talavera G., Castresana J. (2007) Improvement of phylogenies after removing divergent and
- 435 ambiguously aligned blocks from protein sequence alignments. *Systematic Biology* 56
- 436 (4): 564-577. <u>https://doi.org/10.1080/10635150701472164</u>
- Uchida R., Kondo A., Yagi A., Nonaka K., Masuma R., Kobayashi K., Tomoda H. (2019)
 Simpotentin, a new potentiator of amphotericin B activity against *Candida albicans*,
- 439produced by Simplicillium minatense FKI-4981. The Journal of Antibiotics 72 (3): 134-
- 440 140. <u>https://doi.org/10.1038/s41429-018-0128-x</u>
- 441 Vanderwolf K.J., Malloch D., McAlpine D.F. (2016) Fungt on white-nose infected bats (Myotis
- 442 spp.) in Eastern Canada show no decline in diversity associated with
 443 Pseudogymnoascus destructans (Ascomycota: Pseudeurotiaceae). International
- 444 *Journal of Speleology* 45 (1): 43-50. http://dx.doi.org/10.5038/1827-806X.45.1.1946
- Vanderwolf K.J., Malloch D., McAlpine D.F., Forbes G.J. (2013) A world review of fungi,
 yeasts, and slime moles in caves. *International Journal of Speleology* 42 (1): 77-96.

447 https://doi.org/10/5038/182/-806X.42.1.9

- Vilgalys R., Hester M. (1990) Rapid genetic identification and mapping of enzymatically
 amplified ribosomal DNA from several *Cryptococcus* species. *Journal of Bacteriology*450 1/2 (8): 4238-4246. <u>https://doi.org/10.1128/jb.172.8.4238-4246</u>
- 451 Wang Y.-B., Wang Y., Fan Q., Duan D.-E., Zhang G.-D., Dai R.-Q., Dai Y.-D., Zeng W.-B.,
- 452 Chen Z.-H., Li D.-D. (2020) Multigene phylogeny of the family Cordycipitaceae 453 (Hypocreales): new taxa and the new systematic position of the Chinese cordycipitoid 454 fungus *Paecilomyces hepiali*. *Fungal Diversity*: 1-46. <u>https://doi.org/10.1007/s13225-</u>
- 455 <u>020-00457-3</u>

456	Ward N.,	Robertson	С.,	Chanda	A.K.,	Schneider	R.	(2012)	Effects	of	Simplicilliun	n
457	lar	iosoniveum	on P	hakopsor	a pachy	<i>yrhizi</i> , the s	oybe	ean rust	pathoger	n, an	d its use as	a
458	bio	ological	contr	rol ag	gent.	Phytopat	holo	ву	102	(8):	749-760).
459	htt	ps://doi.org/	/10.10)94/PHY	ГО-01-	11-0031						

- 460 Wei D.-P., Wanasinghe D.N., Hyde K.D., Mortimer P.E., Xu J., Xiao Y.-P., Bhunjun C.S., To-
- 461
 anun C. (2019) The genus Simplicillium. MycoKeys 60: 69.92

 462
 https://doi.org/10.1016/j.simyco.2017.12.002
- 463 White T.J., Bruns T., Lee S.J.W.T., Taylor J.W. (1990) Amplification and direct sequencing of

464 *fungal ribosomal RNA genes for phylogenetics*. In: Innis MA, Gelfand DH, Sninsky JJ,

- 465 White TJ (eds) *PCR protocols: a guide to methods and opplications*. vol 1. Academic
- 466 Press, Inc, San Diego, pp 315-322
- Zare R., Gams W. (2001) A revision of *Verticillium* section Prostrata. IV. The genera *Lecanicillium* and *Simplicillium* gen. nov. Nova Hedwigia 73 (1): 1-50.
 <u>https://doi.org/10.1127/nova.hedwigia/71/2001/1</u>
- Zare R., Gams W. (2008) A revision of the *Verticillium fungicola* species complex and its
 affinity with the genus *Lecanicillium*. *Mycological Research* 112 (7): 811-824.
 http://dx.doi.org/t0.1016/j.nycres.2008.01.019
- Zare R., Gams W (2016) More white verticillium-like anamorphs with erect conidiophores. *Mycological Progress* 15 (10-11): 993-1030. <u>https://doi.org/10.1007/s11557-016-1214-</u>
- Zhang D., Gao F., Jakovlić I., Zou H., Zhang J., Li W.X., Wang G.T. (2020a) PhyloSuite: an
 integrated and scalable desktop platform for streamlined molecular sequence data
 management and evolutionary phylogenetics studies. *Molecular Ecology Resources* 20
- 479 (1): 348-355. <u>https://doi.org/10.1111/1755-0998.13096</u>

