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Why is the universe not frozen by the quantum Zeno
effect?

Antoine Soulas
Institut de recherche mathématique de Rennes (IRMAR)

Université de Rennes & CNRS, France

Abstract

We build a discrete model that simulates the ubiquitous competition between the
free internal evolution of a two-level system and the decoherence induced by the interac-
tion with its surrounding environment. It is aimed at being as universal as possible, so
that no specific Hamiltonian is assumed. This leads to an analytic criterion, depending
on the level of short time decoherence, allowing to determine whether the system will
freeze due to the Zeno effect. We check this criterion on several classes of functions
which correspond to different physical situations. In the most generic case, the free
evolution wins over decoherence, thereby explaining why the universe is indeed not
frozen.

Keywords: mathematical physics, quantum Zeno effect, decoherence

1 Introduction
The Zeno effect typically occurs when a quantum system is repeatedly measured: if
the time interval between two successive measurements tends to 0, the evolution of the
system gets frozen. The main reason is that, in quantum mechanics, the general short
time evolution is quadratic, i.e.:

|⟨Ψ|Ψ(t)⟩|2 = |⟨Ψ|e−iĤt|Ψ⟩|2 = 1− V t2 +O
(
t4
)
,

where V ≡ Var|Ψ⟩(Ĥ) = ⟨Ψ|Ĥ2|Ψ⟩ − ⟨Ψ|Ĥ|Ψ⟩2 (we take ℏ = 1). Hence, if n projective
measurements along |Ψ⟩ are performed during a fixed time interval T , the probability
pn that all the measurements gave the outcome |Ψ⟩ is, at leading order:

pn ≃

(
1− V

(
T

n

)2
)n

−→
n→+∞

1.

Note that to obtain this limit, one has to neglect the higher order terms, as is usually
done in the standard presentations of the Zeno effect [7, §3] [3, §3.3.1.1]. Rigoursly
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speaking, this is an additional assumption, because when developing the expression(
1− V

(
T
n

)2
+O

(
1
n4

))n
, the number of O

(
1
n4

)
actually depends on n.

In the spirit of the theory of decoherence, one might wish to get rid of the ill-
defined notion of (ideal) projective measurement. Since a measurement is nothing but
a particular case of interaction with an environment that entails strong decoherence of
the system in the measured basis, it is tempting to ask what level of decoherence is
required to freeze a system. For example, a particle in a gas is continuously monitored
(∼ measured) by its neighbors, yet the gas manifestly has an internal evolution... and
so does the universe in general. It is not obvious a priori whether quantum mechanics
actually predicts that the universe is not frozen.

This question has already been addressed by examining the continuous dynamics of
the pair system - environment for relatively generic Hamiltonian [2]. The Zeno limit
is recovered for strong interaction, and Fermi’s golden rule is recovered in the limit
of small interaction. ‘The model shows that the coupling to the environment leads to
constant transition rates which are unaffected by the measurement if the coupling is
"coarse enough" to discriminate only between macroscopic properties. This may in turn
be used to define what qualifies a property as macroscopic: it must be robust against
monitoring by the environment’ [3, §3.3.2.1]. Similarly, the master equation for the
motion of a mass point under continuous measurement indicates that the latter is not
slowed down because the Ehrenfest theorems are still valid. ‘This may be understood
as a consequence of the fact that, for a continuous degree of freedom, any measurement
with finite resolution necessarily is too coarse to invoke the Zeno effect’ [3, §3.3.1.1].

Another interesting model is that of [1, §8.3 and §8.4]. It may at first sight seem
puzzling that an unstable nucleus continuously measured by a Geiger counter can ac-
tually decay. Indeed, if the measurement is treated as an ideal projective one, the
nucleus should continuously be projected onto a non-decayed state. But as soon as the
decoherence process is not supposed immediate anymore (even as short as 10−16s, see
equation (8.45) in [1]), the deviation from the expected exponential decay is shown to
be negligible.

Although these models are already convincing, our aim is to give a new contribu-
tion to this topic of understanding why the vast majority of physics is not affected
by the quantum Zeno effect, the latter being detectable only in some very specific ex-
perimental setups. Our model also formalizes the competition between free evolution
(no information leaking to the rest of the world) and decoherence (interaction with
the environment), but differs from the previous ones in two respects: its mathematical
structure is discrete and it does not assume anything about the form of the Hamilto-
nian, so as to be as universal as possible. The use of a discrete framework is consistent
with the approach adopted in a lot of mathematical studies on the quantum Zeno effect
(see [6] and references therein).

