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Abstract

A new mathematical model for co-registered time-dependent electroencephalog-
raphy (EEG) and diffusive optical tomography (DOT) is developed and analysed.
Evolution with time is introduced into the standard EEG model by considering time-
dependent dipolar sources whereas time-dependent optical parameters yield the in-
stationary DOT model. Dimensional analysis shows the validity of both the quasi-
stationary approximation for EEG and the diffusion approximation with frequency-
modulated source terms for DOT in all tissues of the humain head. A non-linear
system of differential equations based on ionic currents is used to model the post-
synaptic current and hemodynamic parameters at the neuron level which, in turn,
provide the moment of the dipolar source term of the EEG boundary value problem
and the behaviour in time of the optical parameters of the DOT model. The well-
posedness of the time-dependent EEG problem is proved by the subtraction approach
for moments with L2-regularity in time and continuous source trajectories. For the
time-dependent DOT model with continuous optical parameters in time, standard re-
sults of functional analysis apply. We explain the full pipeline from the input current
of stimulation up to the measurements recorded at the electroptodes. Numerical re-
sults for a three-dimensional realistic head model of a neonate illustrate the capacity
of simultanous EEG/DOT measurements to attest neurovascular coupling between
the neural activity and changes in the hemodynamic parameters.

Keywords: time-dependent electroencephalography, time-dependent diffusive optical
tomography, dipolar sources, neurovascular coupling, neuronal model.
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Introduction
The challenges of understanding the human brain are major and of great interest to bet-
ter diagnosis and cure of many brain diseases. Various brain imaging modalities have
been developed over the years, each dedicated to the investigation of some specific brain
functions. We can cite functional magnetic resonance imaging (fMRI), computerized to-
mography (CT), positron emission tomography (PET), electroencephalography (EEG),
magnetoencephalography (MEG), functional near-infrared spectroscopy (fNIRS) or dif-
fuse optical tomography (DOT). Some of them provide complementary information on
the brain and its disorders, and the benefits of multimodal neuroimaging are studied in
the last decades. In this paper, we focus on the synchronous measurements of EEG and
DOT.

On the one hand, electroencephalography (EEG) is one of the most widespread func-
tional brain imaging techniques. Measurements of the electric potential generated by
normal or pathological brain activity are taken at electrodes attached to the scalp. They
record in a passive and non-invasive way the voltage potential fluctuations between dif-
ferent cortical regions. EEG-monitoring can be done at the bedside of the patient which
makes the technique particularly appropriate for neonates and premature babies. The
important goal of brain imaging using EEG is to localize cerebral sources generating mea-
sured EEG signals. EEG is known to have an excellent temporal resolution and is able
to record neural events in order of one millisecond. Its spatial resolution is generally
limited (a few centimeters). Neonatal EEG is used to assess seizure recognition and clas-
sification and to make epilepsy syndrome diagnosis (e.g [35]). It provides also prognostic
information for other brain dysfunctions (e.g [24]).

On the other hand, diffuse optical tomography (DOT) is a functional brain imaging
technique that measures at optodes (sensors) on the scalp the hemodynamic changes in
the brain. DOT is an extension of fNIRS (see e.g [25]). More precisely, DOT aims in
localizing changes in oxy- and deoxyhemoglobin (that result from brain activity) within
the brain by using absorption of near-infrared light. Similar to EEG, it is a non-invasive
technique. DOT may be seen as an alternative to fMRI. In comparison to fMRI, the DOT
system has the advantage to be relatively low-cost, portable and bedside-compatible.

The development of multimodal analysis yields a more detailed understanding of brain
dynamics. We are particularly interested in the coupling of EEG with optical imaging,
taking advantage of the possible coregistration of EEG and NIRS which has already been
operated by collaborators from GRAMFC INSERM UMR-S 1105 (Amiens’ hospital) [31]
for neonates and premature babies. EEG measures directly neuronal activity while op-
tical imaging techniques (DOT, NIRS, fNIRS) capture the physiological changes linked
to neurovascular coupling. To sum up, in response to a certain task (due to normal or
pathological origin), the neural activity increases in a brain area. A metabolic demand, i.e.
changes in oxy- and deoxyhemoglobin, is observed generally in that area. Co-registered
data from EEG and DOT give information to clinicians for understanding the neurovas-
cular coupling which occurs in some brain disorders. The coupling of the two modalities
is more particularly used in pediatric clinical research [42, 17]. An example is the study
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of [37] where hemodynamic changes have been observed among 10s before an epileptic
seizure. Another clinical investigation using simultaneous EEG and DOT is addressed
in [9].

The mathematical modelling of EEG and DOT has been widely addressed in the
literature. Without being exhaustive, we cite [41, 33, 43, 10] and references therein for
an analysis of the forward EEG problem and [1, 2, 22] for an overwiew of models for
DOT based on the diffusion approximation. The aformentioned models are static or time-
harmonic with time-independent parameters and source terms. Time-resolved DOT is an
existing imaging modality [30] that is actually less relevant for clinical purposes due to
the high cost of the technical device. In this paper, we thus limit our investigations for
DOT with frequency modulated source terms.

The present work is dedicated to the development and the analysis of a mathemati-
cal model for simulating co-registered time-dependent EEG-DOT data. Given an input
stimulus in the brain, the underlying forward problem consists in computing the electric
potential and the photon density which are generated by the brain activity, corresponding
to the stimulus, at electroptodes on the scalp. This requires to model the neurovascular
coupling mechanism, that is the dynamics of the neural activity and its vascular response.
Different models based on systems of non-linear ordinary differential equations have been
developed (see e.g. [3, 7, 8, 28, 29, 39] and references therein). We focus on a model for
neuronal activity based on the work of [29] coupled to the balloon model [7, 8] for the
hemodynamic response. In a first step, we use these models to get the time-dependent
postsynaptic current and hemodynamic parameters at the neuron level. With this local
brain information in hand, we propose a space–time modeling for co-registered EEG/DOT
data, requiring PDE-based models. To this end, we introduce the time evolution in the
standard instationary forward models for EEG and DOT.

