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Abstract

This study investigates the use of orange peels as a precursor for synthesizing sodium alginate-

encapsulated beads for methylene blue (MB) removal. The prepared beads (BOP1 and BOP2) 

underwent characterization through FTIR, XRF, SEM and TGA. Subsequently, the impacts of 

various factors, including temperature, the initial pH, initial concentration, salt and humic acid, 

are studied. The adsorption isotherms show high adsorbed quantities of 764.92 and 659.78 mg/g 

for BOP1 and BOP2 respectively, while the obtained data are best described by the monolayer 
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with two energies (MMTE) model, which is then used to perform a thermodynamic study of 

the MB adsorption mechanism.  Additionally, the adsorption kinetics data are modeled using 

three models, with the PFO model identified as the most appropriate. The regenerated beads 

demonstrate the ability to be reused up to 7 cycles, The effects of NaCl and humic acid on MB 

adsorption reveal that NaCl inhibits adsorption due to competition with Na+, while humic acid 

has no effect. Finally, a support vector machine (SVM) model optimized by the Levy Flight 

Distribution Optimization (LFD) algorithm is developed and found to be capable of accurately 

predicting the adsorption behavior of the prepared beads. This model is then used in optimizing 

the process conditions for maximal MB removal. Overall, this study demonstrates that the 

prepared beads could be potential low-cost and environmentally friendly adsorbents for 

wastewater treatment applications.

Graphical Abstract

Keywords: Adsorption, orange peel beads, methylene blue, support vector machine, Levy 

flight distribution, thermodynamic

1. Introduction

The textile, pharmaceutical, paper, cosmetics, and plastics industries generate substantial 

effluent, containing a diverse range of substances [1]. Even at low concentrations, these 
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substances can pose risks to both human health and the environment, especially when they are 

not biodegradable [2]. Moreover, it is estimated that more than 10,000 tons of dye and coloring 

agents are used each year, resulting in the release of 40,000 tons of dye into the environment 

each year [3]. In this context, various methods such as membrane filtration [4], oxidation [5], 

coagulation [6], photocatalysis [7], and other biological processes have been employed to treat 

these effluents. However, these techniques show some drawbacks such as weak performance, 

high cost and high secondary pollution [8]. As a consequence, adsorption is still the most used 

method due to its simplicity, effectiveness, and low cost [9]. 

Even though adsorption is an effective process for reducing contamination in discharges, its 

optimization is challenging due to its nonlinear and complex nature [10]. The conventional 

method of optimizing parameters by varying one independent variable while keeping the others 

constant is tedious and requires numerous time consuming experiments [10]. Additionally, 

accurately optimizing the interaction effect of multiple independent variables and analyzing the 

relationship between a large number of independent and dependent variables becomes difficult 

[11]. To address this challenge, researchers have started utilizing artificial intelligence 

techniques such as: intelligent modeling and experimental study on methylene blue adsorption 

by sodium alginate-kaolin beads [12]; application of machine/statistical learning, artificial 

intelligence and statistical experimental design for the modeling and optimization of methylene 

blue and Cd (ii) removal from a binary aqueous solution by natural walnut carbon [13];  and 

decontamination of methylene blue from simulated wastewater by the mesoporous rGO/Fe/Co 

nanohybrids through artificial intelligence modeling and optimization [14].

In this study, the synthetic cationic methylene blue (MB) dye is chosen as the test molecule due 

to its wide range of applications, stability, high solubility (40g/L), and non-biodegradability at 

concentrations exceeding 5 mg/L [15]. Furthermore, it poses a potential hazard in the event of 

accumulation in human and animal organs [16], leading to a reduction in water oxygen  
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concentration and  adverse effects on the photosynthetic activity of plants [15,17]. According 

to the literature, a variety of products have been used as adsorbents, including activated carbon 

[18], zeolites [19], clays [20], silica [21], agricultural waste [22], and hydrogels [23] , each with 

its own advantages and disadvantages. In this article, the preparation of adsorbent materials was 

performed using waste orange peels as a precursor. The peels underwent chemical treatment 

with phosphoric acid and were subsequently encapsulated in different ratios using sodium 

alginate. 

It is important to highlight that encapsulation served diverse purposes, including the attainment 

of a durable material with a uniform shape, enhancement of adsorption efficiency, provision of 

a material separable from the solution and thermally stable, thus aligning with  industrial 

applications, and finally facilitating the regeneration step [24]. In addition, alginate was used 

as an encapsulating agent due to the negative charge of its carboxyl groups [25], which 

promotes the adsorption of cationic compounds. The prepared materials were characterized 

using several techniques, including FTIR, XRF, SEM, TGA, and the isoelectric point. 

Adsorption kinetics were analyzed and fitted using the pseudo-first-order (PFO), pseudo-

second-order (PSO), pseudo-nth-order (PNO), intraparticle, and Boyd models. Furthermore, in 

consideration of their simplicity and applicability [2], the two classical models of Langmuir and 

Freundlich were employed to analyze the obtained results from MB adsorption isotherms in 

order to obtain interpretations for the interaction mechanism nature between MB and the 

prepared beads;  moreover, these last two models were unsatisfactory for the intended purpose, 

as they failed to provide physicochemical interpretations of the adsorption mechanism [26,27]. 

As a consequence of these findings, the grand canonical partition function in statistical physics 

was employed to offer more detailed and precise insights into the adsorption process [28], 

which can be seen from the information derived from parameters obtained through statistical 

models, including the density of the receptor sites (Ns), the number of molecules captured by 
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the adsorbent receptor site (nim), the half-saturation concentration, adsorption energy, and 

adsorbed amount at saturation (Qsat), etc. Following this approach, three statistical physical 

models namely, monolayer with single energy (MMSE), monolayer with two energies 

(MMTE), and double layer with two energies (DMTE), were considered to elucidate the 

experimental results of MB adsorption isotherms on the beads prepared at various temperatures 

(10, 25 and 30 °C). 

Moreover, the most accurate statistical physic model parameters were used to calculate, plot 

and assess the variation of internal energy, Gibbs free enthalpy, and configuration entropy to 

perform a thermodynamic study for MB adsorption mechanism on the prepared beads (BOP1 

and BOP2). At the end, the Levy Flight Distribution (LFD) optimization algorithm was used to 

improve the SVM model to predict the amount of MB adsorption on BOP1 and BOP2 using 

the experimental results of adsorption parameter optimization. Further optimization was 

performed using LFD and the SVM-LFD model to obtain optimal process conditions for 

maximal MB removal. Additionally, a MATLAB-based user-friendly tool was created to 

simplify the process of MB adsorption optimization and prediction.

This study introduces significant innovations by integrating novel materials and advanced 

methodologies into the realm of MB adsorption. Departing from conventional choices, orange 

peels were utilized as a unique precursor for synthesizing beads dedicated to MB removal, 

offering a distinctive perspective in the field. Through a dual modification process involving 

treatment with H3PO4 and encapsulation with sodium alginate, a substantial improvement in 

the adsorption capacity of these beads was achieved.

Beyond the experimental findings, the investigation provides a comprehensive understanding 

of the adsorption mechanism and thermodynamic behavior, employing three physical models—

MMSE, MMTE, and DMTE—with the MMTE model identified as the most suitable. 

Furthermore, this study introduces an innovative computational paradigm represented by the 
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SVM-LFD approach for predicting and optimizing MB adsorption capacity, thus adding a novel 

dimension to the research landscape. Importantly, such a study has not been undertaken 

previously, marking it as a pioneering endeavor.

To enhance the accessibility of the findings, a user-friendly MATLAB-based tool for MB 

adsorption optimization and prediction was developed. Collectively, these innovative elements 

distinguish the work and signify a noteworthy progression in the field of MB adsorption 

research.

2. Materials and methods

2.1. Materials

All chemicals employed in this research, including methylene blue (MB), H3PO4, HCl, NaOH, 

CaCl2, NaCl, humic acid (HA), and sodium alginate (SA), were obtained from Sigma Aldrich. 

Orange peels were collected after the fruit had been consumed.

2.2. Products preparation 

The procedure for treating orange peels with phosphoric acid was the same as described in our 

published paper [29], and the resulting powder was named as treated orange peels (TOP). To 

immobilize TOP, 1g of it was mixed with 1 g of SA in 100 ml of distilled water for BOP1, 

while the TOP/SA ratio was set to 2 for BOP2. The mixture was then stirred until 

homogenization. Encapsulation was performed by adding the mixture dropwise into a 40% 

CaCl2 solution using a peristaltic pump and vigorous stirring to avoid rapid depletion of Ca2+ 

ions. The resulting beads, named BOP1 and BOP2, were stirred for 12 hours to ensure the 

creation of an "egg box"[30]. The beads were then washed seven times with distilled water and 

dried at room temperature.

