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Abstract

Digital Twin technology has revolutionised overseeing
newly built structures. This study suggests employing digi-
tal twin-based automatic progress monitoring on construc-
tion sites, comparing 3D point clouds with their Building
Information Modelling to track progress and predict com-
pletion. It highlights integrating semi-continuous moni-
toring with a building’s digital twin for efficient construc-
tion management. Leveraging precise data enhances un-
derstanding and identifies schedule deviations, enabling
timely actions. Demonstrated through real-world con-
struction data, visualised Gantt charts showcase its effi-
cacy, offering insights into task status, schedule devia-
tions, and projected completion dates. This underscores
digital twin technology’s potential to transform construc-
tion oversight.

Introduction

Scan-to-BIM provides a comprehensive assessment of
the as-built state in the context of performance improve-
ment (Bosché et al., 2015; Drobnyi et al., 2023b, 2024).
Despite its impact, laser scanning is somewhat limited to
surface recognition, lacking depth in reflecting built ele-
ment quality (Hoiem et al., 2022). Researchers explore
embedded sensing for conditional data assessment (Al-
izadehsalehi and Yitmen, 2016). Integrating laser scan-
ner technologies and advanced wireless sensors offers op-
portunities for comprehensive project exploration, enhanc-
ing performance control and project management by merg-
ing as-planned models with data-capturing reality. Ef-
fectively managing vast and complex data for real-time
progress monitoring requires an intelligent system contin-
uously learning from various sources, including historical
archive data (Boje et al., 2020). IoT technologies and re-
lated systems, combined with digital twin and cognitive
computing, collect real-time data (Dawood et al., 2020).
Visualizing digital data for stakeholders in different project
stages is crucial, with XR technologies providing multidi-
mensional perspectives (Alizadehsalehi et al., 2020).

As per the Project Management Body of Knowledge (PM-
BOK), controlling and monitoring a construction project
encompasses processes to oversee progress and perfor-
mance, identifying areas requiring plan adjustments, and
initiating corresponding changes (Guide, 2001). These
processes entail measuring progress through inspections
(as-built) and comparing it with the project plan (as-
planned) to validate predicted performance. The overar-
ching goal of monitoring is to ensure effectively managed
results and outputs by measuring and assessing project
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performance (Lin and Golparvar-Fard, 2020). Measur-
ing work in progress on construction sites is crucial for
project management, impacting various aspects such as
time, cost, quality, and safety. This task is particularly
challenging due to the complexity and interdependency of
activities (Arif and Khan, 2021).

Traditional progress tracking practice depends on visual
inspections and daily or weekly reports created based on
those inspections to ensure that work meets contract speci-
fications and schedule (Golparvar-Fard et al., 2009). These
traditional practices are often slow and rely heavily on the
inspectors’ personal judgment, observational skills, and
weekly expert follow-ups with a high probability of com-
plete and accurate reports. Effective monitoring is crucial
for project success; however, even the most robust moni-
toring systems are insufficient if the project is poorly de-
signed or built on flawed assumptions. Building Informa-
tion Modelling is a digital representation of a building,
capturing 3D geometry and semantic descriptions of com-
ponents (Kim et al., 2020b). The AEC industry-accepted
BIM provides a suitable basis for automated construc-
tion progress monitoring. It serves three essential pur-
poses: providing as-planned data, as-built data, and en-
abling their comparison (Machado and Vilela, 2020). As
the baseline for construction progress monitoring, BIM
binds AEC contract information, facilitates access to ge-
ometric data, allows for special visualization of sched-
ules, and manages progress-related information. Recog-
nized as a rich data source, BIM is pivotal for automated
project progress monitoring (Kim et al., 2020a). A well-
designed BIM model analyses operations in construction,
aiding site management, enhancing communication, coor-
dinating contractors, and planning logistics (Kopsida and
Brilakis, 2020). While traditional Building Information
Modelling (BIM) and construction schedules effectively
capture the as-designed and as-planned phases, they inher-
ently lack timely updation of the as-built and as-performed
states during construction progression. This deficiency
arises due to the static nature of BIM and schedules, which
do not dynamically update as construction activities un-
fold. Construction sites’ inherent heterogeneity and tem-
poral dynamics present formidable challenges to accurate
progress monitoring.