- Zhang Z.-F., Zhao P., Cai L. (2018) Origin of cave fungi. *Frontiers in Microbiology* 9: 1407.
 https://doi.org/10.3389/fmicb.2018.01407
- 482 Zhang Z.-F., Zhou S.-Y., Eurwilaichitr L., Ingsriswang S., Raza M., Chen Q., Zhao P., Liu F.,
- 483 Cai L. (2020b) Culturable mycobiota from Karst caves in China II, with descriptions of
- 484 33 new species. *Fungal Diversity*. <u>https://doi.org/10.1007/s13225-020-00453-7</u>
- 485 Zhang Z., Liu F., Zhou X., Liu X., Liu S., Cai L. (2017) Culturable mycobiota from Karst caves
- 486 in China, with descriptions of 20 new species. *Persoonia: Molecular Phylogeny and*487 *Evolution of Fungi* 39: 1-31. https://doi.org/10.3767/persoonia.2017.92.01
- 488 Zhao D., Zhu X., Chen L., Liu W., Chen J., Wang S., Zang J., Duan Y., Liu X. (2020) Toxicity
- 489 of a secondary metabolite produced by *Simplicillium chinense* Snef5 against the root-
- 490 knot nematode Meloidogyne incognita. Acta Agriculturae Scandinavica, Section B—
- 491 Soil & Plant Science: 1-6. https://doi.org/10.1080/09064710.2020.1791242

		Référence						<u>~</u> y		
Species	Collection number	ITS	SSU	LSU	TEF1-α	RPB1	RPB2			
Leptobacillium leptobactrum	CBS 414.70	MH859773	EF641846	MH871535	_	- ((Zare & Gams 2008)		
Leptobacillium leptobactrum	CBS 775.69	MH859422	_	MH871193	-	-		(Zare & Gams 2008)		
Leptobacillium leptobactrum	CBS 305.93	EF641871	-	-	-	- C	J Y	(Zare & Gams 2008)		
Leptobacillium leptobactrum	CBS 266.94	EF641870	-	-	-		J-	(Zare & Gams 2008)		
Leptobacillium leptobactrum	CBS 116723	EF641869	-	-	-		₩ -	(Zare & Gams 2008)		
Leptobacillium leptobactrum	CBS 109351	EF641863	-	-	- 0	× <u>}</u> -×	_	(Zare & Gams 2008)		
Leptobacillium leptobactrum	JCM 39056	LC496868	LC496903	LC496888	LC496918	-	_	(Kondo et al. 2020)		
Leptobacillium leptobactrum var. calidius	CBS 748.73	EF641867	EF641851	KU382227	<u> </u>	_	_	(Zare & Gams 2008)		
Leptobacillium leptobactrum var. calidius	CBS 703.86	EF641866	EF641850	KU382226		_	_	(Zare & Gams 2008)		
Leptobacillium leptobactrum var. calidius	CBS 251.81	KU382173	-		-	_	_	(Zare & Gams 2008)		
Leptobacillium leptobactrum var. calidius	CBS 160.94	KU382172	-	(-	- 1	_	_	(Zare & Gams 2008)		
Leptobacillium leptobactrum var. leptobactrum	CBS 774.69	MH859421	-	MH871192	_	_	_	(Zare & Gams 2008)		
Leptobacillium leptobactrum var. leptobactrum	IRAN 1230	-		KU382225	-	_	_	(Zare & Gams 2016)		
Leptobacillium leptobactrum var. leptobactrum	CBS 771.69	EF641868	EF641852	KU382224	-	_	-	(Zare & Gams 2008)		
Leptobacillium muralicola	CGMCC 3.19014	MH379983		MH379997	-	_	-	(Sun et al. 2019)		
Leptobacillium symbioticum	NBRC 104297	LC485674	-	AB378539	-	_	-	(Okane et al. 2020)		
Leptobacillium symbioticum	NBRC 113865	LC485673	V-	LC506046	-	_	-	(Okane et al. 2020)		
Leptobacillium symbioticum	OPTF00168	LC485675		LC506047	-	_	_	(Okane et al. 2020)		
Simplicillium album	CGMCC 3.19635	МК329133	_	MK329038	MK336068	_	_	(Zhang et al. 2020b)		
Simplicillium album	LC 12543	MK329134	-	MK329039	MK336069	_	_	(Zhang et al. 2020b)		
Simplicillium album	LO 12557	MK329135	-	MK329040	MK336070	-	-	(Zhang et al. 2020b)		
Simplicillium aogashimaense	JCM18167	AB604002	LC496889	LC496874	LC496904	_	-	(Wei et al. 2019)		
Simplicillium aogashimaense	JCM 18168	AB604004	LC496890	LC496875	LC496905	_	_	(Wei et al. 2019)		
Simplicillium calcicola	10 5371	KU746705	KY883300	KU746751	KX855251	-	KY883258	(Wei et al. 2019)		
Simplicillium calcicola	LC 5586	KU746706	KY883301	KU746752	KX855252	_	KY883257	(Wei et al. 2019)		
Simplicillium chinense	LC 1342	JQ410323	-	JQ410321	-	_	-	(Wei et al. 2019)		