The paper is organized as follows. In Section 1, we derive a time-dependent model
for the EEG forward problem and we address an existence and uniqueness result using
the subtraction method. In Section 2, in the same way as for EEG, we propose a model
for the diffusion approximation with time-dependent optical parameters in a frequency-
modulated setting. Section 3 is devoted to the modeling of the neurovascular coupling.
Finally, numerical simulations of co-registered EEG/DOT measurements for a realistic
three-dimensional head model are performed in Section 4.

1 A mathematical model for time-dependent EEG

1.1 Dimensional analysis of Maxwell’s equations

We study an electromagnetic phenomenon in a space-time domain with characteristic
length ℓ and time scale τ . The continuous medium is characterized by its electric permit-
tivity ε, magnetic permeability µ and conductivity σ. Maxwell’s equations describe the
propagation of an electromagnetic field in this medium. Under the assumption that the
constitution laws of the medium are linear, they are given by

∇ · B = 0, ∇ × B = µ(ε∂tE + J),

∇ × E = −∂tB, ∇ · E = ρ

ε
,

(1)

and model the interaction between the electric field E, the magnetic induction B, the
charge density ρ and the current density J. In a conducting medium with conductivity
σ, Ohm’s law states that the free current density is given by J = σE. In the presence of
impressed current sources, a source term jp should be added to J.

The static limit of Maxwell’s equations is well understood in the case where all fields
and sources are time-independent. As soon as there is some time-dependence, however, the
full Maxwell system should apply unless mathematical analysis shows that some terms can
be neglected. EEG measures the cerebral activity during the observation. This activity is
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clearly variable in time, meaning that time-dependent source terms should be considered.
In this context, dimensional analysis is an interesting tool to reduce the set of Maxwell’s
equations and get simplified models under particular hypotheses. The idea is to observe
the different physical quantities in terms of their units or dimensions. Smallness of some
of them allows to neglect certain coupling between electric and magnetic fields [34]. To
this end, we introduce the velocity of the system with modulus v = ℓ/τ . The light celerity
in the medium with electromagnetic parameters ε and µ is given by c = 1/

√
εµ. Here, we

are interested in limit configurations where v ≪ c.
For going further into details in the analysis, a first step is to express the quantities ℓ

and c in terms of the electromagnetic parameters ε, µ and σ. Following [34], we introduce
the quantity τe = ε/σ which has dimension of time and can be interpreted as the electric
charge diffusion time. Similarly, the quantity ℓcµσ can be shown to be dimensionless and
can be written as the quotient of τm = µσℓ2 and τem = ℓ/c which both have dimension of
time. We next proceed to the scaling of Maxwell’s equations. To this end, set E(t, x) =
eE′(t′, x′) and B(t, x) = bB′(t′, x′) where e, b are reference quantities and E′, B′ are
dimensionless quantities of order O(1) depending on t′ = t/τ and x′ = x/ℓ. In the sequel,
prime notation corresponds to dimensionless operators or variables.

Using the definition of the characteristic times, Faraday’s and Ampère’s laws ∇ × E =
−∂tB and ∇ × B = µ(ε∂tE + σE) become respectively

∇′ × E′ = −τem

τ

cb

e
∂t′B′, (2)

and
∇′ × B′ = τem

τ

e

cb
∂t′E′ + τem

τe

e

cb
E′. (3)

We are interested in the low frequency range where the characteristic dimensions of
the system are such that

τem ≪ τ, τe ≪ τ, and τm ≪ τ. (4)

Then, we cannot have simultaneously τem

τ

cb

e
= O(1) and τem

τ

e

cb
= O(1) and at least one

of the time derivatives in (2) or (3) has to be neglected. We aim to determine the limit
model from the only order between the characteristic time scales.

One may notice that τ2
em = τeτm which amounts to saying that any order between τem

and τe induces an order of τm with respect to τem. We distinguish three cases: τem ≪ τe,
τe ≪ τem and τe ∼ τem. We choose to only detail the first one. According to assumption
(4) on τe, the relation τem ≪ τe implies the order τm ≪ τem ≪ τe ≪ τ . From τe ≪ τ , we
deduce that τem

τ
≪ τem

τe
. The displacement current in the right hand side of (3) can thus

be neglected and we get
∇ × B = µJ. (5)

Since the left hand side of (3) is of order 1, we further have cb

e
∼ τem

τe
≪ 1. Hence, the

right hand side in (2) can be neglected, too, which yields

∇ × E = 0. (6)

The cases τe ≪ τem and τe ∼ τem lead to the same conclusions. Thus, in a frequency
range satisfying (4), we get the following approximation of Maxwell’s equations

∇ · B = 0, ∇ × B = µJ,

∇ × E = 0, ∇ · E = ρ

ε
,

(7)

called the quasi-stationary model.
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1.2 Quasi-stationary approximation for EEG with time-dependent sources

In this section, we compare the order of magnitude of the characteristic times for the
electromagnetic parameters of the different head tissues. In mathematical modeling of
brain activity, one assumes that the magnetic permeability of head tissues is close to the
one of free space. The parameters of the medium are given by ε = εrε0 and µ = µ0 where
ε0 = 8.85×10−12F.m−1 and µ0 = 4π×10−7H.m−1 are respective vacuum permittivity and
permeability. The relative permittivity εr and the conductivity σ depend on the tissue,
but also on the frequency range. The typical frequency range of the electromagnetic fields
in the head is inferior to 100 Hz [15] and we thus take τ ≈ 0.01s as the characteristic
time scale. We consider a multilayer head model which distinguishes between white and
grey matter and takes into account the cerebrospinal fluid (CSF) as well as skull and
scalp. Uncertainty about the electric parameters should be taken into account since in
vivo measurements in the human body are in general not available, especially for neonates
and premature babies. In Table 1, we take the values for the electric permittivity from
the IT’IS data base [21] which are given for a specific frequency from a parametrization
fit based on the dispersion relation owing to [16]. The conductivity values are taken from
[26, 5] for neonates. We recall the formulæ for the three characteristic times

τe = ε/σ, τm = µσℓ2, τem =
√

τeτm.