1.1 The model: free evolution vs. decoherence
Having in mind the fact that continuous degrees of freedom are less prone to the Zeno
effect (recall the previous quote from [3]), in order to explain why the universe is
not frozen, it may suffice to check it on a two-level system. Our system of interest will
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therefore be a qbit, initially in the state |0⟩ and monitored by an environment producing
partial decoherence in the basis (|0⟩ , |1⟩). We consider a fixed time interval T , divided
into n phases of length δ = T

n dominated by the free evolution. This evolution takes
the general form: 

Uδ |0⟩ = c0=(δ) |0⟩+ c1̸=(δ) |1⟩

Uδ |1⟩ = c0̸=(δ) |0⟩+ c1=(δ) |1⟩ ,

where the coefficients satisfy |c0=(δ)|2 = |c1=(δ)|2 = 1 − V δ2 + O
(
δ4
)

and |c0̸=(δ)|2 =

|c1̸=(δ)|2 = V δ2 + O
(
δ4
)

(in the sequel, we will drop the argument δ whenever the
context is clear). As recalled in the introduction, to stick to the standard derivations
of the Zeno effect, we need to neglect all the higher order terms, so that we actually
suppose |c0=(δ)|2 = |c1=(δ)|2 = 1− V δ2 and |c0̸=(δ)|2 = |c1̸=(δ)|2 = V δ2.

After the ith phase of free evolution, the system meets some neighboring environment
E i, initially in the state |E i

init⟩, and gets immediately entangled according to:
|0⟩ −→ |0⟩ |E i

0⟩

|1⟩ −→ |1⟩ |E i
1⟩ ,

where |⟨E i
0|E i

1⟩| ≡ ηi quantifies the level of decoherence induced by E i, i.e. how well
the environment has recorded the system’s state (ηi = 1 means no decoherence, ηi = 0
perfect decoherence). See Figure 1.

T

δ = T/n
…

f f f fd d d

Figure 1: Alternating steps of free evolution (f) and decoherence (d)

From now on, we suppose that ηi ≡ η does not depend on i (taken as a mean level of
decoherence), which amounts to assuming that the strength of the interaction is more
or less constant over time. Finally, we also suppose that each environment E i is distinct
from the others and non-entangled at the time it encounters the system.

Recalling that T = nδ, the relevant quantity to compute is the probability pn that,
at the end of the time interval T , the system is still found in its initial state |0⟩ and
that all the successive environments have recorded 0.

Proposition 1.1. Neglecting all the higher order terms, we can write:

pn ≃ 1− 2
[n
2
+ (n− 1)η + (n− 2)η2 + · · ·+ ηn−1

]
V δ2.

Proof. The cases n = 1 or 2 are easy to treat. Indeed, the successive iterations go as
follows (f stands for the free evolution and d for the decoherence step):
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|0⟩ ≡ |Ψ0⟩
f
⇝ c0= |0⟩+ c1̸= |1⟩
d
⇝ c0= |0⟩ |E1

0 ⟩+ c1̸= |1⟩ |E1
1 ⟩ ≡ |Ψ1⟩

f
⇝ c0=

[
c0= |0⟩+ c1̸= |1⟩

]
|E1

0 ⟩+ c1̸=

[
c0̸= |0⟩+ c1= |1⟩

]
|E1

1 ⟩

= |0⟩
[
c0=c

0
= |E1

0 ⟩+ c0̸=c
1
̸= |E1

1 ⟩
]
+ |1⟩

[
c1̸=c

0
= |E1

0 ⟩+ c1=c
1
̸= |E1

1 ⟩
]

d
⇝ |0⟩

[
c0=c

0
= |E1

0 ⟩+ c0̸=c
1
̸= |E1

1 ⟩
]
|E2

0 ⟩+ |1⟩
[
c1̸=c

0
= |E1

0 ⟩+ c1=c
1
̸= |E1

1 ⟩
]
|E2

1 ⟩ ≡ |Ψ2⟩ .