TABLE 1. Fungal taxa used in the study of the position of *Simplicillium pech-merlensis* among *Simplicillium* and *Leptobacillium* genera.

Simplicillium chinense	LC 1345	NR155782	-	JQ410322	-	_	_	(Chen et al. 2019)
Simplicillium chinense	EXF 8701	KP034998	-	-	-	_	_	(Wei <i>et al.</i> 2019)
Simplicillium chinense	CGMCC 3.14970	JQ410324	-	-	-	_	-	(Wei et al. 2019)
Simplicillium cicadellidae	GY11011	MN006243	-	-	MN022263	MN022271		(Chen et al. 2019)
Simplicillium cicadellidae	GY11012	MN006244	-	-	MN022264	MN022272	A-	(Chen et al. 2019)
Simplicillium coffeanum	COAD 2057	MF066034	-	MF066032	-	-		(Wei <i>et al.</i> 2019)
Simplicillium coffeanum	COAD 2061	MF066035	-	MF066033	-	- 6	щ У	(Wei et al. 2019)
Simplicillium cylindrosporum	JCM 18169	AB603989	LC496891	LC496876	LC496906		- 1	(Wei et al. 2019)
Simplicillium cylindrosporum	JCM 18170	AB603994	LC496892	LC496877	LC496907		-	(Wei et al. 2019)
Simplicillium cylindrosporum	JCM 18171	AB603997	-	-	- 0	×)-×	-	(Wei et al. 2019)
Simplicillium cylindrosporum	JCM 18172	AB603998	-	-	4	-	_	(Wei et al. 2019)
Simplicillium cylindrosporum	JCM 18173	AB603999	-	-		_	-	(Wei et al. 2019)
Simplicillium cylindrosporum	JCM 18174	AB604005	-	A -	-	-	-	(Wei et al. 2019)
Simplicillium cylindrosporum	JCM 18175	AB604006	-		-	_	-	(Wei et al. 2019)
Simplicillium filiforme	URM 7918	MH979338	-	MH979399	¥ -	-	-	(Wei et al. 2019)
Simplicillium formicae	MFLUCC 18-1379	MK766511	MK765046	MK766512	MK926451	MK882623	-	(Wei et al. 2019)
Simplicillium formicidae	DL10041	MN006241)-	-	MN022269	MN022267	(Chen et al. 2019)
Simplicillium formicidae	DL10042	MN006242	K ₹	-	-	MN022270	MN022268	(Chen et al. 2019)
Simplicillium humicola	CGMCC 3.19573	MK329136		MK329041	MK336071	-	-	(Zhang et al. 2020b)
Simplicillium humicola	LC 12494	MK329137		MK329042	MK336072	-	-	(Zhang et al. 2020b)
Simplicillium lamellicola	UAMH 2055	AE108471	-	-	-	-	-	(Chen et al. 2019)
Simplicillium lamellicola	UAMH 4785	AE108480	Y	-	-	-	-	(Chen et al. 2019)
Simplicillium lamellicola	IMI 234410	AY555956	-	-	-	AY555900	-	(Wei et al. 2019)
Simplicillium lamellicola	CBS 116.25	AJ292393	AF339601	AF339552	DQ522356	DQ522404	DQ522462	(Wei et al. 2019; Zare & Gams 2008)
Simplicillium lamellicola	KYK00006	AB378533	-	-	-	-	-	(Chen et al. 2019)
Simplicillium lanosoniveum	CBS 101267	AJ292395	AF339603	AF339554	DQ522357	DQ522405	DQ522463	(Zare & Gams 2008)
Simplicillium lanosoniveum	CBS 962.72	EF641862	-	-	-	-	-	(Wei et al. 2019; Zare & Gams 2008)
Simplicillium lanosoniveum	\$\$BG2	MG807436	-	-	-	_	-	(Wei et al. 2019)
Simplicillium lanosoniveum	CBS 531.72	MH860557	-	-	-	-	-	(Wei et al. 2019)
Simplicillium lanosoniveum	CBS 321.72	MH860488	MK463995	_	_	-	_	(Wei <i>et al.</i> 2019)