2.3. Adsorption kinetics
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Adsorption kinetics is a key step in determining the rate at which equilibrium is reached and 

can aid in understanding the adsorption mechanisms and developing a fast and effective 

adsorption model [31–34]. In this study, batch adsorption tests were performed at natural dye 

pH (6.2) to evaluate the amount of adsorption as a function of time using three initial 

concentrations of methylene blue (MB) (50, 100, and 200 mg/L). 200 mg of adsorbent were put 

into contact with 200 mL of each initial concentration of MB at room temperature (25 °C ± 2 

°C). The amount of adsorption was regularly measured until equilibrium was reached, ensuring 

that the total volume of samples did not exceed 10% of the initial solution. The samples were 

analyzed using a Shimadzu Spectrophotometer UV-1700, and the amount of adsorption was 

determined using Eq. 1:

Qads = V∗(C0 Ct)
m (1)

Moreover, the MB adsorption on the prepared beads was analyzed using various kinetic models, 

including the pseudo-first order (PFO), pseudo-second order (PSO), pseudo-nth order (PNO), 

intraparticle, and Boyd models, as given by Eqs. S1 to S5 (a,b) [35–39].

2.4. Adsorption isotherms

50 mg of each material was mixed with 50 ml of MB dye at natural pH (6.2), with initial 

concentrations ranging from 50 to 1200 mg/L, and the mixtures were left in contact with 

constant stirring around 250 rpm at well-controlled temperatures (10, 25, and 30 °C, 2 ± °C) 

until equilibrium being achieved. Then, each solution was separated and analyzed by UV 

visible. Moreover, classical models, including the most commonly reported models in the 

literature, Langmuir and Freundlich [40],  and other statistical physics models have been 

employed to understand MB adsorption mechanism on BOP. It is well known that Langmuir's 

model is based on three main assumptions: first, adsorption occurs in a single layer, second, the 

distribution of active sites is uniform, and third, adsorption energies are independent. On the 
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other hand, the Freundlich model assumes that the adsorption is heterogeneous and occurs in 

multilayer [41].

Eqs. S6 and S7 present the mathematical expressions for the Langmuir  and Freundlich models, 

respectively [42–44].

2.5. Statistical physical modeling

To provide more profound and precise interpretations for the MB adsorption mechanism on 

BOP [28], physical modeling was considered using statistical physics models based on applying 

the grand canonical partition function in statistical physics. The three models applied are 

detailed in the following subsection. 

2.5.1. Monolayer model with single energy: MMSE 

This model assumes that the adsorption occurs in a monolayer with only one energy [45]. The 

demonstration of the applied physical models needs to go through the use of the grand canonical 

partition function in statistical physics. The grand canonical partition function of one site is 

given as follows in Eq. 2 [46] :

𝑧𝑔𝑐 = 1 + 𝑒𝛽(𝜀1+𝜇)(2)

Then, Eq. 3 presents the grand canonical partition function relative to the density of receptor 

sites, which is assumed to be identical and independent [47].

𝑍𝑔𝑐(𝑁𝑠) = (𝑧𝑔𝑐)𝑁𝑠(3)

As a result, it is possible to write that [46]:

𝑍𝑔𝑐(𝑁𝑠) = (1 + 𝑒𝛽(𝜀1+𝜇))𝑁𝑠……………………….……………………………………………….4

As a consequence, the average site occupation number is given according to Eq. 5 [48] : 

𝑁0 =
𝑁𝑠∂𝑙𝑛𝑧𝑔𝑐

𝛽∂𝜇 …………………………….……………..………………………………………………...5
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Furthermore, in an adsorption process of a binary system (for example, the adsorption of MB 

on BOP in this study), it is possible to write that: 

nmMB + BOP ↔ MBnmBOP……………………………………………………………..…….6

At thermodynamic equilibrium, Eq. 6 provides the relationship between the chemical potentials 

of dissolved molecules μm and that of adsorbed molecules μ as a function of the translational 

partition function, as seen in Eq. 7 [26] :

𝜇𝑚 =
𝜇

𝑛𝑚
= 𝑘𝐵𝑇𝑙𝑛( 𝑁𝑠 𝑍𝑔𝑡𝑟) ………….…….……………………………………………………7

Eq. 8 can be used to express the translation partition function [49]:

𝑧𝑔𝑡𝑟 = 𝑉( 2𝜋𝑚
𝛽ℎ2 )

3 2
………………………………………………………………………………….…8

Furthermore, the adsorbed quantity at saturation is given by Eq. 9 [47]:

𝑄𝑠𝑎𝑡 = 𝑛𝑖𝑚𝑁𝑖𝑆………..…………………………………………………….………………….……9

Taking all previous equations into consideration, the monolayer model with single energy 

(MMSE) is given by Eq. 10 [50]:

𝑄𝑎𝑑𝑠 =
𝑛𝑚𝑁𝑆

1 +
𝐶1

2
𝐶𝑒

𝑛𝑚 …………………………………………………………………………10

Furthermore, the quantity adsorbed at saturation for this model is established by Eq. 11:

𝑄𝑠𝑎𝑡 =  𝑛𝑚𝑁𝑆………………………………………………………………………………………11

It is worth noting that MMSE can provide a number of adsorbates equal to or greater than unity 

on a single adsorption site [51].

2.5.2. Monolayer model with two energies: MMTE

For this model, the derivation procedure is the same as that carried out for the MMSE, except 

that its grand canonical partition functions are given according to Eqs. 12 and 13 [52], while 

one related to the receptor sites is by given Eq. 14 [53]:
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𝑧1𝑔𝑐 = 1 + 𝑒𝛽(𝜀1+𝜇1)………….…………………………………………………..………………12

𝑧2𝑔𝑐 = 1 + 𝑒𝛽(𝜀2+𝜇2)………….…………………………………………………..………………13

Where, z1gc and z2gc represent the partition functions corresponding to the two types of sites.

𝑍𝑔𝑐(𝑁𝑆) = (1 + 𝑒𝛽(𝜀1+𝜇1))𝑁1𝑆(1 + 𝑒𝛽(𝜀2+𝜇2))𝑁2𝑆…………………….……………………….14

As the name implies, the MMTE assumes that the adsorption was carried out on a monolayer 

with two types of receptor sites, which have two deferent energies (ΔE1 and ΔE2), and that the 

receptor site can capture a variable number of adsorbate [54]. The change in the adsorbed 

amount as a function of the equilibrium concentration is given by Eq. 15 [55]:  

𝑄𝑎𝑑𝑠 =
𝑛1𝑚𝑁1𝑆

1 + ( 𝐶1
𝐶𝑒

)
𝑛1𝑚 +

𝑛2𝑚𝑁2𝑆

1 + ( 𝐶2
𝐶𝑒

)
𝑛2𝑚 ……………………………………….…………………….15

The adsorption capacity at saturation for MMTE is contingent upon the two types of receptor 

sites, where it is determined by the summation of Qsat1 and Qsat2, as articulated in the 

subsequent equation:

𝑄𝑠𝑎𝑡 = 𝑄𝑠𝑎𝑡1 + 𝑄𝑠𝑎𝑡2 = 𝑛1𝑚𝑁1𝑠 + 𝑛2𝑚𝑁2𝑆…………………………………………………….16

2.5.3. Double layer model with two energies: DMTE

For this model, the adsorption is carried out in double layers with two energies; the first energy 

is considered to ensure the solid-liquid interaction (adsorbent-adsorbate) and the second energy 

to ensure the interaction between the two liquid phases (adsorbate first layer and that of the 

second layer) [56]. The grand canonical partition function (Zgc) and the one related to the 

density of receptor sites (Zgc(Ns)) representative of DMTE are given by Eqs. 17 and 18, 

respectively [57].

𝑧𝑔𝑐 = 1 + 𝑒𝛽(𝜀1+𝜇) + 𝑒𝛽(𝜀1+𝜀2+2𝜇)………………………………………………………….…..17

𝑍𝑔𝑐(𝑁𝑆) = (1 + 𝑒𝛽(𝜀1+𝜇) + 𝑒𝛽(𝜀1+𝜀2+2𝜇))𝑁𝑆……………………………………………….…..18
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As a result, the empirical expression of DMTE is given by Eq. 19 [58]:

𝑄𝑎𝑑𝑠 = 𝑛𝑚𝑁𝑆

𝐶𝑒
𝐶1

𝑛𝑚

+ 2
𝐶𝑒
𝐶2

2𝑛𝑚

1 +
𝐶𝑒
𝐶1

𝑛𝑚

+
𝐶𝑒
𝐶2

2𝑛𝑚
……………………………………………………………19

Furthermore, the saturation adsorption quantity for this model is determined by Eq. 20:

𝑄𝑠𝑎𝑡 = 2 ∗ 𝑛𝑚𝑁𝑆………….……………………………………………………….……………….20

2.6. Parameters affecting MB adsorption on BOP 

In reality, adsorption never occurs in a perfect medium; for example, the adsorption of organic 

dyes is often sensitive to factors related to the atmosphere and the nature of the medium. To 

this end, the effects of some parameters were investigated, including the effect of pH, initial 

concentration, contact time, temperature, ionic strength, and humic acid.

2.6.1. Initial pH effect

The initial pH is an essential factor for understanding the adsorption mechanism. As a 

consequence, the variance of the adsorbed quantity as a function of the initial pH was examined 

in a range of 2 to 12 and 50 mg of BOP was put into contact with 50 ml of MB for 48 hours 

with continuous stirring at 250 rpm. The experiments were repeated three times to ensure the 

precision of the results and reduce experimental errors.