The (|Ψn⟩)n∈N seem to live in different Hilbert spaces only because we omit to write all
the environments (E i)i⩾n+1 with which the system is not entangled yet. Consequently,
neglecting all the higher order terms yields:

• p1 =
∣∣⟨0E1

0 |Ψ1⟩
∣∣2 = |c0=|2 = 1− V δ2

• p2 =
∣∣⟨0E1

0E2
0 |Ψ2⟩

∣∣2
=
∣∣c02= + c0̸=c

1
̸= ⟨E1

0 |E1
1 ⟩
∣∣2

= (1− V δ2)2 + η2(V δ2)2 + 2ℜ
(
c0=

2
c0̸=c

1
̸= ⟨E1

0 |E1
1 ⟩
)

≃ 1− 2(1 + η)V δ2.

The last step is not obvious and comes from the following argument. A priori, the quan-
tity ℜ

(
c0=

2
c0̸=c

1
̸= ⟨E1

0 |E1
1 ⟩
)

lies in [−ηV δ2, ηV δ2] up to a O
(
δ4
)
, but the coefficients of the

matrix Uδ are not unrelated. Using the general parametrization of a 2×2 unitary matrix,

Uδ =

(
c0= c0̸=
c1̸= c1=

)
can be written

(
a b

−eiφb eiφa

)
. Moreover, for small δ (this approxi-

mation may be rough for the case n = 2 but gets better as n increases), Uδ → 1 hence
det(Uδ) = eiφ → 1 and a → 1. We also expect ⟨E1

0 |E1
1 ⟩ to be close to the real number 1

(infinitesimal decoherence). Combining all this, c0=
2
c0̸=c

1
̸= ⟨E1

0 |E1
1 ⟩ = −eiφa2|b|2 ⟨E1

0 |E1
1 ⟩

is close to be a real negative number, therefore its real part is approximately the oppo-
site of its modulus.

In general, pn =
∣∣⟨0E1

0 . . . En
0 |Ψn⟩

∣∣2 is the square modulus of a sum of terms of the
form

zbα = cb1α1
. . . cbnαn

⟨E1
0 |E1

b1⟩ . . . ⟨E
n
0 |En

bn⟩ ,

where α = α1 . . . αn and b = b1 . . . bn are words on the alphabets {=, ̸=} and {0, 1}
respectively. The word b is entirely deduced from α1 . . . αi according to:

b0 = 0 ; bi =

{
bi−1 if αi is = (state preserved)
bi−1 + 1 mod 2 if αi is ̸= (state flipped),

with the additional requirement that bn = 0 (system finally measured in state |0⟩), so
that α actually contains an even number of ̸=. Note that only the indices i such that
bi = 1 contribute non-trivially in the product of brackets, since ⟨E i

0|E i
0⟩ = 1.
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We now use the fact that |
∑

k zk|
2 =

∑
k |zk|

2 +
∑

k<l 2ℜ(zkzl) for all complex
numbers (zk)k. In our case, the leading term is clearly |z0...0=...=|2 = |c0=

n|2 = (1−V δ2)n ≃
1−nV δ2, while all the other square moduli are of order δ4 or less because they contain
at least two factors |cbi̸=|

2 = V δ2. Furthermore, repeating the above argument, the real
parts can be approximately replaced by their opposite moduli (and this approximation
is better as n gets larger). Therefore, only the cross-products of the form 2ℜ(c0=

n×zbα),
where α contains exactly two ̸=, contribute at order δ2. The power of η that appears
in this cross-product (i.e. the number of non-trivial brackets ⟨E i

0|E i
1⟩) is the number of

indices i such that bi = 1, that is the number of steps elapsed between the two ̸=. For
instance, if the two ̸= happen at the ith and jth step, the contribution is:

2ℜ(c0=
n × c0=

i−1
c1̸=c

1
=
j−i−1

c0̸=c
0
=
n−j−1 ⟨E i

0|E i
1⟩ . . . ⟨E

j−1
0 |Ej−1

1 ⟩)

≃2|c1̸=c0̸= ⟨E i
0|E i

1⟩ . . . ⟨E
j−1
0 |Ej−1

1 ⟩|
≃2ηj−iV δ2.

There are obviously n − k words α with exactly two ̸= separated by k steps, corre-
sponding to the n− k possible choices for i, whose contribution is 2ηkV δ2. Finally, the
general expression for pn when neglecting all the higher order terms is:

pn =
∣∣⟨0E1

0 . . . En
0 |Ψn⟩

∣∣2 ≃ 1− 2
[n
2
+ (n− 1)η + (n− 2)η2 + · · ·+ ηn−1

]
V δ2.