This paper proposes using DT to monitor the progress of
large-scale construction sites. The major contribution is
the tight integration of progress monitoring to DT, facil-
itating timely progress monitoring of a real construction
site. The pipeline of the DT-based progress monitoring
is as follows: The workers capture laser scans at the site
and are passed to the DT platform. Then, the detection



model in the platform automatically detects as-built ele-
ments and pushes the information generated from raw data
to the graph. This will trigger the progress monitor and tra-
verse the graph to get the progress information at the ac-
tivity level. Here, an activity refers to a grouping of tasks,
where each task represents a specific job tied to a particular
element on the construction site. We calculate the current
status of the progress (on schedule, ahead of schedule, and
behind schedule) of each activity and estimate the finished
date if the progress is behind schedule. We visualize these
results in a Gantt table via a dashboard, which managers
can quickly investigate.

Background

In response to these challenges, Digital Twins Construc-
tion (DTC) is emerging as a focal point of attention, of-
fering a reliable information source for continuous pro-
duction planning and adaptive product design throughout
the construction lifecycle. However, the successful inte-
gration of DTC faces challenges — industry-wide adop-
tion, technical intricacies ensuring the precision and ac-
cessibility of data (Sacks et al., 2020). Crucially, DTC
should not be perceived merely as an extension of ex-
isting tools like BIM but as a transformative approach
to construction production management, emphasizing a
closed control loop (Sacks et al., 2020). The concept of
DTC, coupled with automated data acquisition, establishes
a framework for automatic progress monitoring, obviat-
ing the limitations of conventional techniques. This study
directs readers to a comprehensive exploration of digital
twins in construction through a recent review paper au-
thored by (Opoku et al., 2021), providing invaluable in-
sights into the evolving landscape of construction technol-
ogy and methodologies.

To streamline and enhance the efficiency of progress moni-
toring processes, the initial step involves identifying newly
constructed objects since the last data acquisition. This
task is inherently challenging during the construction cycle
due to noise, missing data, and local disparities in the po-
sition of as-built elements compared to their as-designed
counterparts. The proposed solution involves locating in-
stances of the as-designed model within LiDAR data ac-
quired on construction sites. Current state-of-the-art ap-
proaches for object detection fall into two primary cate-
gories: traditional and deep learning (Chu et al., 2023; Lan
et al., 2024). Traditional computer vision algorithms for
object detection rely on deterministic procedures involv-
ing primitive shape fitting and statistical analysis (Drobnyi
et al., 2023a). The most established methods within this
category include RANSAC, Hough transform, and region
growing. For instance, the efficacy of the Hough trans-
form in detecting pipes within noisy 3D point clouds was
demonstrated by (Ahmed et al., 2014). RANSAC-based
methods have gained popularity due to their robustness in
automatically segmenting building object instances repre-
sented by basic shapes such as cuboids and cylinders, en-
abling the detection of slabs and pipes. (Anagnostopoulos

et al., 2016) applied RANSAC to detect wall surfaces, fa-
cilitating the reconstruction of rooms from 3D point cloud
data (Anagnostopoulos et al., 2016). The second category
employs deep learning techniques, with deep neural net-
works emerging as the predominant method for object de-
tection. Notably, the PointNet architecture, a deep neural
network specifically designed for point clouds, was intro-
duced by (Qi et al., 2017). PointNet predicts the class la-
bel for each object segment, receiving a cluster of points
as input and outputting a category prediction among 13
classes (Chen et al., 2019).