2.6.2. NaCl and humic acid effects

The inorganic salt NaCl was used as an affecting agent to examine the ionic strength effect for 

MB adsorption on BOP1 and BOP2. The experimental protocol consisted of a repetition of the 

adsorption isotherm at 25 °C in the presence of 0.1 mol/L of NaCl. The results obtained were 

compared to the adsorption isotherm without NaCl. Humic acid (HA) was used to investigate 

the effect of organic compounds on MB adsorption and the protocol employed was the same as 

was used for the ionic strength effect.
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2.6.3. Temperature effect

In this study, the temperature effect was used to verify the reliability of the adsorption process 

of MB on BOP. The temperature range was chosen between 10 and 30 °C and the operating 

conditions were declared in Section 2.4.

2.7. Regeneration study for BOP1 and BOP2

Obtaining regenerable beads was one of this study's goals. Therefore, the regeneration yield of 

the prepared beads was investigated using a simple protocol that consisted of bringing 200 mg 

of BOP into contact with 200 ml of MB solution of initial concentration equal to 100 mg/L until 

equilibrium was reached as described in the adsorption kinetics. Then, the adsorbed dye was 

desorbed. Due to the fact that methylene blue is a cationic dye, its desorption must be done in 

an acidic medium. In this study we chose the pH where the adsorption is minimum by 

employing acidic water (pH=2) with hydrochloric acid (HCL) and the regeneration cycle can 

be repeated many times until the saturation of beads.

2.8. Material characterization 

The distribution of charges on the surface of BOP was characterized by determining the zero 

charge point (pHpzc) using the protocol described in the literature [59]. Furthermore, the 

thermal stability of the prepared materials was evaluated using thermogravimetric analysis 

(TGA) on an SDT Q600 V20.9 Build 20 thermal gravimetric in a temperature range of 30 to 

780 °C with a temperature ramping rate of 10 °C/min. Moreover, in the range of 550 to 4000 

cm-1, Fourier transform infrared spectroscopy (FTIR) was performed by an Agilent 

Technologies Fourier Transform Spectrophotometer (FTIR) (Cary 600 series FTIR 

spectrometer). A Hitachi S-3000N SEM was used to examine the micromorphology (SEM) of 

the prepared materials. Furthermore, using a ZSX Primus IV-Rigaku, X-ray fluorescence 

(XRF) was also employed.
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2.9. Support Vector Machine

In the 1990s, Vapnik introduced the support vector machine (SVM) [60], which is based on 

statistical learning theory (SLT) techniques and the concept of structural risk minimization 

(SRM) [61]. The primary applications of SVM were in non-linear classification and regression 

analysis [62]. This method involves examining a training dataset of N points (Xi, Yi), with i=1, 

…, N, where X represents the inputs of the model and Y represents the output. The SVM model 

is structured as follows:

𝑦(𝑥) = 𝜔𝑇𝜙(𝑥) + 𝑏………………………………………………………………………………..21 

The function ϕ(.): Rn → Rm in the given context is a non-linear mapping that transforms the 

finite dimensional input space into a higher dimensional space that is implicitly generated. 

Additionally, the weight vector is denoted by ω, and b is the bias term [60,63].

In this research, the experimental data of MB adsorption using two different adsorbents, BOP1 

and BOP2, were merged to construct a comprehensive and reliable model for both adsorbents 

using SVM. The model inputs comprise four variables: contact time (X1) ranging from 0 to 

3000 minutes, initial MB concentration (X2) ranging from 50 to 1200 mg/L, pH (X3) ranging 

from 2 to 12, and temperature (X4) ranging from 10 to 30°C. To differentiate between the 

adsorbents BOP1 and BOP2, an additional input parameter X5 was introduced, with the values 

"1" and "2" representing the utilization of BOP1 and BOP2 respectively. The output variable is 

the MB adsorption capacity (Y).

The optimal SVM model was developed by designing and optimizing the kernel and parameters 

of SVM. 

The process included the following steps [61–64]:

1) The data was prepared and examined.
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2) The dataset was divided into three parts: 135 data points were used for training, 28 for 

evaluating the model's performance (test), and 29 for verifying the model's results 

(validation).

3) Three kernel functions were used, including Linear, Gaussian, and Polynomial: 

•  Poly (polynomial) 

      𝑘 𝑋𝑖,𝑋𝑗 = (𝑎𝑥𝑇 + 𝑐)𝑑…………………………………………. ……………………….…22

• Linear 

       𝑘 𝑋𝑖,𝑋𝑗 = 𝑥𝑇𝑦 + 𝑐………………………………………………………………………….23 

• Gaussian     

        k Xi,Xj =
1

σ 2πexp Xi X2
j

2σ2 ……………………………………………………………...24 where “c” is 

the Box constraint, “d” is the Polynomial order, and “σ2” is the variance in the Gaussian 

function. These four parameters (d, c, and σ2) define the kernel functions.

4) The best kernel parameters, such as Box Constraint (1e-3:1e3), Epsilon (0), sigma (1e-3:3), 

and polynomial order for polynomial kernel (2:5), were obtained through optimization. 

Optimization algorithms have been utilized to address the problem of trial and error and 

enhance prediction models to attain superior performance [65]. Such algorithms have 

demonstrated their efficacy in tackling diverse optimization challenges [66]. Studies have 

consistently shown that utilizing optimization algorithms to optimize hyperparameters in 

machine learning algorithms results in improved performance [10,11,65–68].

In this study, the Lévy flight distribution (LFD) algorithm was integrated with SVM, denoted 

as SVM_LFD, in order to optimize the kernel function parameters. The LFD algorithm is a 

stochastic optimization algorithm inspired by the foraging behavior of certain animals, such as 

birds and fish. It involves random walks with step lengths that follow a probability distribution 

called the Lévy distribution, which has a heavy tail and allows for occasional long jumps. This 

new approach was recently introduced in 2021 by Houssein et al. and showed promising results 
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[65]. By incorporating the LFD algorithm into SVM, it is possible to find the optimal values of 

kernel parameters more efficiently than manual search. In this study, the number of iterations 

in the LFD algorithm was set to 100, while the number of search agents was set between 20 and 

100. 

2.10. Statistical physical modeling evaluation parameters

At the end of the statistical analysis, certain criteria were employed to evaluate the effectiveness 

of the model. These criteria include the Correlation Coefficient (R), the Coefficient of 

Determination (R2), Adjusted Coefficient of Determination (R2
adj), error function (Ferror), 

Bayesian Information Criterion (BIC), Root Mean Square Error (RMSE), and Mean Absolute 

Error (MAE). These values were obtained by applying specific mathematical equations, as 

follows [10,69–77]:

𝑅2
𝑎𝑑𝑗 = 1 ― (1 𝑅2)(𝑁 1)

𝑁 𝐾 1 ……………………….…………………..……………………………... 25                 

  𝐹𝑒𝑟𝑟𝑜𝑟 = ∑𝑁
1

1
𝑁 1

𝑄𝑖,𝑚𝑜𝑑 𝑄𝑖, 𝑒𝑥𝑝
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𝑦𝑒𝑥𝑝 and 𝑦𝑝𝑟𝑒𝑑 are the experimental and the predicted values respectively; 𝑦𝑒𝑥𝑝 and 𝑦𝑝 𝑟 𝑒𝑑 are 

the average values of the experimental and the predicted values, respectively [78–81].

3. Results and discussion
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3.1. Material characterization 

Figure 1 illustrates the isoelectric points of TOP, SA, BOP1, and BOP2. The results indicate a 

noticeable shift toward alkaline pH in the isoelectric points after encapsulation. This shift is 

attributed to the formation of "egg box" wherein TOP was surrounded by alginate during beads 

formation. Notably, BOP2 demonstrates a more acidic nature compared to BOP1, with pHpzc 

values of 3.3, 5.4, 6.9, and 7.2 for TOP, BOP2, BOP1, and SA, respectively. The 

micromorphology of TOP, BOP1, and BOP2 is depicted in Figure 2. It is evident from images 

b-i and c-i that the prepared beads exhibit a spherical shape with slight deformations, likely 

developed during the drying step. Furthermore, images b-ii, b-iii, b-iv, and c-ii, c-iii, c-iv reveal 

a heterogeneous dispersion of components and a porous structure, which facilitates and 

promotes dyes adsorption [82].

The infrared spectra of raw orange peels (ROP), TOP, and encapsulated (BOP1 and BOP2) are 

shown in Figure 3.

Figure 1. Isoelectric points of TOP, SA, BOP1 and BOP2. (T = 25°C, agitation speed= 250 
rpm).

Figure 2. SEM images of TOP (a) [22], BOP1 (b) and BOP2 (c).

Figure 3. Infrared spectra for ROP, TOP, BOP1 and BOP2.

 It is evident from these spectra that after acid treatment and encapsulation, some changes 

occurred: the intensity of some peaks increased, others decreased, and some peaks disappeared. 

The observed similar peaks are collected in Table 1. 

Table1: Wavenumbers (cm-1) of the observed similar peaks from FTIR analysis of ROP, 
TOP, BOP1 and BOP2.

Suggested 

attribution
ROP TOP BOP1 BOP2

C-O-C  stretching [83] 1020 1013 1020 1020 W
av

en
um

be
r 

(c
m

-1
)
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Cellulosic compounds  

[29]
1065 1046 1030 1030

C=C of the aromatic 

rings [84]
1432 1430 1422 1432

C=C and symmetric 

COO--
1632 1638 1620 1620

-CHAlph 2922 2922 2922 2922

̶ O-H, NH and COOH 3433 3433 3433 3433

The comparison between ROP and TOP spectra leads to the conclusion that phosphoric acid 

had chemically well modified the structure of ROP. Moreover, the spectra of BOP1 and BOP2 

show very similar peaks with small peaks at 1019, 1045, and 1097 cm-1, which can be attributed 

to the vibration modes of C–O, C–O-H, and C-C on the alginate carbohydrate rings [85].