We can check the consistency of this result on two particular cases:

• if η = 1, no decoherence occurs, so we recover the free evolution case during a
time interval nδ instead of δ, i.e. Pn = 1− V (nδ)2;

• if η = 0, a perfect decoherence means that the environment acts as an ideal mea-
suring device, so we recover the Zeno case recalled in the introduction, that is
pn = 1− nV δ2 ≃ (1− V δ2)n.

Now, a Zeno effect will freeze the system in the limit of large n if and only if
pn −→

n→+∞
1, that is (using δ = T

n ) if (n−1)η+(n−2)η2+···+ηn−1

n2 −→
n→+∞

0. After some
algebra, this expression can be simplified and leads to the following criterion:

Zeno effect ⇐⇒ nη(1− η) + η(ηn − 1)

n2(1− η)2
−→

n→+∞
0

We immediately note that if η ∈ [0, 1[ is a constant independent of n, the criterion
is satisfied. This is natural because, as the duration of each free evolution phase goes to
0, a constant (even weak) decoherence is applied infinitely many times, so the system
freezes.

From now on, we will suppose that the level of decoherence depends on n, with
ηn −→

n→+∞
1. A global factor η can thus be dropped in the above criterion. Our task

in the following sections will be (i) to check the criterion on some common classes of
functions ηn (section §1.2) (ii) to estimate the level of decoherence really encountered
in physical situations (section §1.3).
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Remark 1.2. How finely should the time interval be divided so that the quadratic
approximation be valid? Let’s forget for a moment that our system is finite dimensional
and consider the Hamiltonian of a free particle P̂ 2

2m , starting from the initial state

|Ψ⟩ (p) =
√

σ√
πℏe

− p2σ2

2ℏ2 centred around x = 0 and p = 0, and compute:

Var|Ψ⟩(Ĥ) =
1

4m2

[
⟨Ψ|P̂ 4|Ψ⟩ − ⟨Ψ|P̂ 2|Ψ⟩2

]
=

1

4m2

[∫ +∞

−∞
p4

σ√
πℏ

e−
p2σ2

ℏ2 dp−
(∫ +∞

−∞
p2

σ√
πℏ

e−
p2σ2

ℏ2 dp

)2
]

=
ℏ4

8m2σ4

Hence the quadratic approximation is valid for times shorter than tc = ℏ√
Var|Ψ⟩(Ĥ)

=

2
√
2mσ2

ℏ . Taking for instance m = 10−26kg and σ = 10−10m, we get tc = 4.10−13s. This
is way shorter than the mean free time of a particle in a gas in standard conditions, which
is of order 10−10s. So it seems at first sight that the decoherence steps could in practice
be too separated in time for the quadratic approximation to be valid all along the free
evolution step. However, decoherence doesn’t need any actual interaction to take place
(a ‘null measurement’ is still a measurement [5]). The fact that all the other surrounding
particles do not interact with the particle of interest is still a gain of information for
the environment, which suffices to suppress coherence with other possible histories in
which they would have interacted. In this case, information is continually leaking to
the environment, so it seems legitimate to divide the time interval T as finely as desired
so that the quadratic approximation become valid, and the resulting behaviour is then
determined by the intensity of infinitesimal decoherence only. The philosophy of this
argument is not specific to the infinite dimensional case, and may be applied to our
two-level system. It relies, however, on the already mentionned assumption that the
strength of the interaction is more or less constant over time. This will be discussed in
Section §1.4.

1.2 Analytic study of the criterion
Whenever (n(1 − ηn))n∈N admits a limit in R+ ≡ R+ ∪ {+∞}, the following lemma
allows to check immediately the criterion of the previous Section.

Lemma 1.3. Suppose n(1− ηn) −→
n→+∞

α ∈ R+. Then

n(1− ηn) + ηnn − 1

n2(1− ηn)2
−→

n→+∞



1
2 if α = 0

0 if α = +∞

1
α + e−α−1

α2 otherwise.

Proof. Let un ≡ n(1 − ηn). If un −→
n→+∞

+∞, since ηnn − 1 is bounded, the result is
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immediate. If 0 < α < +∞, notice that ηnn = en ln(1−un
n ) −→

n→+∞
e−α, and rewrite:

n(1− ηn) + ηnn − 1

n2(1− ηn)2
=

1

un
+

ηnn − 1

u2n
−→

n→+∞

1

α
+

e−α − 1

α2
.

Finally, if α = 0:

ηnn = en ln(1−un
n ) = e−un−u2

n/2n+O(u3
n/n

2)

= 1− un − u2n
2n

+O

(
u3n
n2

)
+

1

2

[
−un − u2n

2n
+O

(
u3n
n2

)]2
+O(u3n)

= 1− un +
u2n
2

+O

(
u2n
n

)
.