(Hu and Brilakis, 2024) proposed an automatic cluster-
ing method to segment the points corresponding to the
as-designed instance. The workflow contains (1) In-
stance descriptor generation, (2) PROSAC (Progressive
Sample Consensus) based shape detection, and (3) DB-
SCAN (Density-Based Spatial Clustering of Applications
with Noise) based cluster optimization. The method
matches design-intent planar, curved, and linear struc-
tural instances in complex scenarios, including (1) the as-
built point cloud is noisy with high occlusions and clutter;
(2) deviations between as-built instances and as-designed
models in terms of position, orientation, and scale; (3) both
Manhattan-World and non-Manhattan-World instances.

Methodology

In this work, we develop our progress monitoring method
based on a holistic cloud-based Digital Twin Platform
(DTP). This platform operates on a structured ontology,
facilitating storing both the as-designed and as-built infor-
mation for every element within a construction site. This
platform intricately captures and retains the element-level
status of each component present on the construction site.
The status information is derived through various DT ser-
vices, which meticulously process raw 3D point clouds
from routine construction site surveys with laser devices.
We use a BIM-assisted 3D object detection algorithm to
ascertain the presence of each element within the as-built
data. Such information is transmitted and systematically
stored in the DT platform as element-level status, forming
a comprehensive repository of the construction site’s dy-
namic and evolving conditions. By retrieving and process-
ing the information in the DTP, we calculate the activity-
level progress status and estimate the finish date of the ac-
tivity.

Ontology

The pertinent partial ontology for this study is illustrated in
Figure 1; the complete ontology can be found in (Schlenger
etal., 2022). Construction information is organized within
a graph-based database, aligning with the structure de-
fined by the ontology. The ontology bifurcates into as-
planned and as-performed segments, encompassing Work
package, Activity, Task, and as-designed elements un-
der the as-planned side. In contrast, the as-performed
side includes Construction, Operation, Action, and
as-built elements. These nodes adhere to a hierarchical
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Figure 1: Visualization of a segment of the Digital Twin
ontology employed in the progress monitoring pipeline.

order and establish connections through various relation-
ships. Notably, the work package node, functioning as
an aggregation of activities, is linked to respective activ-
ity nodes through the hasActivity relationship. The as-
planned and as-performed sides of nodes are connected
with intentStatusRelation. Recognizing that con-
struction plans often operate at the activity level, the as-
planned schedule is stored within the Activity node, cap-
turing start and end dates. The schedule reflecting the
as-performed activities is archived within the Operation
node, mirroring the data in the Activity node. In in-
stances where no prior surveys have been conducted for
the target building, the operation’s start date is presumed to
align with the as-planned start date. Alternatively, if pre-
vious surveys have been undertaken, the operation’s start
date is designated as the most recent scan date. The con-
clusion of the operation is determined by extracting the lat-
est update date at the element level. The as-built element
node retains the progress at the element level, computed
using the BIM-assisted 3D object detection algorithm (Hu
and Brilakis, 2024).

Object detection

Automating progress monitoring necessitates the initial
step of detecting constructed objects on construction sites,
a task burdened with challenges, as outlined in the pre-
ceding background section. Streamlining this process re-
quires a global registration between the BIM model and 3D
point cloud data. We utilize a global registration method
to align the coordinates of the BIM model and LiDAR
data (Monasse et al., 2023). This efficient algorithm opti-
mizes global robust energy between two line segments ex-
tracted from the BIM and LiDAR data. Once registered,
the Region-Of-Interest can be confined to the upscaled
bounding box of the query as-designed element, provided
the BIM model and LiDAR data share the same coordinate
system. This region of interest will be an input to a filter-
ing step to remove clutter, if they exist. Given the geomet-
ric richness of the construction environment, we propose a
novel solution based on geometric features, with a specific
focus on planar polygons as a robust data abstraction. Our
method involves detecting and clustering planar polygons

in each dataset, followed by a matching step to compare
planar polygons within associated clusters. This compari-
son allows us to identify local discrepancies in position, if
they exist, ultimately eliminating false detection. We not
only determine if there is a local discrepancy but also cal-
culate the corresponding geometric transformation. This
can avoid false positive detection when facing significant
local discrepancy.