Simplicillium lanosoniveum	vecl-02	KM035982	-	-	-	-	-	(Wei et al. 2019)
Simplicillium lanosoniveum	vecl-01	KM035981	-	-	-	-	-	(Wei et al. 2019)
Simplicillium lanosoniveum	Cs0701	EU939525	-	-	-	-	-	(Wei et al. 2019)
Simplicillium lanosoniveum	CHE CNRCB-373	KX686123	-	-	-	- 4		(Wei et al. 2019)
Simplicillium lanosoniveum	CBS 123.42	MH856100	-	-	-	-	´	(Wei et al. 2019)
Simplicillium lanosoniveum	2502	KT878334	-	-	-	-		(Wei et al. 2019)
Simplicillium lanosoniveum	Tr3	MG026635	-	-	-	- 6	[™]	(Wei et al. 2019)
Simplicillium lanosoniveum	YLAC-5	KY552635	-	-	-	AF	-	(Wei et al. 2019)
Simplicillium lanosoniveum	MFLUCC 18-1385	MK752683	MK752791	MK752849	MK926450	MK882622	-	(Wei et al. 2019)
Simplicillium lanosoniveum	CBS 704.86	AJ292396	AF339602	AF339553	DQ522358	DQ522406	DQ522464	(Wei et al. 2019; Zare & Gams 2008)
Simplicillium lanosoniveum var. tianjinensis	DT06	HM989951	-	-	4	-	-	(Wei et al. 2019)
Simplicillium lepidopterorum	GY29131	MN006246	-	-	MIN022265	MN022273	-	(Chen et al. 2019)
Simplicillium lepidopterorum	GY29132	MN006245	-	A -	MN022266	MN022274	-	(Chen et al. 2019)
Simplicillium minatense	JCM 18176	AB603992	LC496893	LC496878	LC496908	-	-	(Wei et al. 2019)
Simplicillium minatense	JCM 18177	AB603991	-	(- 🦄	/ -	-	-	(Wei et al. 2019)
Simplicillium minatense	JCM 18178	AB603993	LC496894	LC496879	LC496909	-	-	(Wei et al. 2019)
Simplicillium obclavatum	JCM 18179	AB604000) -	-	-	-	(Wei et al. 2019)
Simplicillium obclavatum	CBS 311.74	AJ292394	AF339567	AF339517	EF468798	-	-	(Wei et al. 2019)
Simplicillium pech-merlensis	CBS 147188	MW031272	MW031740	MW031268	MW033224	MW033222	MW033223	This study
Simplicillium spumae	JCM 39050	LC496869	LC496898	LC496883	LC496913	-	-	(Kondo et al. 2020)
Simplicillium spumae	JCM 39051	LC496870	LC496899	LC496884	LC496914	-	-	(Kondo et al. 2020)
Simplicillium spumae	JCM 39054	LC496871	LC496902	LC496887	LC496917	-	-	(Kondo et al. 2020)
Simplicillium subtropicum	JCM 18180	AB603990	LC496895	LC496880	LC496910	-	-	(Wei et al. 2019)
Simplicillium subtropicum	JCM 18181	AB603995	LC496896	LC496881	LC496911	-	-	(Wei et al. 2019)
Simplicillium subtropicum	JCM 18182	AB603996	-	-	-	-	-	(Wei et al. 2019)
Simplicillium subtropicum	JCM 18183	AB604001	-	-	-	-	-	(Wei et al. 2019)
Simplicillium subtropicum	JCM 39052	LC496872	LC496900	LC496885	LC496915	_	-	(Kondo et al. 2020)
Simplicillium subtropicum	JCM 39053	LC496873	LC496901	LC496886	LC496916	_	-	(Kondo et al. 2020)
Simplicillium sympodiophorum	JCM 18184	AB604003	LC496897	LC496882	LC496912	-	-	(Wei et al. 2019)
	Jan 1997							