Thermogravimetric analysis of ROP, TOP, BOP1, and BOP2 was carried out at temperatures 

ranging from 30 to 780 °C and the obtained curves are shown in Figure 4. These findings show 

that the loss of water molecules and the degradation of volatile substances [86]  occurred 

between 30 and 200 °C for BOP and between 30 and 230 °C for ROP and TOP. The four 

materials show thermal stability in these first stages, with mass losses of about 10% for TOP, 

BOP, and 16% for ROP. The second stage was characterized by an intense mass loss phase 

between 200 and 400 °C, which may be attributed to the degradation of cellulose [29] on the 

one hand, and the alginate degradation by breaking its skeleton [87,88] on the other hand. 

Finally, the last stage was observed between 400 °C and the end of the analysis, characterized 

by the C-O and C-H bands cracking or by the transformation of the carbonaceous material 

formed in the previous phases [88,89]. Furthermore, the TGA curves show that the degradation 

of BOP is less strong compared to ROP and TOP, indicating that the sodium alginate has 

improved the thermal stability of treated orange peels, and the mass losses are 90.45, 75.91, 
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74.19, and 74.28 for ROP, TOP, BOP1, and BOP2 respectively. Table 2 shows the results of 

the XRF analysis of the ROP, TOP, BOP1, and BOP2, with the major compounds listed in 

percentages. A quick comparison of the phosphorus percentage of the ROP structure shows that 

it was raised after chemical treatment, which can be attributed to the incorporation of H3PO4 in 

the ROP structure. Otherwise, the presence of chlorine and calcium in the BOP composition 

confirmed that sodium alginate encapsulation was efficient.

Figure 4. Thermogravimetric analysis of ROP, TOP, BOP 1 and BOP2.

Table 2: XRF analysis of ROP, TOP, BOP1 and BOP2.

Elements (%) ROP TOP BOP1 BOP2

C 48.7 46.5 38.7 40.6

O 50.4 52.7 54.7 54.3

Al 0.046 0.096 0.029 0.036

Si 0.041 0.121 0.044 0.040

P 0.061 0.033 0.009 0.010

Cl -- -- 0.041 0.033

Ca 0.347 0.048 6.22 4.73

Zn 0.038 0.029 0.063 0.071

3.2. Adsorption isotherm

In an adsorption phenomenon, the equilibrium data can be represented as a curve called the 

adsorption isotherm which can define the adsorbent-dye relationship to provide information on 

the nature of the adsorption process [90]. Figure 5 illustrates the adsorption isotherms of MB 

on BOP at different temperatures. These findings indicate that as the temperature rises, the 

exothermic nature of the adsorption process causes the adsorption potential of MB on BOP to 

decrease. In addition, for the temperatures 10, 25, and 30 °C, the respective adsorption amounts 

are 764.92, 612.58, and 508.90 mg/g for BOP1 and 659.78, 523.51, and 400.14 mg/g for BOP2. 
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Consequently, both materials have good performance. The results obtained from the modeling 

of adsorption isotherms by applying the Langmuir and Freundlich models are shown in Figure 

S1. The 

constants of each model are collected in Table 3. It is clear that the Freundlich model is not 

appropriate to describe our experimental results. On the other hand, the constants obtained show 

good determining factors regarding the Langmuir model, but the calculated quantities are a little 

far from those found experimentally. Consequently, both classical models were not appropriate 

to describe the experimental results, and hence statistical modeling by using some physical 

appears relevant.

Figure 5. MB adsorption isotherms on BOP at varying temperatures. (Agitation speed= 250 

rpm, pH=6.2).

Table 3: Langmuir and Freundlich modeling’s parameters for MB adsorption on BOP at 

various temperatures.

Material Modeling Parameters 10 °C 25 °C 30 °C

Qads (mg/g) 764.92 612.58 508.90

Qm (mg/g) 816.76 690.54 633.18

KL (L/mg) 0.039 0.018 0.009Langmuir

R2 0.996 0.997 0.993

nF
3.28 2.81 2.41

KF(mg/g)(L/mg)1/n 138.93 76.89 43.40

B
O

P1

Freundlich

R2 0.899 0.928 0.928

Qads(mg/g) 659.78 523.51 400.14

Qm (mg/g) 739.27 596.39 476.74

KL (L/mg) 0.031 0.017 0.012Langmuir

R2 0.997 0.993 0.992

nF
3.48 3.08 2.82

KF(mg/g)(L/mg)1/n 129.64 76.24 46.93

B
O

P2

Freundlich

R2 0.899 0.928 0.928
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3.3. Adsorption kinetics

3.3.1. Initial concentration and time effects

The effect of time and initial concentration of MB adsorption on BOP is investigated and the 

results are shown in Figure 6. MB adsorption kinetics on both materials (BOP1 and BOP2) are 

characterized by three stages: (1) a fast phase, (2) a slower second phase, and (3) an equilibrium 

phase. This can be explained by the availability of active sites at the beginning of adsorption, 

followed by a progressive reduction in the number of free sites until saturation [80]. 

Furthermore, the amount of MB adsorbed increases as the initial concentration increases, which 

can be related to the driving force [91]. The amounts adsorbed at equilibrium were 45.94, 91.62, 

and 182.04 mg/g for BOP1 and 46.21, 91.44, and 181.14 mg/g for BOP2 for initial 

concentrations of 50, 100, and 200 mg/L, respectively. Therefore, these kinetics results were 

modeled using PFO, PSO, and PNO models, and the curves obtained are shown in Figure 6, 

and the corresponding constants are summarized in Table 4. The best-model selection is 

typically based on a variety of criteria, such as the coefficient of determination R2 (the model 
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is more suitable if R2 is closer to 1), the gap between the experimental and model-calculated 

adsorbed quantities, as well as the error function's calculated values (the model is more suitable 

if Ferror is closer to 0). As a result, all used models demonstrate that the adsorbed quantities are 

similar to those found experimentally, regardless of the initial concentrations. Moreover, Table 

4 shows that the PFO and PNO models have high determination coefficients and low Ferror 

values compared to the PSO model. The PNO model provided parameter values “n” that were 

very close to 1. So, it can be assumed that the PFO model is the most relevant to describe 

experimental data.

In addition, Figure 7 shows that for both beads and whatever the initial concentration, the curves 

of the intraparticle model show three lines which do not pass through the origin (intercepts ≠ 

0). These three lines indicate that the process of MB adsorption on BOP occurred in different 

phases, of which the second line illustrates intraparticle diffusion which, however, is not the 

limiting step [92]. Therefore it can be assumed that the final stages of adsorption were 

controlled by film diffusion [93]. Figure 8 illustrates the results obtained from the Boyd 

modeling, showing linear points during the first minutes of adsorption for the two materials 

(BOP1 and BOP2), but they do not pass through the origin. Overall, the data were not linear, 

suggesting that film diffusion was the limiting step rather than pore diffusion [94]. The above 

interpretation is compatible with the intraparticle model assumption.

Figure 6. Time and initial concentration effects (symbols), and PFO, PSO and PNO modeling 
curves (continuous lines) for MB adsorption onto BOP1 and BOP2. (T = 25°C, agitation 

speed= 250 rpm, pH=6.2).
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Table 4: Parameters of PFO, PSO, PNO, Intraparticle and Boyd models for MB adsorption 
onto BOP1 and BOP2.

Material Model Parameters C0(mg/L)

50 100 150
Qads (mg/g) 45.94 91.62 182.04
Qmod (mg/g) 43.92 91.18 180.86
K1. (min-1) 0.009 0.007 0.006PFO

R2

F error
0.982
0.0109

0.989
0.0012

0.999
0.0016

Qmod (mg/g) 46.86 97.67 195.04
K2.*104 (gm g-1 min-1) 2.95 1.02 0.14PSO

R2

F error
0.943
0.0112

0.960
0.0165

0.990
0.0178

Qmod (mg/g) 43.89 91.12 181.28
kn. (min-1) (mg g-1)1-n 0.010 0.008 0.003

N 0.962 0.950 1.102PNO

R2

F error
0.984
0.0111

0.990
0.0013

0.999
0.001

Intraparticle
(First step)

Kid (mg g-1 min-0.5)
I (mg g-1)

R2

4.17
- 15.99
0.98827

6.42
- 18.98
0.996

10.64
-27.60
0.991

B
O

P1

Intraparticle
(Second 

step)

Kid (mg g-1 min-0.5)
I (mg g-1)

R2

2.12
6.50
0.987

2.02
44.08
0.991

1.62
117.13
0.958

Qads (mg/g) 46.21 91.44 181.14
Qmod (mg/g) 43.95 89.21 180.18
K1. (min-1) 0.009 0.008 0.006

PFO R2 0.984 0.996 0.997
F error 0.0122 0.0061 0.0013

Qmod (mg/g) 46.98 95.04 192.70
K2*104 (gmg-1 min-1) 2.81 1.31 0.50PSO

R2 0.936 0.972 0.993
F error 0.0149 0.0098 0.0159

Qmod (mg g-1) 43.93 89.09 181.81
kn. (min-1) (mg g-1)1-n 0.011 0.009 0.002

N 0.961 0.958 1.288PNO

R2 0.980 0.996 0.999
F error 0.0123 0.0064 0.0009

Intraparticle
(first step)

Kid (mg g-1 min-0.5)
I (mg g-1)

R2

3.48
-11.24
0.969

5.86
-10.72
0.986

10.06
-13.67
0.993

B
O

P2

Intraparticle Kid (mg g-1 min-0.5) 0.06 0.31 1.32
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(Second 
step)

I (mg g-1)
R2

39.73
0.805

74.83
0.959

129.05
0.999

Figure 7. Intraparticle model for MB adsorption onto BOP1 and BOP2 at different initial 
concentrations. (T= 25 °C, Agitation speed= 250 rpm, pH=6.2).