Integration with DTP

Specific Application Programming Interfaces (APIs) have
been developed to facilitate seamless communication with
the DTPL. These APIs enable the retrieval, creation, and
updating of nodes within the DTP. The comprehensive
progress monitoring pipeline is visualized in Figure 4.
Given the assumption that the DTP is current with both as-
built element progress and operation start and end dates,
an initial fetch request is initiated to retrieve all activity
nodes from the DTP. Subsequently, each activity’s as-
planned start and end dates are extracted from the cor-
responding activity nodes. Following the hierarchical
structure, all as-designed element nodes linked to each
activity node through relationships like hasTask and
hasTarget are retrieved from the DTP. Leveraging the
intent-status relation, with intentStatusRelation cor-
responding to the as-built node for each as-designed node
is fetched. The element-level as-built progress is then
aggregated from the as-built element nodes. Employing
reverse relationships with hasTarget and hasAction,
operation nodes are fetched, and the associated as-
performed schedules are compiled. Once the as-planned
schedule, as-performed schedule, and element-level as-
built progress are at our disposal, the groundwork is laid
for the computation of progress at the activity level.

Progress calculation

The determination of activity status in relation to the
schedule is outlined in Table 1. An activity is marked as
ahead of schedule if the element-level progress exceeds
zero and the end date of the operation precedes the cor-
responding activity end date. The cumulative assessment
considers an activity as ahead of schedule if a majority of
its elements exhibit this characteristic. Simultaneously,
the percentage of completed tasks within an activity is
computed. In the case of an activity falling behind sched-
ule, the maximum delayed task determines the extent of the
delay. To further enhance understanding, the calculated
percentage of tasks completed, and the determined delay
duration are employed to estimate the revised end date us-
ing a projection function. Presently, the projection utilizes
an S-shaped function, closely resembling actual construc-
tion progress (San Crist6bal, 2017).

Results & Discussion

The experimentation encompassed utilising both as-
designed data and 3D point cloud data obtained from a

'https://github.com/BIM2TWIN-Team/DTP_API



Figure 2: As-designed and point cloud data from a construction site in Spain.

Figure 3: Visualization of columns detected on a construction
site. The detected columns are marked in pink.
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Figure 4: Visualization of the pipeline depicting the progress
monitoring algorithm execution flow

construction site located in Spain, as shown in Figure 2.
The detection results of columns in shown in Figure 3.
As can be seen, our method can detect corresponding el-
ements in the whole point cloud building. The output of
the progress monitoring encompasses key metrics, includ-
ing the percentage of tasks completed, progress status, the
number of days ahead or behind the schedule, and the pro-
jected completion date for each activity. To enhance the in-
terpretability for construction managers, the results are vi-
sually presented in the form of a Gantt chart, as depicted in
Figure 5. Gantt charts were chosen due to their widespread
usage in construction scheduling, making them a familiar
and effective visualization tool for managers. Each ac-
tivity is graphically represented by two horizontal bars:
one reflecting the as-planned schedule and the other the
as-performed schedule. The as-planned schedule is de-
noted by a grey bar, while the as-performed schedule is
illustrated with a coloured bar. In the chart, a dark red
bar signifies that the activity is complete but was delayed,
whereas a dark green bar indicates that the activity is not

Table 1: Criteria for assessing activity status concerning
schedule compliance.

Condition Decision

Element level progress > 0

Activity end time > Ahead
Operation end time

Activity end time < Behind
Operation end time

Activity end time = On

Operation end time

Element level progress = 0

Activity end time > On
Operation end time

Activity end time < Behind
Operation end time
Activity end time = On

Operation end time

complete but is on schedule. Light red signifies that the
activity is behind schedule and has not yet been initiated,
while light green indicates that the activity is on schedule
and has yet to commence. The textual information over-
laid on the grey bar corresponds to the name of the activity
assigned by the construction company. Additionally, text
overlaid on the coloured bar details the progress status, the
number of days the activity is ahead or behind schedule,
and the projected completion time.