The characteristic length scale ℓ should be given by the thickness of the tissue in consid-
eration. Notice, however, that τe is independent from the characteristic length ℓ whereas
τm ∼ ℓ2 and τem ∼ ℓ. Hence, if the quasi-static approximation is valid for a given ℓ, it is
also valid for any smaller length scale. We thus take for ℓ the dimensions of the neonatal
head, i.e. ℓ ≈ 0.12 m. We then deduce the values of the three characteristic times.

White matter Grey matter CSF Skull Scalp
εr 1.67 × 106 3.91 × 106 1.1 × 102 5.85 × 103 1.14 × 103

σ [S/m] 0.14 0.33 1.8 0.04 0.33
τm [s] 2.53 × 10−9 5.97 × 10−9 3.25 × 10−8 7.2 × 10−10 6.0 × 10−9

τem [s] 5 × 10−7 8 × 10−7 4.19 × 10−9 3.1 × 10−8 1.35 × 10−8

τe [s] 1.05 × 10−5 1.05 × 10−4 5.4 × 10−10 1.3 × 10−6 3.1 × 10−8

Table 1: Electric parameter set at 100 Hz [21, 26] and characteristic times.

From Table 1, we infer τm ≪ τem ≪ τe ≪ τ for white matter, grey matter and
skull. In CSF, the order is reversed and in the scalp, the three characteristic times are
approximately of the same order with τm ∼ τem ∼ τe ≪ τ . These situations correspond to
the different cases studied in the previous dimensional analysis. Thus, for modeling EEG,
the quasi-stationary approximation (7) of the full Maxwell equations can be considered as
a valid model. We focus on values for neonates and premature babies, but the conclusions
of the dimensional analysis hold true for adults as well, the main difference being in the
value of σ in the skull which is generally assumed to be ten times smaller than in neonates.

Equation ∇ × E = 0 shows that the electric field E derives from a scalar electric
potential, denoted by u, and is written as

E(t, x) = −∇u(t, x), (t, x) ∈ (0, T ) × Ω, (8)

with T > 0 an observation time and Ω ⊂ Rd (d = 2, 3) a head model. In the brain and in
particular in the cortex, the synchronized effect among a multitude of neurons creates an
intracellular current denoted by jp. The current density J produced by cerebral activity
thus splits into two terms

J = σE + jp. (9)
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By replacing (8) and (9) in the equation ∇ × B = µJ, and by applying the divergence
operator, we obtain

0 = ∇ · (∇ × B) = µ∇ · (jp − σ∇u), (10)

which gives the following elliptic equation

∇ · (σ∇u) = ∇ · jp. (11)

In order to numerically reproduce spatially localized phenomena which are variable in
time, we propose a time-dependent model for the source term jp in the form of a set of M
electric dipoles located in the brain

jp(t, ·) =
M∑

m=1
qm(t)δ(· − Sm(t)). (12)

Here, Sm(t) ∈ Ω and qm(t) ∈ Rd are, respectively, the position and the moment of the
m-th source at time t which is situated in the subdomain of Ω that models the brain or,
more precisely, the grey matter. The right hand side of (11) then reads

F (t, ·) := ∇ · jp(t, ·) =
M∑

m=1
qm(t) · ∇δ(· − Sm(t)). (13)

Assuming that the conductivity of air is zero and that no electric current can flow out of
the scalp, the electric potential u is then solution of the following boundary problem with
homogeneous Neumann condition{

∇ · (σ∇u) = F in (0, T ) × Ω,

σ∂nu = 0 on (0, T ) × ∂Ω.
(14)

1.3 The subtraction approach for EEG with time-dependent sources

In this section, we address the resolution of the forward problem (14). Mathematically, a
head model can be described as follows. Let Ω ⊂ Rd be a bounded simply connected do-
main with regular boundary Γ := ∂Ω and consider a partition of Ω into P open subdomains
(Ωp)p=1,...,P , such that

Ω̄ =
P⋃

p=1
Ω̄p and Ωp ∩ Ωq = ∅ ∀p ̸= q.

Subdomains Ωp describe the different tissues of the head. In the case of concentric subdo-
mains as in Figure 1, we denote by Γp the interface between the subdomains Ωp and Ωp+1
and assume that (Γp)p are closed regular surfaces. Let np be the unit normal vector to Γp

from Ωp to Ωp+1.
Notice that (14) includes the following transmission conditions at any interface Γp

between two subdomains Ωp and Ωq

[u]|Γp
= [σ∂nu]|Γp

= 0 on (0, T ) × Γp. (15)

Here, [f ]|Γp
= f|Ωq

−f|Ωp
denotes the jump across the interface Γp of the function f defined

on Ω.
We make the following assumptions on the moments, sources, and the conductivity:

(H1) qm ∈ L2(0, T )d and Sm ∈ C0([0, T ])d, ∀m ∈ {1, . . . , M}.

(H2) At time t, the points (Sm(t))m are mutually distinct, i.e. Sm(t) ̸= Sk(t), ∀m ̸= k.
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Figure 1: Three-layer head model

(H3) All sources are located in the same subdomain Ωp0 , p0 ∈ {1, . . . , P}, and there is a
domain D ⊂⊂ Ωp0 , such that

M⋃
m=1

{Sm(t), t ∈ [0, T ]} ⊂ D, (16)

and the conductivity is constant on D: σ|D = σD for a constant σD > 0.