Figure 8.  Boyd model for MB adsorption onto BOP2 and BOP2 at different initial 
concentrations. (T= 25 °C, agitation speed= 250 rpm, pH=6.2).

3.4. pH effect 

Figure 9 illustrates the initial pH effect for MB adsorption on BOP1 and BOP2. The two 

materials display the same shape, with curves divided into three stages. The first one is seen 

between pH 2 and 4, where the yield rises from 20 to 93.18 % for BOP1 and from 11 to 92.88 

% for BOP2. This low yield in acidic pH is likely due to electrostatic repulsion between the 

positive charges of the MB dye and those of the adsorbent. The second stage is observed 

between pH 4 and 10, where the adsorption quantity is quite good and almost constant for both 

beads and this behavior is attributed to the presence of negative charges as the pH tends towards 

alkaline values [95]. Finally, the last stage between pH 10 and 12 is characterized by a slight 

decrease in yield due to MB structure modification in this interval, where the maximum 

wavelength shifted from 654 to 550 nm.

Figure 9. Initial pH effect for MB adsorption onto BOP1 and BOP2. (T = 25°C, agitation 
speed= 250 rpm).

3.5. NaCl and humic acid presence effect  

Figure 10 illustrates the behavior of MB adsorption in the presence of NaCl or HA. The findings 

show that when NaCl was added, the adsorption capacity of MB decreased because of 

dissolution of NaCl into Na+ and Cl-, which induces, on one hand, a competitive adsorption 

between the Na+ cations and the MB molecules and, on the other hand, the neutralization of the 

MB molecules by the Cl- ions [96]. Contrarily, the addition of HA had no effect on the 

adsorption performance of MB on the two materials, as seen in Figure 10.
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Figure 10. NaCl and HA presence effects for MB adsorption onto BOP1 and BOP2 at 25°C. 

(Agitation speed= 250 rpm, pH=6.2).

3.6. Reuse of prepared beads 

The regeneration tests of BOP1 and BOP2 (Figure 11) indicate a remarkable reusability 

efficiency since the adsorption cycles can be repeated more than 7 times without a significant 

decrease in the adsorption yield. Indeed, the adsorption decreases are 5.93 % and 8.23% for 

BOP1 and BOP2 respectively between the first and the seventh cycles, indicating a slightly 

higher efficiency for BOP1.

Figure 11. Regeneration efficiency of BOP1 and BOP2 at 25°C. (T = 25°C, agitation speed= 
250 rpm, pH=2).

3.7. Statistical physical modeling

In this section, the adsorption isotherms modeling is performed using statistical physics models. 

As a consequence, to explain the mechanism of adsorption at the molecular level, adequate 

model parameters are considered to calculate, plot, and interpret thermodynamic functions such 

as free enthalpy, entropy, and internal energy.

3.7.1. Choosing the best model

The curves obtained from the used statistical models, namely MMSE, MMTE and DMTE, are 

presented in Figure 12. The adjusted determination coefficient R2, Ferror function, and the 

Bayesian information criterion (BIC) values obtained from each model are summarized in Table 

5. 

Figure 12. MMSE, MMTE, and DMTE modeling curves for MB adsorption isotherms onto 
BOP1 and BOP2 at different temperatures. (Agitation speed= 250 rpm, pH=6.2).
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Table 5: The performance measures of the used statistical physics models.

It is clear that the three models provided excellent adjusted coefficients of determination (R2). 

Table 5 also shows that for the two materials, the second model, MMTE, offered the lowest 

Ferror and BIC values. As a result, it can be considered that the MMTE is the most suitable model 

for describing the experiment results.

3.7.2. Steric interpretation for the adequate model (MMTE)

The nim is one of the parameters that are essential in understanding the adsorption process since 

it can describe the orientation of the adsorbed molecule on the adsorbent surface [97]. As a 

result, three scenarios can be considered. First, if nim is less than 0.5, the adsorption occurs 

through a multi-interaction mechanism, i.e. the MB molecule can be adsorbed on at least two 

10C 25C 30C
Material Models

R2 Ferror 
(%) BIC R2 Ferror 

(%) BIC R2 Ferror 
(%) BIC

MMSE 0.99669 0.02377 79.66 0.9977 0.05047 67.28 0.99533 0.0278 62.26

MMTE 0.99935 0.00156 66.21 0.99945 0.03460 56.41 0.99936 0.01685 47.61

B
O

P1

DMTE 0.99900 0.13977 69.77 0.99805 0.11868 67.67 0.99654 0.13368 61.36

MMSE 0.99757 0.02207 77.15 0.99288 0.04412 83.46 0.99289 0.04001 65.77

MMTE 0.99957 0.00768 60.72 0.99886 0.00974 65.79 0.99908 0.01785 48.71

B
O

P2

DMTE 0.99757 0.02221 76.03 0.99412 0.11576 83.42 0.9929 0.13063 65.45
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free adsorption sites [98]. Otherwise, the MB molecule can be adsorbed on a single and two 

free adsorption sites simultaneously with random and different probabilities in the second 

scenario if nim is between 0.5 and 1 [27,28]. It is worth noting that the nim in the first two 

scenarios means that the adsorbate molecules were adsorbed parallel to the adsorbent surface 

[99]. In the third scenario, where nim equals or exceeds 1, the adsorbate molecule is captured at 

a single adsorption site with an inclined or perpendicular orientation to the adsorbent surface 

[99,100]. Table 6 shows the variation of n1m and n2m as a function of temperature. These results 

indicate that for both materials and whatever the temperature n2m is greater than n1m. 

Furthermore, n1m has variable values ranging from 0.66 to 1.48, indicating that the MB 

molecules adsorption occurs in diverse types. To better understand these findings, two cases 

are considered in the following. 

The first case (BOP1 at 10 °C; BOP2 at 10 and 25 °C) with n1m and n2m both greater than 1: the 

MB molecules were adsorbed on a single site with an inclined or perpendicular orientation to 

the BOP surface. The second case (BOP1 at 25 and 30; BOP2 at 30 °C):  the MB molecules 

were adsorbed simultaneously on a single and two free sites with mixed positions (parallel and 

perpendicular). From these results, the MB adsorption on a single free site in an inclined or 

perpendicular position is the dominant mode. Furthermore, physical statistical models provide 

more accurate values for the amount adsorbed at saturation Qsat. As is well known, Qsat is 

described by the density of the receptor sites (Nis) multiplied by nim. It reflects BOP's ability to 

absorb MB. In the case of MMTE, the total Qsat is given by the sum of Qsat1 and Qsat2. The total 

Qsat for each material at different temperatures are shown in Table 6 and the obtained results 

demonstrate that the model's Qsat values agree with Qads. Table 6 also indicates that total Qsat 

decreases with the temperature, suggesting that the mechanism of MB adsorption on BOP is 

exothermic.
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Table 6: Obtained parameters of the best model (MMTE) for MB isotherm adsorption onto BOP1 and BOP2 at different temperatures.

T
(°C) n1m

N1s
 (mg/g) n2m

N2s
(mg/g)

C1 
(mg/L)

C2 
(mg/L)

Qsat1 
(mg/g)

Qsat2 
(mg/g)

Qsat totale 
(mg/g)

Qads
(mg/g) R2 F error 

(%) BIC

10 1.48 346.03 2.29 117.91 10.52 93.11 511.77 269.41 781.19 764.92 0.999 0.00156 66.21

25 0.89 658.44 3.54 25.46 44.83 97.40 587.33 90.31 677.63 612.58 0.999 0.0346 56.41
B
O
P
1

30 0.66 131.13 1.63 278.78 5.05 92.69 86.55 455.80 542.35 508.90 0.999 0.01685 47.61

10 1.03 221.26 1.55 301.31 6.68 46.70 277.83 468.22 696.05 659.78 0.999 0.00768 60.72

25 1.05 160.36 1.78 210.23 6.82 80.77 168.53 373.37 541.90 523.51 0.999 0.00974 65.79
B
O
P
2

30 0.74 80.37 1.57 231.54 1.37 87.08 59.39 346.44 423.83 400.14 0.999 0.01785 48.71
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3.7.3. Energetic interpretations 

The system's adsorption energy is a crucial parameter for determining the type of interactions 

that occur during the process; this adsorption energy can be calculated using the following 

relationships (Eqs. 31 and 32) [45]:

𝐶𝑖 = 𝐶𝑆𝑒
―𝛥𝐸𝑖

𝑅𝑇 …………………………………………………………………….………………….31

∆𝐸𝑖 = ―𝑅𝑇𝑙𝑛
𝐶𝑖

𝐶𝑆
…………………………………………………………………………………32

Table 7 summarizes the results of the MB adsorption energies calculations on BOP1 and BOP2 

at different temperatures. This table indicates that for the two materials, ΔE1 is always greater 

than ΔE2, indicating that the first type of free active site is the most dominant. Moreover, the 

negative values signify that the interactions between the MB and BOP were exothermic. Based 

on the literature, the calculations carried out show that for the two materials, the values of Ead 

of MB were <40 kJ/mol, indicating the physisorption of the process [101] employing 

electrostatic interactions, hydrogen bonding, and hydrophobic interactions π-π [48]. 