Target gene	Primer	Primer DNA sequence	Annealing temperature	Reference
ITS	ITS1-F ITS4	CTTGGTCATTTAGAGGAAGTAA TCCTCCGCTTATTGATATGC	50°C	(Gardes & Bruns 1993) (White <i>et al.</i> 1990)
LSU	LR0R	GTACCCGCTGAACTTAAGC	56 °C	(Vilgalys & Hester 1990)
SSU	NS1 NS4	GTAGTCATATGCTTGTCTC	55 °C	(White et al. 1990)
TEF-1α	983F 2218R	GCYCCYGGHCAYCGTGAYTTYAT	55 °C	(Rehner & Buckley 2005)
RPB1	CRPB1 RPB1Cr	CCWGGYTTYATCAAGAARGT CCNGCDATNTCRTRTCCATRTA	55 °C	(Castlebury <i>et al.</i> 2004) (Matheny <i>et al.</i> 2002)
RPB2	fRPB2-5f fRPB2-7cR	GAYGAYMGWGATCAYTTYGG CCCATRGCTTGYTTRCCCAT	58 °C	(Liu <i>et al.</i> 1999)

TABLE 2. Primers used to amplify *Simplicillium pech-merlensis* in this study.

497 **FIGURE 1.** Pointed-horses panel in the Pech-Merle show cave

The panel represents the paintings of dappled horses and negative hands for which the Pech-

499 Merle cave is known. The representations were mainly drawn with black pigments composed

- 500 of manganese and barium oxides as well as charcoal (Lorblanchet 2018). The drawing features
- 501 the use of red pigments composed of red ochre.

502 **FIGURE 2.** Isolation of *Simplicillium pech-merlensis*.

- 503 The species was isolated near the "injured man" panel in the Pech-Merle show cave, via air
- samplings with impaction on Malt Extract Agar (MEA).

- FIGURE 3. Phylogenetic placement of *Simplicillium pech-merlensis* within *Simplicillium*genus and *Simplicillium* related genera assessed through maximum likelihood.
- 507 Unrooted tree obtained from a dataset including 85 taxa, leading to a concatenated alignment
- of 4725 bp from seven nuclear regions (ITS, LSU, SSU, RPB1, RPB2 and TEF1-α). Bootstrap
- values greater than or equal to 50 % are located close to the corresponding node. The newly
- 510 described species is indicated in red.

- FIGURE 4. Phylogenetic placement of *Simplicillium pech-merlensis* within *Simplicillium* and *Leptobacillium* genera assessed through Bayesian inference.
- 514 Unrooted tree obtained from a dataset including 186 taxa, leading to a concatenated alignment
- of 4863 bp from seven nuclear regions (ITS, LSU, SSU, RPB1, RPB2 and TEF1-α). Bayesian
- posterior probabilities greater than or equal to 0.50 are located close to the corresponding node.
- 517 The newly described species is indicated in red.

A contration

519 **FIGURE 5.** *Simplicillium pech-merlensis*

520 a–b. Upper and reverse views of the culture on MEA (10 d at 25 °C). c–d. Upper and reverse 521 views of the culture on PDA (10 d at 25 °C). e–f. Solitary phialides and microconidia that adhere 522 to each other to form globose slimy heads. g. Microconidia and macroconidia. h. Solitary 523 phialide and macroconidia. Scale bars: $e-h = 10 \mu m$.