Consequently, n(1−ηn)+ηnn−1
n2(1−ηn)2

=
u2
n/2+O(u2

n/n)
u2
n

−→
n→+∞

1
2 .

Two natural candidates for the level of short-time decoherence are ηn = 1− α
nβ and

ηn = 1−αe−βn for α, β > 0. These cases can be treated by the lemma, and the different
possible situations are summarized in the following table.

ηn Regime lim
n→+∞

pn

1 Free evolution 1− V T 2

Constant ∈ [0, 1[ Zeno effect 1
1− α

nβ with β ∈]0, 1[ Zeno effect 1
1− α

nβ with β > 1 Free evolution 1− V T 2

1− α
n Intermediate 1− 2(

1

α
+

e−α − 1

α2
)︸ ︷︷ ︸

−→
α→+∞

0 : Zeno effect

−→
α→0

1 : free evolution

V T 2

1− αe−βn Free evolution 1− V T 2

1.3 Physical considerations concerning ηn

1. As previously remarked, the constant case corresponds either to the absence of
decoherence (η = 1) or to infinite decoherence (η ∈ [0, 1[): these are not physi-
cally expected, except in some particular experimental setups (perfectly isolated
systems for the first, experiments specifically designed to probe the Zeno effect
for the second).

2. For now, we have not yet introduced any duration for the decoherence step, which
was considered immediate. Let’s at present assume that the time evolution can be
divided into alternating steps dominated by either the free Hamiltonian, or by the
interaction Hamiltonian. The time of interaction between the system and each
environment E i, governed by ĤSEi of variance Var(ĤSEi) ≡ V i

int ≡ Vint (constant
strength of interaction), is still taken proportional to T

n , say equal to cT
n . This
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is a new assumption we make: that the time increments of both steps scale as
1
n , and that the two phases can be considered on an equal footing, means that
the two Hamiltonians are of relatively comparable strength. Then the quadratic
approximation recalled in the introduction can be applied to the whole {system +
environment}. Thus |⟨E i

init|E i
0⟩|2 = |⟨0E i

init|0E i
0⟩|2 ≃ 1−Vint

(
cT
n

)2. Since moreover
⟨E i

init|E i
0⟩ is close to the real number 1 (infinitesimal decoherence), ℜ(⟨E i

init|E i
0⟩) ≃

|⟨E i
init|E i

0⟩| ≃ 1 − 1
2Vint

(
cT
n

)2 is quadratic in time, and similarly for ℜ(⟨E i
init|E i

1⟩).
This will also be the case for ηn = |⟨E i

0|E i
1⟩|, because:

√
2− 2|⟨E i

0|E i
1⟩| ≃

√
2− 2ℜ(⟨E i

0|E i
1⟩) = ∥|E i

0⟩ − |E i
1⟩∥

⩽ ∥|E i
init⟩ − |E i

0⟩∥+ ∥|E i
init⟩ − |E i

1⟩∥

=
√

2− 2ℜ(⟨E i
init|E i

0⟩) +
√

2− 2ℜ(⟨E i
init|E i

1⟩)

≃ 2
√
Vint

cT

n
,

hence ηn = |⟨E i
0|E i

1⟩| ≳ 1− 2Vint
(
cT
n

)2 is also at least quadratic. Said differently,
because quantum mechanical short time evolutions are always quadratic, and this
is true also for the environment’s evolution, infinitesimal steps of decoherence in-
duced on a system by its surrounding environment are likely to be of the form
ηn = 1− α

nβ with β ≳ 2. This could constitute a universal reason why the universe
is not frozen by the quantum Zeno effect.

An example of such an interaction is the following. Consider that the system
is a qbit in the state |0⟩+|1⟩√

2
, and the environment is a particle initially centered

around x = 0 with momentum p0, that is |Ψ0,p0⟩ = 1√√
πσ

eip0xe−
x2

2σ2 ∈ L2(R).