Due to the lack of regularity of the source term F , a direct variational formulation of
(14) in H1(Ω) is not possible. A possibility is to apply the subtraction approach [14, 6, 43].
It consists of decomposing the potential u into a potential ũ which contains the singularity
and a regular lifting w:

u = ũ + w on (0, T ) × Ω.

But in the time-dependent setting with moments qm belonging to L2(0, T )d, the bound-
ary value problem (14) with source term (13) can not be understood at fixed time t. The
definition of the singular portential ũ thus needs to be done with caution. To this end, we
introduce for m ∈ {1, . . . , M} and i ∈ {1, . . . , d}, the canonical source term F

(i)
m :

∀t ∈ [0, T ], F (i)
m (t, ·) = e(i) · ∇δ(· − Sm(t)) (17)

where e(i) denotes the i-th canonical basis vector of Rd. Notice that F
(i)
m is well defined at

any time step t since Sm is continuous on [0, T ]. The associated singular potential ũ
(i)
m (t, ·),

i = 1, . . . , d, is solution of the following Poisson equation

∀t ∈ [0, T ], σD∆ũ(i)
m (t, ·) = F (i)

m (t, ·) in Rd.

Thus, ũ
(i)
m (t, ·) is obtained by convolution in the space variable x of the fundamental

solution of the Laplace equation with the right hand side 1
σD

e(i) · ∇δ(· − Sm(t)) which
leads to

ũ(i)
m (t, x) = 1

2d−1πσD
e(i) · x − Sm(t)

|x − Sm(t)|d , ∀t ∈ [0, T ], ∀x ∈ Rd \ {Sm(t)}. (18)

At fixed time t ∈ [0, T ], consider the following boundary value problem with regular
right hand side−∇ · (σ∇w

(i)
m (t, ·)) = ∇ · ((σ − σD)∇ũ

(i)
m (t, ·)) in Ω,

σ∂nw
(i)
m (t, ·) = −σ∂nũ

(i)
m (t, ·) on Γ.

(19)

We prove here below that (19) admits a variational solution in an appropriated vector
space. To this end, define the bilinear form a(·, ·) on H1(Ω) × H1(Ω) by

a(w, v) =
∫

Ω
σ∇w · ∇v dx.
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For fixed t ∈ [0, T ], denote by l
(i)
m (t; ·) the following linear form defined for v ∈ H1(Ω),

l(i)m (t; v) =
∫

Ω\D̄
(σD − σ)∇ũ(i)

m (t, ·) · ∇v dx −
∫

Γ
σD∂nũ(i)

m (t, ·)v ds.

Since problem (19) involves a Neumann boundary condition, its solution is determined up
to an additive constant only. We therefore introduce the subspace of H1(Ω) of functions
with vanishing mean value,

V = H1(Ω) ∩ L2
0(Ω), (20)

where
L2

0(Ω) =
{

v ∈ L2(Ω)
∣∣∣∣ ∫

Ω
v dx = 0

}
.

Then, the following proposition holds true:

Proposition 1.1. Let σ ∈ L∞(Ω) be such that 0 < σmin ≤ σ ≤ σmax a.e. on Ω with
constants σmin and σmax. Let Sm ∈ C0(0, T )d for any m ∈ {1, . . . , M} and assume that
(H2) and (H3) are satisfied. Then, for m ∈ {1, . . . , M} and i ∈ {1, . . . , d}, the following
problem admits a unique solution:Find w

(i)
m ∈ C0([0, T ]; V ) such that

a(w(i)
m (t, ·), v) = l

(i)
m (t; v) ∀v ∈ H1(Ω), ∀t ∈ [0, T ].

(21)

The solution of (21) satisfies (19) in a weak sense.

Proof. According to the assumptions on σ, the bilinear form a(·, ·) is continuous and
coercive on V × V . For the linear form, consider v ∈ H1(Ω) and t ∈ [0, T ]. Since the
potential ũ

(i)
m (t, ·) is regular outside the domain D, we conclude that l

(i)
m (t; ·) is continuous

on H1(Ω) and satisfies
|l(i)m (t; v)| ≤ C∥v∥H1(Ω)

with a constant

C = 2∥σ∥L∞(Ω) max
t∈[0,T ]

∥∇ũ(i)
m (t, ·)∥L2(Ω\D̄) + CΓσD max

t∈[0,T ]
∥∂nũ(i)

m (t, ·)∥L2(Γ)

which is independent from t, where CΓ > 0 is the constant of the trace operator on H1(Ω).
The compatibility condition l

(i)
m (t; 1) = 0 can be proved as in [6] with the help of the solid

angle formula. Then, Lax-Milgram’s theorem guarantees existence and uniqueness of the
solution at fixed time t. Now, notice that ũ

(i)
m is continuous with respect to time on Ω \ D

and l
(i)
m depends continuously on u

(i)
m . This proves that w

(i)
m ∈ C0([0, T ]; V ) and we get

∥w(i)
m (t, ·)∥V ≤ C

α
∀t ∈ [0, T ]

where α > 0 is the coercivity constant of a(·, ·).

Now, the time-dependent EEG problem (14) with source term (13) admits a solution
in the following sense:

Theorem 1.2. Let σ ∈ L∞(Ω) be such that 0 < σmin ≤ σ ≤ σmax a.e. on Ω with constants
σmin and σmax. Assume (H1) – (H3) to be true. For i ∈ {1, . . . , d} and m ∈ {1, . . . , M},
let w

(i)
m be the solution of (21) where ũ

(i)
m is defined by (18). Finally, denote by q

(i)
m the

i-th component of the moment qm ∈ L2(0, T )d. Then,

u =
M∑

m=1

d∑
i=1

q(i)
m (ũ(i)

m + w(i)
m ) (22)
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is solution of the time-dependent EEG problem{
∇ · (σ∇u) = F in (0, T ) × Ω,

σ∂nu = 0 on (0, T ) × Γ,

with source term

F (t, ·) =
M∑

m=1
qm(t) · ∇δ(· − Sm(t)).