Table 7: Calculated adsorption energies from MMSE model for MB adsorption onto BOP1 
and BOP2 at different temperatures.

Material T (° C) ΔE1 (kJ/mol) ΔE2 (kJ/mol)

10 -19.39 -13.76
25 -16.83 --13.66BOP1
30 -22.61 -13.77
10 -20.46 -15.33
25 -21.49 -14.08BOP2
30 -25.90 -13.91

3.7.4. Thermodynamic function calculation

The best statistical physic model (MMTE) parameters are used to conduct the calculations 

required to measure and plot the internal energy, Gibbs free enthalpy, and configuration entropy 
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to perform a thermodynamic study of the MB adsorption mechanism on the two materials 

(BOP1 and BOP2).

3.7.4.1. Entropy

Evaluating an adsorption system's entropy configuration may provide valuable information 

about the order and disorder of the adsorbate. The relationship given by Eq. 33 is obtained by 

combining the grand canonical partition function Zgc with the large statistical potential (J)  [57].

𝐽 = ― 𝑘𝐵𝑇𝑙𝑛𝑍𝑔𝑐 = ―
∂𝑙𝑛𝑍𝑔𝑐

∂𝛽 ― 𝑇𝑆𝑎…………………………..………………….…………….33

As a result, Eq. 30 provides the following relationship (Eq. 34) [57]:

𝑆𝑎

𝑘𝐵
= ―

𝛽∂𝐿𝑛𝑍𝑔𝑐

∂𝛽 + 𝑙𝑛𝑍𝑔𝑐…………………………………………………………………………34

As a consequence, the second model's entropy variation as a function of the adsorbate 

equilibrium concentration is given by Eq. 35 [102] :

𝑆𝑎

𝑘𝐵
= 𝑁1𝑆 𝑙𝑛 1 + 𝐶𝑒

𝐶1

𝑛1𝑚

+
𝑛1𝑚𝑙𝑛 𝐶1

𝐶𝑒

1 𝐶1
𝐶𝑒

𝑛1𝑚 + 𝑁2𝑆 𝑙𝑛 1 + 𝐶𝑒

𝐶2

𝑛2𝑚

+
𝑛2𝑚𝑙𝑛 𝐶2

𝐶𝑒

1 𝐶2
𝐶𝑒

𝑛2𝑚 ………….35     

Figure 13 illustrates the evolution of entropy as a function of the equilibrium concentration. 

The two materials provide similar curves that can be separated into two parts: the first part is 

observed at low concentrations where entropy increases while the second part is seen at high 

concentrations where entropy decreases. This can be explained as follows: at low 

concentrations, MB molecules have a variety of opportunities for choosing free active sites to 

adsorb onto them, which leads to more disorder. However, at high concentrations, the BOP 

surface tends to monolayer saturation, which means that MB molecules do not have as many 

opportunities for being adsorbed, so the choice of free active sites is limited resulting in 

reduction in the disorder [103]. In general, when equilibrium is achieved, the entropy tends to 
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zero [104], but this is not the case in our analysis, indicating that saturation has not yet been 

reached [105].

Figure 13. The evolution of entropy as a function of equilibrium MB concentrations at 
different temperatures for BOP1 and BOP2.

3.7.4.2. Gibbs free enthalpy

As it is known, the spontaneity of adsorption is determined by the Gibbs free enthalpy, which 

is presented by Eq. 36 [48] :

𝐺 = 𝜇𝑄………………………………………………………………………………………………36

Where the chemical potential is given by Eq. 37 [106]:

𝜇 = 𝑘𝐵𝑇𝑙𝑛
𝑁𝑠

𝑍𝑡𝑟
……………………………………………………………………………………37

Then, the Gibbs free enthalpy for MMTE expression is given by Eq. 38 [107]:

𝐺 = 𝑘𝐵𝑇𝑙𝑛
𝐶𝑒

𝑍𝑣

𝑄𝑠𝑎𝑡1

1 + (
𝐶1
𝐶𝑒

)
𝑛1𝑚 +

𝑄𝑠𝑎𝑡2

1 + (
𝐶2
𝐶𝑒

)
𝑛2𝑚 ………………………………………………..38

Figure 14 shows the results of the Gibbs free enthalpy calculations as a function of MB 

concentrations at different temperatures. These results indicate that G values are negative 

regardless of the temperature, confirming the thermodynamic adsorption spontaneity of MB 

onto BOP1 and BOP2 [107]. Figure 14 also shows that the MB adsorption feasibility decreases 

with rising temperature [101], which is likely due to the reduction of thermal collisions number 

[108].

Figure 14. Gibbs free enthalpy variation as a function of equilibrium MB concentrations at 
different temperatures for BOP1 and BOP2.

3.7.4.3. Internal energy
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The energy of an adsorption system can be described as a fundamental concept developed to 

quantify the nature of interactions between its various components (including adsorbate-

adsorbate interactions) so that it can express any type of energy that may occur in the process 

[103]. Therefore, internal energy is a key parameter for understanding the physical and 

chemical phenomena in this system.

The general equation of the internal energy can be described using the canonical grand partition 

function as follows [3] : 

𝐸𝑖𝑛𝑡 = ―
∂𝑙𝑛(𝑍𝑔𝑐)

∂𝛽 +
𝜇∂𝑙𝑛(𝑍𝑔𝑐)

𝛽∂𝜇 ………………………………………………………………….39

Finally, the internal energy function for the monolayer model with two energies (MMTE) is 

given by Eq. 40 [102]: 

𝐸𝑖𝑛𝑡 = 𝑘𝐵𝑇 𝑁1𝑠

𝑙𝑛(
𝐶𝑒
𝑍𝑣

) + 𝑛1𝑚𝑙𝑛(
𝐶1
𝐶𝑒

)

1 + (
𝐶1
𝐶𝑒

)
𝑛1𝑚 + 𝑁2𝑠

𝑙𝑛(
𝐶𝑒
𝑍𝑣

) + 𝑛2𝑚𝑙𝑛(
𝐶2
𝐶𝑒

)

1 + (
𝐶2
𝐶𝑒

)
𝑛2𝑚 ………………………….40

Therefore, Eint/kBT is plotted as a function of Ce in Figure 15.

Figure 15. Internal energy variation as a function of equilibrium MB concentrations at 
different temperatures for BOP1 and BOP2.

It is clear that the values of Eint of the two materials are negatives, confirming the process 

spontaneous nature [26] (in agreement with the results of Gibbs free enthalpy). Furthermore, 

the Eint values obtained can be divided into two cases. For low concentrations, the absolute 

values of the internal energies vary randomly with the rise of temperature. In contrast, in the 

second case, the absolute values of internal energies decrease with increasing temperature, 

possibly due to a decrease in the thermal collisions number [109]. The two cases suggest the 

presence of exothermic and endothermic (at the first adsorption moments) adsorption stages 

[102].
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4. Proposed mechanism for MB adsorption on BOP

As a result of all the obtained findings, it can be assumed that MB adsorption on BOP is 

spontaneous and exothermic [26], as demonstrated by the Gibbs free enthalpy and internal 

energy functions. Moreover, the physisorption of the process indicates that its mechanism can 

be achieved through electrostatic interactions and hydrogen bonding. This bonding can occur 

between the electronegative nitrogen (N) atom of the MB dye and the –COOH and –OH 

functional groups of the alginate [110]. Additionally, there is a contribution from hydrophobic 

interactions π-π between the aromatic rings in MB and those of  BOP [111]. Note that π-π 

interactions primarily originate from TOP due to its cellulosic form as found in our previous 

study [29]. Furthermore, the nim parameter proved that MB molecules were adsorbed by a mixed 

monolayer with various orientations, namely perpendicular and horizontal, on a single and two 

free sites at the same time, but with a dominance of MB adsorption on a single free site under 

an inclined position to the BOP surface [28,98,99]. It is important to point out that the 

contribution of TOP on MB adsorption was limited compared to its powder state, as found in 

our previous study [29]. This finding can be attributed to the formation of the "egg box" as 

mentioned in Section 2.2 [30], wherein TOP was surrounded by alginate. Consequently, it 

contributed to the MB adsorption mechanism, but in a limited way. Figure 16 summarizes 

everything that was said about the adsorption mechanism of MB on BOP. 

Figure 16. Proposed mechanism for MB adsorption onto BOP.

5. Support Vector Machine coupled with Levy Flight Distribution Optimization 

In this section, three kernel functions are optimized using the LFD algorithm. The linear, 

Gaussian, and polynomial kernels mentioned in Section 2.9 are used. After obtaining the results 

of the learning phase, the SVM model was validated using the validation database. The 

predicted values generated by the model were compared to the experimental values in the 
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training and validation phases to calculate R, R2, R2
adj, RMSE, MSE, EPM, ESP and MAE. The 

results of these tests showed that the Gaussian kernel function represented the best result 

compared to the other kernels. This result is shown in Table 8.