Following this, the Key Performance Indicators (KPIs), in-
cluding the percentage of tasks delayed per activity (KPI1)
and the percentage of delay in days per activity (KPI12), are
systematically computed. KPI1 is the quantitative mea-
sure obtained by dividing the number of delayed tasks for
each activity by the total number of tasks scheduled for
that specific activity. This ratio provides a nuanced under-
standing of the prevalence of task delays within individual
activities, contributing valuable insights into the project’s
task-level performance. Simultaneously, KPI2 is calcu-
lated by determining the ratio between the number of de-
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Figure 5: Graphical representation of progress monitoring algorithm output in Gantt chart format for enhanced comprehension

layed days for each activity and the planned duration (as-
planned days) for that respective activity. By doing so,
KPI2 offers a comprehensive overview of the temporal as-
pects of project performance, highlighting the extent of de-
lays compared to the initially envisaged project timeline.

These calculated KPIs play a pivotal role in assessing
the efficiency and timeliness of project activities. Once
computed, the KPI values are securely stored within the
DTP, forming an integral part of the platform’s reposi-
tory of project performance data. This centralized stor-
age ensures that historical KPI data is readily avail-
able for analysis, comparison, and continuous improve-
ment efforts. Furthermore, to enhance accessibility and
visibility, these KPIs are dynamically displayed on the
project’s dashboard. This strategic placement on the dash-
board gives project stakeholders timely, at-a-glance in-
sights into key performance metrics. The dashboard be-
comes a central hub for monitoring and understanding
project delays, fostering a proactive approach to decision-
making based on the current project status. The source
code for this paper is accessible on GitHub at the fol-
lowing URL: https://github.com/BIM2TWIN-Team/
WP3-progress—-monitor.

As highlighted in a recent comprehensive review on com-
puter vision (CV) aided progress monitoring in construc-
tion (Sami Ur Rehman et al., 2022), the conventional
progress monitoring methods are characterized by slow-
ness, tediousness, and susceptibility to errors. However,
the existing body of literature on CV-based progress mon-
itoring is dispersed across various domains, lacking a co-
hesive focus on methodologies and processes throughout
the entire CV-based progress monitoring workflow. This
article addresses this gap by presenting a holistic approach
that provides timely information and knowledge through
Key Performance Indicators (KPIs). Such data availabil-

ity is critical, enabling simulations of alternative execu-
tion plans that prove invaluable at different construction
stages. This capability is instrumental in minimizing de-
lays and optimizing equipment usage, as discussed by Ye-
ung et al. (Yeung et al., 2022). By consolidating insights
and methodologies, our approach aims to streamline CV-
based progress monitoring into a coherent and efficient
process.

Conclusion

This study emphasizes the profound impact of DT tech-
nology on monitoring and managing newly constructed
buildings. The proposed DT-based method marks a sub-
stantial leap in automatic progress monitoring for real-
world construction sites. Utilizing scanners to collect 3D
point clouds and Digital Twin Platforms (DTP), this ap-
proach allows detailed construction status analysis and
completion timeline prediction. The seamless integration
of semi-continuous monitoring with the building’s DT un-
derscores the pivotal role of DT tech in efficient construc-
tion management. Leveraging precise data not only en-
hances project understanding but also enables timely de-
viation identification, empowering stakeholders to imple-
ment corrective actions and proactive strategies, enhanc-
ing project efficiency. Extensive real-world experiments
validate this method’s effectiveness, highlighting DT’s po-
tential to transform construction monitoring and foster
adaptive project management. As DT continues evolv-
ing, its integration into construction processes will be vital
for achieving optimal efficiency, accuracy, and proactive
decision-making.
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