Proof. In order to prove that the potential u under the form (22) is solution to prob-
lem (14), it is sufficient to notice that ∇ · (σ∇(ũ(i)

m + w
(i)
m )) is well defined at any time t

since

∇ · (σ∇(ũ(i)
m + w(i)

m )) = ∇ · ((σ − σD)∇ũ(i)
m ) + σD∆ũ(i)

m + ∇ · (σ∇w(i)
m ) = F (i)

m .

We further have σ∂n(ũ(i)
m + w

(i)
m ) = 0 on [0, T ] × Γ by construction.

2 Diffusive optical tomography with time-dependent coeffi-
cients

2.1 Dimensional analysis of the P1-approximation of the radiative trans-
fer equation

Light propagation is mainly governed by absorption and scattering phenomena. A popular
model for photon transport in a context where the wavelength in the near infrared range
is small (750-900 nm) compared to the characteristic length of the human head, is the
radiative transfer equation (RTE).

Let S be the unit sphere in R3 and denote by f a given phase function which describes
the probability that a photon arriving from direction s, is scattered in direction s′. We
assume that f depends only from the angle between s and s′ which is the case in an
isotropic medium, and is such that ∫

S
f(s · s′) ds′ = 1.

The unknown of the RTE is the specific intensity of light I(t, x, s) which depends on time
t, position x and the direction s. Let q be a light source. Then the RTE reads

1
c

∂tI(t, x, s) + s · ∇I(t, x, s) + µtI(t, x, s) = µs

∫
S

f(s · s′)I(t, x, s′) ds′ + q(t, x, s). (23)

Here, µt = µa + µs is the total attenuation coefficient depending on the absorption coef-
ficient µa and the scattering coefficient µs in the biological tissue, and c is the speed of
light in the medium.

Since the numerical resolution of the RTE results in a high computational cost, es-
pecially in the context of medical imaging applications, a common choice is to use the
diffusion equation as an approximation. We will discuss here how to deal with time-
dependent optical parameters. To this end, we define respectively, the diffuse photon
density ϕ and the diffuse photon flux J by

ϕ(t, x) =
∫
S

I(t, x, s) ds, (24)

and
I(t, x) =

∫
S

I(t, x, s)s ds. (25)

9



We further assume that the source term q is isotropic, i.e. q = q(t, x). Expansion of the
intensity I in terms of spherical harmonics up to the first order then yields the following
system

1
c

∂tϕ(t, x) + ∇ · I(t, x) + µa(t, x)ϕ(t, x) = q (26)
1
c

∂tI(t, x) + 1
3∇ϕ(t, x) + (µa(t, x) + µ′

s(t, x))I(t, x) = 0, (27)

where µ′
s = (1 − g)µs is the reduced scattering coefficient and g is the anisotropy factor.

Now, consider a time-harmonic source term q(t, x) = q0(x) exp(iωt) oscillating at a given
pulsation ω > 0. Since the optical parameters µa and µ′

s depend both on the time and
the space variable, we cannot assume any more that the unknowns ϕ and I are separated
in time and space. Let Φ(t, x) and I(t, x) be such that

ϕ(t, x) = ℜ (Φ(t, x) exp(iωt)) ,

I(t, x) = ℜ (I(t, x) exp(iωt)) ,

where Φ and I are complex-valued functions of time and space. System (26)–(27) then
reads

iω

c
Φ(t, x) + 1

c
∂tΦ(t, x) + ∇ · I(t, x) + µa(t, x)Φ(t, x) = q0(x) (28)

iω

c
I(t, x) + 1

c
∂tI(t, x) + 1

3∇Φ(t, x) + (µa(t, x) + µ′
s(t, x))I(t, x) = 0. (29)

In the same way as for the time-dependent EEG problem, we now proceed to the scaling of
system (28)–(29). Let τ and ℓ be the characteristic time scale and length of the problem.
Let further Φ(t, x) = φP ′(t′, x′) and I(t, x) = jI ′(t′, x′) where φ and j are reference
quantities and P ′ and I ′ are dimensionless of order O(1) depending on t′ = t/τ and
x′ = x/ℓ. As before, prime notation corresponds to dimensionless operators or variables
and system (28)–(29) becomes

iω

c
φP ′ + 1

cτ
φ∂t′P ′ + j

ℓ
∇′ · I ′ + µaφP ′ = q0, (30)

iω

c
jI ′ + 1

cτ
j∂t′I ′ + 1

3ℓ
φ∇′P ′ + (µa + µ′

s)jI ′ = 0. (31)

Now, we take into account that diffuse optical tomography operates in the time-harmonic
setting at a frequency of f = 108[Hz]. According to [36, 37], oscillations in the concentra-
tions of oxy- and deoxyhemoglobine occur at a frequency from 0.05 to 0.1[Hz]. We thus
have 1

τ ≪ ω = 2πf . Consequently, the second term in (30) (resp. (31)) is much smaller
compared to the first term and we conclude that the time derivatives can be neglected.