Table 8: Performances of SVM_LFD Kernel function.

LFD
 Max_iteration=100

SearchAgents_no=40

K
er

ne
l 

fu
nc

tio
n

c Ε σ2

Quantity of 

support

Vectors

R/R2/R2
adj RMSE/MAE

Train Val All Train Val All

G
au

ss
ia

n

1910 1.6000 7.2404 135

0.9981

0.9962

0.9960

0.9973 

0.9945

0.9934

0.9985

0.9970

0.9970

12.0832

5.3954

7.9200

6.9612

11.1425

5.7929

The optimal parameters of the Gaussian kernel function were found using the LFD method 

with a maximum number of iterations of 100 and the number of "search agents" as 40. This 

search approach of parameters made it possible to optimize the performance of the model by 

finding the ideal values for C, ε and σ2. The values of these parameters have been selected so 

as to minimize the mean squared prediction errors, equivalent to maximize the coefficient of 

determination R2.

The model parameters for the Gaussian kernel function found by the LFD method are as 

follows: C = 1910, ε = 1.6 and σ2 = 7.2404 and they produced very satisfactory prediction 

performance for the three sets of data: training, validation and the complete data (all data). 

Indeed, for the training phase the coefficients of R, R2 and R2
adj have values of 0.9981, 

0.9962, and 0.9960 respectively indicating that the model almost perfectly explains the 

variance of the training data. Prediction errors are also very low, with an RMSE of 12.0832 

and an MAE of 5.3954. These results indicate that the model is able to fit the training data 

well and provide accurate predictions. For the validation phase, the values of R, R2 and R2
adj 
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are slightly lower at 0.9973, 0.9945 and 0.9934 respectively, but remain high and indicate 

good generalization capacity of the model. The prediction errors are slightly higher than in 

the training phase, with an RMSE of 7.9200 and an MAE of 6.9612, but remain relatively 

low compared to the amplitude of the data. Finally, for "all data", the coefficient of 

determination R2 is even higher with a value of 0.9970, confirming the model's ability to 

generalize and adapt to complete data. The values of R and R2
adj are also very high, with 

respective values of 0.9985 and 0.9970, confirming the reliability and accuracy of the model. 

Prediction errors are also very low, with an RMSE of 11.1425 and MAE of 5.7929, indicating 

that the model is capable of producing accurate predictions even on new data.

The results obtained indicate that the model using the Gaussian kernel function with the 

specified parameters is able to fit the training data well, to generalize on the validation data 

and to provide accurate predictions on the full data.

This result was represented graphically (Figure 17) in terms of the experimental values and the 

predicted values.

Figure 17. Relationship between the experimental and the SVM-LFD model predicted 

values.

5.1. Model performance test

Model performance results for generalization were evaluated using a cached database 

comprising 28 experimental data points that were not used during model development. The 

performance results are presented in Table 9, which shows the values of R, R2 and R2
adj, as well 

as the statistical errors (RMSE and MAE).

Table 9: Model test performance.

R R2 R2
adj RMSE MAE

0.9989 0.9978 0.9972 9.0789 6.4998
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The results show that the generated SVM-LFD model has good generalization, with a 

coefficient of determination R2 of 0.9989, indicating a very good generalization capacity of the 

model. The values of R and R2
adj are also very high, with respective values of 0.9989 and 

0.9972, confirming the reliability and accuracy of the model.

As far as statistical errors are concerned, the values are also very low, with an RMSE of 9.0789, 

and an MAE of 6.4998. These values indicate that the model is capable of providing very 

accurate predictions for the additional unseen testing data.

The results obtained for the performance of the model for the generalization tests are very 

satisfactory, with high values for the coefficients of determination and very low statistical 

errors. This confirms the efficiency and accuracy of the generated SVM-LFD model to predict 

complex phenomena in various scientific fields.

This result is represented graphically in Figure 18 in terms of the experimental values and the 

predicted values.

Figure 18. Comparison between experimental and predicted values to assess performance.

5.2. Residues study

The residual analysis approach is used in this study to investigate the efficiency and 

performance of the chosen model [61,78]. The experimental and predicted values are plotted 

together against samples in Fig. 19(a) for all data (including training, validation and test data) 

[74,79].

The model prediction errors are plotted as time series in Fig. 19(b). The distributions of model 

prediction errors are plotted as histograms in Fig. 19(c) and Fig. 19(d)  [61].
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Figure 19.a shows the exceptional close matching between the actual values and the estimated 

values for the three sets of data (training, testing and validation), indicating the high accuracy 

of the developed model. Figure 19.b displays very small errors in the range of [-25 to 25] for 

all three data sets (except two errors that exceeded this range), with the majority of errors 

clustered around zero. This highlights the robustness and accuracy of the model. Figure 19.c 

shows a notable high proportion of errors around 0 for all three data sets. This means that the 

model was able to accurately predict the values for a significant proportion of the samples. This 

is further reinforced by Figure 19.d, which displays a high frequency of errors around 0 (close 

to 100 occurrences), indicating the efficiency and effectiveness of the developed model. 

Overall, these results suggest that the developed model is able to accurately predict the expected 

values with high accuracy, making it a reliable tool for future studies in this area.

Figure 19. Residuals relating to the model established by the different techniques according 

to the estimated values: (a) experimental data and the predicted data against samples, (b) 

model errors against samples, (c) histogram of all errors, and (d) histograms of errors on 

training, testing, and validation data sets.

5.3. Optimization and validation of the optimum conditions

The LFD approach was utilized to find the optimal process condition for achieving maximum 

MB uptake with both adsorbents. The four decision variables are: X1 (contact time), X2 (initial 

MB concentration), X3 (pH), and X4 (temperature). After the optimization process, laboratory 

experiments were conducted to validate the optimization result. Table 10 displays the 

comparison between the predicted and experimental outcomes, as well as the corresponding 

errors for each adsorbent.

Where:          -  Error Experimental response Predicted response=  …………………………41
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Table 10: Comparison between actual and predicted responses at optimum conditions.

For BOP1, the optimal conditions were determined to be X1=2833 min, X2=1200 mg/L, 

X3=5.9, and X4=10°C, with an expected MB uptake of 753.7781 mg/g. Laboratory experiments 

were conducted to validate these conditions, and the actual absorption of MB was found to be 

764.9165 mg/g. The error between the predicted and experimental values was 11.1384 mg/g, 

indicating that the LFD method was successful in determining the optimal conditions for 

maximum MB uptake in BOP1. Similarly, for BOP2, the LFD method was used to determine 

the optimal conditions for maximum MB uptake, which were found to be X1 = 2797 min, X2 

= 1200 mg/L, X3 = 6.2, and X4 = 10°C, with a predicted MB absorption of 641.3378 mg/g. 

Laboratory experiments were conducted to validate these conditions, and the actual MB 

absorption was measured at 659.7792 mg/g, resulting in an error of 18.4414 mg/g.

The errors shown in Table 10 indicate that the SVM_LFD model is effective in predicting MB 

uptake in BOP1 and BOP2 samples and in optimizing process conditions for achieving maximal 

MB removal. 

5.4. User interface for optimization and prediction

BOP1

LFD: X1 = 2833 min, X2 = 1200 mg/L, X3 = 5.9, and X4= 10°C
Predicted MB uptake (mg/g) 753.7781

Experimental MB uptake (mg/g) values 764,9165

Error (mg/g) 11,1384

BOP2

LFD: X1 = 2797 min, X2 = 1200 mg/L, X3 = 6.5, and X4= 10°C

Predicted MB uptake (mg/g) 641.3378

Experimental MB uptake (mg/g) values 659,7792

Error (mg/g) 18.4414
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A sophisticated software tailored for the Windows operating system has been meticulously 

designed to enhance the optimization and predictive capabilities of MB adsorption for two 

distinct adsorbents, as visually depicted in Figure 20. This intuitively user-friendly application 

seamlessly consolidates and enriches all the intricate calculations conducted in the course of 

this investigation. This software enables users to effortlessly predict and optimize MB 

adsorption with enhanced precision and efficiency.

The initiation of this application unfolds smoothly and intuitively, providing an optimal user 

experience. In the upper section, the integration of the LFD algorithm aims to determine the 

optimal conditions (X1, X2, X3, X4) based on the previously developed SVM_LFD model. To 

do so, the user starts by selecting the adsorbent of their choice, indicating the corresponding 

number in the ‘’Type of adsorbent’’ box: 1 for BOP1 and 2 for BOP2. Subsequently, it is 

necessary to define the search interval for each parameter by specifying the lower bound (LB) 

and upper bound (UB). Once these steps are completed, the optimization process is initiated 

with a simple click on the "LFD" button, obtaining the optimal parameters that maximize the 

adsorbed quantity for each material.

In the prediction section, determining the adsorbed quantity for each material is simplified. The 

user only needs to choose the adsorbent by entering 1 for BOP1 or 2 for BOP2. Then, it is a 

matter of inputting the values of X1, X2, X3, and X4, and launching SVM_LFD to predict the 

adsorbed quantity for the selected material. All of these steps are clearly outlined in Figure 20, 

facilitating a quick and comprehensive understanding of the application's usage process. 