The system’s state is recorded in the (|0⟩ , |1⟩) basis due to the interaction ĤSE =
vσ̂z ⊗ P̂ so that, after some time δ ∝ 1

n :
|0⟩ |Ψ0,p0⟩ −→ |0⟩ |Ψvδ,p0⟩

|1⟩ |Ψ0,p0⟩ −→ |1⟩ |Ψ−vδ,p0⟩ ,

Here,

ηn = |⟨Ψvδ,p0 |Ψ−vδ,p0⟩| =
∣∣∣∣e2ip0vδ√

πσ

∫
R
e−

x2+(vδ)2

σ2 dx

∣∣∣∣ = e−
(vδ)2

σ2 ≃ 1− v2

σ2
δ2,

so this interaction induces indeed a short time quadratic decoherence as long as
the increment of time satisfies δ ≪ v

σ .

3. What if the assumption of comparable strengths of the Hamiltonians fails, for
instance if the free evolution term is negligible compared to the coupling with
the environment? This amounts to taking c or Vint −→ +∞, hence to lift the
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quadratic approximation for the interaction Hamiltonian. A possibility then is
to consider that |E i

0(t)⟩ and |E i
1(t)⟩ follow two independent Brownian motions

starting in |E i
init⟩ on the sphere of all possible states in HEi during the duration

δ of the decoherence step. If the latter exceeds the typical time of diffusion on
the sphere, we recover the case of a constant η ∈ [0, 1[ (infinite decoherence,
case n°1 above) with η ∼ 1√

dim(HEi )
as shown in ??. If it is shorter than the

diffusion time (but still longer than the quadratic regime), |E i
0(δ)⟩ lies in the

vicinity of |E i
init⟩ on the sphere, which is approximately a ball. It is well known

that the typical length of diffusion goes as ∥|E i
init⟩−|E i

0(δ)⟩∥ ≃ D
√
δ, which implies

|⟨E i
init|E i

0(δ)⟩| ≃
√

1− (D
√
δ)2 ≃ 1− D2

2 δ. If δ is still taken ∝ 1
n , we are now in the

intermediate regime studied above, with β = 1 and α ∝ D2. This corresponds to
situations where the system’s evolution is slowed down because of its monitoring
by the environment. In the limit of strong interaction, the diffusion constant D
will go to infinity and we recover the Zeno effect, whereas a weak interaction tends
to the free evolution case.

1.4 Discussion
We have presented a model designed to check whether quantum mechanics indeed
predicts that the universe should evolve. To remain as universal as possible, no specific
form of Hamiltonian was assumed. It allowed to determine the level of decoherence
(induced by a surrounding environment) needed to freeze a two-level quantum system,
arguably the kind of system the most prone to the Zeno effect. We have found that
if, during a time interval T

n , the environment distinguishes between the two states
according to |⟨E i

0|E i
1⟩| ≃ 1 − α

nβ with β > 1, then free evolution wins over decoherence
and the system is not frozen. In the most generic case, because quantum mechanical
short time evolutions are always quadratic (and this is true for the system as well as
for the pair {system + environment}), we find β ≳ 2, hence the universe is indeed not
frozen.

The main weaknesses of the model, leading to possible improvements, are the fol-
lowing.

• Is the discrete setup legitimate? A succession of infinitesimal steps is not neces-
sarily the same as a joint continuous evolution.

• What happens if the coupling with the environment is not supposed roughly con-
stant anymore? Mathematically, this means that the ηi are not equal, and the
infinitesimal decoherence rate (i.e. the flow of information) at time t could be
modelled in the limit n −→ +∞ as a continuous quantity 1− dη(t). It is natural
to ask for the set of such functions which entail a Zeno freezing. Besides, the du-
rations of the steps could also be non-constant (like following a Poisson process,
as done in [4]).

• Assuming the environments E i distinct and non-entangled is a very unphysical
assumption. In some cases, previous entanglement among the environments can
dramatically change the efficiency of decoherence. As an example, take an envi-
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ronment composed of two qbits called E1 and E2 initially maximally entangled;
the system interacts with E1 then with E2 via a C-NOT gate:

1√
2
(|0⟩+ |1⟩)︸ ︷︷ ︸

S

⊗ 1√
2
(|00⟩+ |11⟩)︸ ︷︷ ︸

E1+E2

−→
C−NOTSE1

1

2
(|000⟩+ |011⟩+ |110⟩+ |101⟩)︸ ︷︷ ︸

ρS=

1
2 0
0 1

2

 : S is perfectly decohered

−→
C−NOTSE2

1

2
(|000⟩+ |011⟩+ |111⟩+ |100⟩)

=
1√
2
(|0⟩+ |1⟩)⊗ 1√

2
(|00⟩+ |11⟩).︸ ︷︷ ︸

ρS=

1
2

1
2

1
2

1
2

 : coherence has revived
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