We further investigate the orders of the first and last term in (31). Here below are
listed typical baseline values for the optical parameters of the head tissues at a wavelength
of 800 [nm]. Except for the cerebrospinal fluid (CSF), these values are taken from [12].
The analysis of CSF has to be done with more caution. Indeed, it is commonly admitted
that the diffusion approximation of RTE is much less precise in CSF than in the other
tissues [19, 32]. This is mainly due to the small scale of the optical parameters which yields
a large mean free path and consequently a large diffusion coefficient κ. However, it has
been pointed out in [32, 27] that the subarachnoid space is not only filled with CSF but
also contains thin filaments, the arachnoid trabeculae (AT), that connect the two inner
meninges, arachnoid mater and pia mater. Taking into account these small scatterers by
homogeneization yields the values in Table 2 for a proportion of p = 15% AT among CSF
(see [27] for details) and attests that ω/c ≪ µa + µ′

s in all tissues. This implies that the
first term in (31) can be neglected.
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Tissu µa [mm−1] µ′
s [mm−1] µa + µ′

s ω/c [mm−1]
scalp 0.018 1.9 1.918 0.0028
skull 0.016 1.6 1.616 0.0028

CSF/AT 0.0062 0.3122 0.3184 0.0028
grey matter 0.048 0.5 0.548 0.0028
white matter 0.037 1.0 1.037 0.0028

Table 2: Baseline values for optical parameters of the neonatal head at 800 nm [12].
Constant anisotropy factor g = 0.9 and refractive index n = 1.33 for all tissues. Pulsation
ω = 2πf with modulation frequency f = 108[Hz]. Homogenization of CSF/AT with
p = 15% AT among CSF [27].

2.2 The time-dependent diffusion approximation

The system resulting from (30)–(31) and dimensional analysis reads
iω

c
Φ(t, x) + ∇ · I(t, x) + µa(t, x)Φ(t, x) = q0(x) (32)

1
3∇Φ(t, x) + (µa(t, x) + µ′

s(t, x))I(t, x) = 0, (33)

and implies that the photon flux I derives from the scalar potential Φ. Substituting I in
(32) then yields the diffusion equation

−∇ · (κ∇Φ) +
(

µa + iω

c

)
Φ = q0,

where the diffusion coefficient κ = 1
3(µa + µ′

s) and the absorption coefficient µa are func-

tions of time and space variables (t, x). In order to take into account inner reflection at the
boundary between the scalp and the exterior domain, a Robin-type boundary condition is
prescribed on Γ [22]. Hence, the boundary problem of the diffusion approximation with
time-harmonic light source and time-dependent optical parameters reads −∇ · (κ∇Φ) +

(
µa + iω

c

)
Φ = q0 in (0, T ) × Ω,

Φ + Aκ∂nΦ = 0 on (0, T ) × Γ.
(34)

Here, A > 0 is a scalar coefficient that depends on the refractive index (RI) mismatch
between the biological tissue of RI n and the surrounding medium of RI na. A precise
formula for A can be found in [11].

Problem (34) is well posed in the following sense:

Theorem 2.1. Let µa and κ belong to C0(0, T ; L∞(Ω)) and assume that there are constants
µa,0 > 0 and κ0 > 0 such that

µa ≥ µa,0 and κ ≥ κ0 ∀t ∈ [0, T ], a.e. on Ω. (35)

Let q0 ∈ L2(Ω;C) and A > 0. Then, there is a unique solution Φ ∈ C0(0, T ; H1(Ω;C))
such that for any t ∈ [0, T ]

at(Φ(t, ·), v) = ℓ(v) ∀v ∈ H1(Ω;C), (36)

where

at(u, v) =
∫

Ω
κ(t, ·)∇u · ∇v̄ dx +

∫
Ω

(
µa(t, ·) + iω

c

)
uv̄ dx + 1

A

∫
Γ

uv̄ ds (37)

is a sesqui-linear form defined for fixed t on H1(Ω;C) × H1(Ω;C) and

ℓ(v) =
∫

Ω
q0v̄ dx (38)

is an antilinear form on H1(Ω;C).
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Proof. Notice that the assumptions on the data µa, κ and A guarantee that the sesqui-
linear form at(·, ·) is continuous and coercive on H1(Ω;C) for any t ∈ [0, T ] with constants
independent from t. Since q0 ∈ L2(Ω;C), the antilinear form ℓ is time-independent and
continuous on H1(Ω;C). At fixed time t, there is thus a unique solution Φ(t, ·) ∈ H1(Ω;C),
solution to (36) due to Lax-Milgram’s lemma for complex Hilbert spaces. Continuity of the
solution Φ with respect to time then follows from the continuity of the parameters. Indeed,
let (tn)n∈N be a convergent sequence in [0, T ] such that limn→∞ tn = t∗. Let Φn = Φ(tn, ·)
and Φ∗ = Φ(t∗, ·) the corresponding solutions of (36) at tn and t∗, respectively. Then, for
any v ∈ H1(Ω;C), we have

atn(Φn − Φ∗, v) = atn(Φn, v) − at∗(Φ∗, v) + at∗(Φ∗, v) − atn(Φ∗, v)
= ℓ(v) − ℓ(v) + at∗(Φ∗, v) − atn(Φ∗, v)

−→ 0

as n → ∞ since the coefficients κ and µa are continuous with respect to t. Then, we infer
from the coercivity of at(·, ·) that

∥Φn − Φ∗∥1,Ω ≤ 1
α

ℜ (atn(Φn − Φ∗, Φn − Φ∗)) −→ 0

as n → ∞ since the coercivity constant α = min(κ0, µa,0) is time-independent.

3 A mathematical model for neurovascular coupling
Neurovascular coupling describes the hemodynamic response of the brain to the electri-
cal activity of a group of neurons. Roughly speaking, the neuronal activity induces an
increase of the cerebral blood flow in order to satisfy the increasing need of oxygen in
the activated area. Changes in the concentrations of the involved chromophores oxyhe-
moglobin [HbO] and deoxyhemoglobin [Hb] imply changes in the optical parameters µa

and µ′
s. In this section, we summarize the main compartments of neurovascular coupling,

i.e. a model for neuronal activity based on the work of [29] and the balloon model [7, 8] for
the hemodynamic response. The balloon model has been developed initially to describe
the BOLD signal of functional MRI [7], but the correlations between the BOLD signal and
the concentration of deoxyhemoglobin allow to use it in diffuse optical imaging, too. The
full model allows to get the input moment qm(t) in the source term (13) of the forward
EEG problem (14) and the time-dependent absorption coefficient µa in the forward DOT
problem (34) while explaining their link in neurovascular coupling. We start with the
description of the neuronal model that yields the moment qm(t).