This user-friendly application, equipped with its ability to optimize and predict, serves as a 

valuable asset in the field of adsorption studies.

Figure 20. MATLAB user interface for optimization and prediction of MB uptake using 

SVM_LFD.

6. Comparison of the adsorption performances of BOP1 and BOP2 with other adsorbents
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The adsorption performance of BOP1 and BOP2 under optimal conditions is compared with 

other adsorbents reported in the literature and the results are given in Table 11.

Table 11: The adsorption performances of BOP1 and BOP2 in comparison with other 

adsorbents.

It can be seen from Table 11 that rice husk combined with alginate demonstrates an adsorption 

capacity of 274.9 mg/g for MB at pH of 6 and temperature of 20°C. Similarly, montmorillonite 

nanosheets combined with alginate exhibit an adsorption capacity of 564.97 mg/g for MB, with 

pH of 8 and temperature of 25°C. Cellulose crystals, when paired with alginate, showcase a 

Precursor Biopolymer Pollutant
Adsorbed 
quantity 
(mg/g)

pH T 
(°C)

Maximum 
pollutant 

concentration 
(mg/L)

References

Rice husk Alginate MB 274.9 6 20 500 [25]
Montmorillonite 

nanosheets Alginate MB 564.97 8 25 300 [112]

Cellulose 
nanocrystals Alginate MB 676.7 7 25 1600 [113]

Coffee grounds 
/cellulose Alginate

MB
Congo 

red

397.76
397.14

6
2

25
25

400
400 [114]

Montmorillonite Chitosane Methyl 
green 396.19 6 25 500 [115]

Cellulose Alginate MB 38 7 30 100 [116]
BOP1
BOP2

Alginate
Alginate

MB
MB

764.92
659.78

5.9
6.2

10
10

1200
1200

This study
This study



40

noteworthy adsorption capacity of 676.7 mg/g for MB at pH of 7 and temperature of 25°C. 

Among other observations, coffee grounds and cellulose demonstrate adsorption capacities for 

both MB and Congo Red, with respective adsorbed quantities of 397.76 mg/g and 397.14 mg/g. 

Lastly, within our study, materials BOP1 and BOP2 exhibit remarkable adsorption capacities 

for MB, reaching 764.92 mg/g and 659.78 mg/g, respectively, at pH values of 5.9 and 6.2, and 

temperature of 10°C. These results significantly highlight the variability in the effectiveness of 

our materials under specific adsorption conditions, promising avenues for the treatment of 

diverse pollutants.

7. Conclusion

The study demonstrates the potential of orange peels as an effective precursor for synthesizing 

sodium alginate-encapsulated beads for the removal of methylene blue (MB) from aqueous 

solutions. The experimental data for adsorption kinetics is analyzed using various models, and 

the PFO model is found to be the most appropriate for describing the data. Furthermore, the 

Boyd and intraparticle models suggest that the limiting step is the diffusion of films. The 

adsorption isotherms are best described by the MMTE model, which indicates that the 

adsorption of MB on the prepared beads occurs through a mixed monolayer process. The 

regenerated beads could be reused up to seven cycles, indicating their potential for practical 

applications. The study also shows that NaCl inhibits MB adsorption due to competition with 

Na+, while humic acid has no effect on the adsorption process. The thermodynamic study 

reveals that the adsorption process is spontaneous and exothermic, and the availability of free 

active sites on the BOP surface is related to the order and disorder of the system. The findings 

of this study suggest that orange peels can be a low-cost and environmentally friendly precursor 

for synthesizing sodium alginate-encapsulated beads for wastewater treatment applications. 
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Finally, the SVM-LFD model is found to be highly accurate with minimal statistical errors and 

is effective in predicting the adsorption behavior of the prepared beads. This model is a 

promising tool for predicting the performance of similar adsorbents and optimizing their design 

for practical applications. This study presents a comprehensive investigation of the potential 

use of orange peels as a precursor for synthesizing sodium alginate-encapsulated beads for 

wastewater treatment applications. The findings of this study contribute to the development of 

effective and sustainable adsorbents for the removal of pollutants from aqueous solutions.

8. Nomenclatures 

BOP Beads of orange peels.

BOP1 Beads of orange peels with a TOP-SA ratio equal to 1.

BOP2 Beads of orange peels with a TOP-SA ratio equal to 2.

C Box Constraint

C0 MB initial concentration (mg/L). 

C1, C2, C1/2 Concentrations at half-saturation of the adsorbed layer (mg/L).

Ce MB concentration at equilibrium (mg/L). 

CS MB solubility (g/L).

Ct MB concentration at time t (mg/L).

Eint System internal energy (J/mol)

G Gibbs free enthalpy function (J/mol)

h Planck constant (J/s).

K The number of variables (inputs).
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I Intraparticle model constant (mg/g).

KB Boltzmann constant (J/K).

KF Constant of Freundlich model (mg L/g).

Kid Constant of diffusion rate from intraparticle model (mg/g min-0.5).

KL Constant of Langmuir model (L/mg).

Kn The rate constant of PNO. (min-1) (mg g-1)1-n

K1 The rate constant of PFO (1/min).

K2 The rate constant of PSO (g/(mg min)).

m Adsorbent mass (g).

N The number of data samples.

NiS Density of (i) Receptor sites (mg/g).

n Sorption reaction order.

nf Heterogeneity index of the Freundlich model.

nim The number of MB molecules captured by the receptor sites.

PFO Pseudo first order model.

PSO Pseudo second order model.

PNO Pseudo nth order model.

Qe Equilibrium adsorbed quantity (mg/g).

Qm Adsorbed quantity of one layer for Langmuir model (mg/g).

Qmod Adsorbed quantity obtained by the kinetic models (mg/g).

Qsat Adsorbed quantity at saturation (mg/g).

Qads Adsorbed quantity (mg/g).

ROP Raw orange peels.

RE BOP regeneration efficiency (%).

R2 determination coefficient. 
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SA Sodium alginate.

Sa Entropy configuration (J/mol K)

T Temperature (°C or K).

t Time (min).

TOP Treated orange peels.

V Volume (L). 

Zv Translation partition function per unit volume.

zgc The grand canonical partition function of one site.

Zgtr The translation partition function.

Zgc(NS) The grand canonical partition function relative to the density of receptor sites.

Greek symbols

βt Mathematical function related to “F” function from Boyd model.

β Parameter related to temperature and Boltzmann constant (1/J).

ɛ1, ɛ2, ΔE  Adsorption energy (J/mol).

μ The chemical potential of the adsorbed molecule (J/mol).

μm The chemical potential of the dissolved molecule (J/mol).

π Constant.
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MB adsorption on the prepared beads is analyzed by the pseudo first order (PFO) pseudo second 

order (PSO) pseudo nth order (PNO), Intraparticle, and Boyd models, which are given by Eq. 

S1 to Eq. S5 (a. b) respectively.

Pseudo first order (PFO) [35,36]:                                     

  𝑄𝑎𝑑𝑠 = 𝑄𝑒(1 ― 𝑒𝐾1𝑡)……….……………………………………………………………………𝑆1

Pseudo second order (PSO) [35,36]:                                     

𝑄𝑎𝑑𝑠 = 𝐾2𝑄2
𝑒𝑡 (1 + 𝐾2𝑄𝑒 𝑡)………………..……………………………………….………….𝑆2

Pseudo nth order [37] :                     

𝑄𝑎𝑑𝑠 = 𝑄𝑒 ― (𝑛 ― 1)𝐾𝑛𝑡 + 𝑄(1―𝑛)
𝑒

1 (1―𝑛)
……..………………………………………….…𝑆3

Intraparticle diffusion [38] :

𝑄𝑎𝑑𝑠 = 𝐾𝑖𝑑𝑡0.5 + 𝐼…………………………………………………………………………………𝑆4

The intraparticle model produces a line with an intercept (I) that can provide information about 

the boundary layer thickness. Furthermore, Boyd's model is given according to the following 

equations [39] :

𝐹 =
𝑄𝑎𝑑𝑠

𝑄𝑒
= 1 ―

6
𝜋2

∞

𝑛=1

1
𝑛2 𝑒 ―𝑛2𝛽𝑡 …………………….…………………………….𝑆5

If F > 0.85 then
𝛽𝑡 = ―0.04977 ― 𝑙𝑛(1 ― 𝐹)……………….……………………………………………………………………………….a

If F < 0.85 then

𝛽𝑡 = 𝜋 ― 𝜋 ―
𝜋2𝐹

3

2

…………….………………………………………………………...𝑏
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Eqs. S6 and S7 present the mathematical expressions for the Langmuir [44] and Freundlich [43]  

models, respectively.

𝑄𝑎𝑑𝑠

𝑄𝑚
=

𝐾𝐿𝐶𝑒

1 + 𝐾𝐿𝐶𝑒
………………………………………………….…………………………….…𝑆6

𝑄𝑎𝑑𝑠 = 𝐾𝐹𝐶1 𝑛𝐹
𝑒 …………….…………………………………………………………………...𝑆7

Figure S1. Langmuir and Freundlich modeling for MB adsorption isotherm onto BOP1 and 
BOP2 at various temperatures. (Agitation speed= 250 rpm, pH=6.2).
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