3.1 The neuronal model

Neurons are responsible for transmitting information between brain cells, through electri-
cal impulses and chemical signals. The neuron is composed by three parts, the soma or
cell body, the dendrites and the axon. When a stimulus occurs, the dendrites transmit the
message to the soma which generates an action potential under appropriate conditions.
The action potential is in turn sent through the axon and arrives at the presynaptic neu-
ronal membrane which is separated from the postsynaptic neuron by the synaptic cleft.
The action potential induces the release of neurotransmitters into the synaptic cleft which
passes the information to the postsynaptic neuron and creates the postsynaptic potential.

Here, we present the neuronal model as a system of coupled ordinary differential equa-
tions. At the neuron level, the membrane potentials νs and νd of the soma and the dendrite
in presence of an input stimulus Istim are solutions of the following differential equations:

Cm
dνs

dt
= −Is,tot + Ca(νd − νs) + Istim, (39)

Cm
dνd

dt
= −Id,tot + Ca(νs − νd), (40)
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where Cm is the specific membrane capacitance and Ca is a constant which depends on
the properties of the neuron.

Voltage gated membrane currents and ionic concentrations

The total cross membrane currents I∗,tot (∗ ∈ {s, d}) in the soma (resp. dendrite) com-
partment are the sum of voltage dependent sodium (Na) and potassium (K) currents Is,Ion
(resp. Id,Ion) and sodium, potassium and chlore leak currents as well as sodium-potassium
exchange currents. Except for the leak currents, the ionic cross membrane currents are
modelled using the Goldman-Hodgkin-Katz (GHK) formula

I∗,Ion = g∗,Ion
Fν∗([Ion]i,∗ − exp(−ν∗/Φ)[Ion]e)

Φ exp(−ν∗/Φ) , Ion ∈ {Na, K}, ∗ ∈ {s, d}, (41)

where g∗,Ion is the channel specific conductance, [Ion]i,∗ and [Ion]e denote the (compart-
ment specific) intra- and extracellular ionic concentrations, F is the Faraday constant, and
Φ = RT/F depends on the universal gas constant R and the absolute temperature T .

The ionic exchange rates between the soma and the dendrite depend on the total ionic
current and the flow of ions between the soma and the dendrite compartement which is
assumed to be proportional to the difference of the ionic concentrations:

Vs
d[Ion]i,s

dt
= −CsIs,Ion + CIon([Ion]i,d − [Ion]i,s) (42)

Vd
d[Ion]i,d

dt
= −CdId,Ion + CIon([Ion]i,s − [Ion]i,d) (43)

Ve

Vs + Vd

d[Ion]e
dt

= Cs

Vs
Is,Ion + Cd

Vd
Id,Ion (44)

where Vs, Vd and Ve are respectively the volume of the soma, the dendrite and the extra-
cellular space, and Cs, Cd and CIon are constants depending on the neuron and the ion
under consideration.

The ionic currents given by the GHK-formula (41) travel across voltage gated ionic
channels. Each channel has a conductance g∗,Ion = mp

∗,Ionhq
∗,IonḡIon, product of an ion-

specific maximum conductance ḡIon and a factor mp
∗,Ionhq

∗,Ion ∈ [0, 1] which describes the
fraction of active and inactive open channels. The variables m∗,Ion and h∗,Ion are solutions
of a couple of differential equations

dm∗,Ion
dt

= αm,∗,Ion(ν∗)(1 − m∗,Ion) − βm,∗,Ion(ν∗)m∗,Ion, (45)

dh∗,Ion
dt

= αh,∗,Ion(ν∗)(1 − h∗,Ion) − βh,∗,Ion(ν∗)h∗,Ion, (46)

with opening and closing rates α and β depending on the membrane potential ν∗. The ex-
pressions for the rates of the different gating particles are usually obtained by experimental
fitting [20, 40, 29].

Leak currents

The leak currents are given by Ohm’s law,

I∗,leak,Ion = ḡIon(ν∗ − EIon) (47)

where EIon denotes the ion-specific potential at rest.
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Sodium-potassium exchange currents

The coupling between the neuronal and the vascular compartment is realized by the
sodium-potassium exchange pump which aims to balance the ionic concentrations be-
tween the intra- and extracellular space. These pumps are present as well in the soma as
in the dendrite compartment. The pump moves out three intracellular sodium ions and
two extracellular potassium ions:

I∗,Na,pump = 3I∗,pump, (48)
I∗,K,pump = −2I∗,pump, (49)

where the total current I∗,pump due to the Na/K-exchange pump is given as the product of
a function γ1,∗ depending on the concentrations of intracellular sodium and extracellular
potassium and a function γ2,∗ depending on the tissue oxygen concentration [O2],

I∗,pump = Imaxγ1,∗ ([K]e, [Na]∗,i) γ2,∗ ([O2]) . (50)

Expressions for γ1,∗ and γ2,∗ can be found in [29].
In turn, the variation of oxygen concentration [O2] depends on the oxygen supply and

consumption, and satisfies the differential equation

d[O2]
dt

= J
[O2]b − [O2]
[O2]b − [O2]0

− M. (51)

Here, J is the rate of change in oxygen concentration, [O2]b and [O2]0 are, respectively,
the steady state and baseline oxygen concentration, and M = M([O2], [K]e, [Na]i,s, [Na]i,d)
denotes the cerebral metabolic rate of oxygen (CMRO2) which accounts for variation in
time of the oxygen consumption after stimulation due to the exchange pump and other
processes [29].

3.2 The vascular compartment

One of the most popular models to describe the dynamics of the biomechanical and
metabolic quantities involved in brain activation is the balloon model [7, 8]. It consists of
two coupled differential equations for the concentration of deoxygenated hemoglobin [Hb]
and the cerebral blood volume CBV of the venous compartment:

d[Hb]
dt

= 1
τ0

(
M

M0
− [Hb]

CBV fout

)
, (52)

dCBV
dt

= 1
τ0

( CBF
CBF0

− fout

)
. (53)

Here, τ0 is the mean transit time at rest, i.e. the time that a given blood volume stays in
the capillary circulation, and M0 and CBF0 are equilibrium values for the metabolic rate
of oxygen M and the cerebral blood flow CBF, respectively. The cerebral blood flow in
the arterioles of the vascular compartment is of Poiseuille type,

CBF = CBF0
R4

R4
0

(54)

where R is the radius of the arterioles and R0 is the corresponding steady state value. The
outgoing flow fout is related to the blood volume CBV by

fout = CBV
1
d + τ

dCBV
dt

(55)

with empirical constants d and τ .
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3.3 The complete differential system

In summary, we get a system of ordinary differential equations
dU

dt
= F(U) (56)

which has to be completed by initial values U(0) = U0. The vector U of unknowns can
be split into two parts, on the one hand the neuronal part Uneuron which contains the
membrane potentials νs and νd, the intra- and extracellular ionic concentrations [Ion]i,∗
and [Ion]e and finally the gating variables m and h, on the other hand the hemodynamic
part Uhd containing the concentrations of oxygen and deoxygenated hemoglobin [O2] and
[Hb] as well as the cerebral blood volume CBV. The right hand side of (56) may also
be split into a vector Fneuron and Fhd but due to neurovascular coupling, Fneuron acts on
Uneuron as well as on [O2] through the presence of the exchange pump current I∗,pump,
whereas Fhd acts on Uneuron as well as on Uhd since the metabolic rate of oxygen M
depends on the ionic concentrations [K]e and [Na]i,∗. Thus, system (56) reads

d
dt

(
Uneuron

Uhd

)
=
(

Fneuron(Uneuron, [O2])

Fhd(Uneuron, Uhd)

)
. (57)

Notice that the full system of differential equations described in [28, 29] contains other
compartments than the two mentioned here, as for example astrocyte.

3.4 The time-dependent source term of the forward EEG-problem

The post-synaptic current

In response to an action potential νs (i.e. a presynaptic spike), neurotransmitters are
released at the presynaptic terminal. These neurotransmitters then move into the synaptic
cleft and bind with receptors in the postsynaptic neuron, opening ion channels. This
movement of ions across the neuronal membrane generates a postsynaptic current Ipost
which is given by

Ipost(t) = g(t)(νpost(t) − νrev). (58)
Here, the conductance g(t) depends on the presynaptic neuron, νpost is the potential
accross the postsynaptic membrane, and νrev is a (constant) reversal potential the value
of which depends on the neurotransmitter.

There are different types of neurotransmitters and the model will depend on which
neurotransmitter we consider. Here, we focus on a single channel model which is valid e.g.
for AMPA or GABAA which are, respectively, excitatory or inhibitory neurotransmitters.
As before, we express the conductance as a maximum conductance ḡ and a factor between
0 and 1 modeling the proportion of open channels. Thus, we have g(t) = ḡs(t) in (58)
where s is obtained by solving the differential equation [13]

ds

dt
= K1[T ](1 − s) − K2s, (59)

with K1, K2 two constants that depend on the neurotransmitter and [T ] the concentration
of neurotransmitters in the synaptic cleft. We use a relationship between [T ] and νs from
[13] according to which [T ] is given by

[T ](νs) = Tmax

1 + exp(−(νs − VT )/Kp) , (60)

where Tmax is the maximum concentration of transmitters in the synaptic cleft, VT the
value at which the concentration is halfed, Kp models the steepness and νs is the presy-
naptic action potential, given by the resolution of (56).

Finally, the corresponding postsynaptic current is then given by the right hand side
of (58) where the postsynaptic potential is taken as the membrane potential νd in the
dendrites.
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The time-dependent current dipolar moment

It is commonly admitted that EEG signals result from the sum of postsynaptic currents
generated by a large amount of synchronized pyramidal neurons with similar orientiations.
The above analysis describes potentials and currents at the neuron level.

The source term of the time-dependent forward EEG problem (14) is the divergence
of the source current density jp which in turn is a dipolar moment q multiplied by a Dirac
delta δS if the active area of the brain at time t is localized at a single position S. The
moment q depends on the postsynaptic current Ipost, a length scale ∆s and the number
Nsyn of synchronized neurons,

jp = q(t) · δS = NsynIpost(t)∆s e(t) · δS , (61)

where e(t) ∈ R3 is a unit vector describing the orientation of the neurons at time t. The
solution u of (14) then models the spatial distribution in the head of the postsynaptic
potential generated by the neuronal current Ipost at Sm over a time interval (0, T ).

The order of magnitude of jp is of 10[nA.m−2] for the following data

Nsyn = 106, Ipost ≈ 10[pA], ∆s = 1[mm].

The corresponding order of magnitude of the simulated potential u at the electrodes is
about 10[µV ] which is consistent with experimental data (cf. e.g. [4]).

3.5 Time-dependent optical parameters

Contrary to [29], we are not interested here in the BOLD signal, but in the concentrations
of deoxy- and oxyhemoglobin [Hb]N and [HbO2]N which we assume normalized by their
(initial) values at rest. [Hb] is part of the vector of unknowns of system (56). [HbO2]N
can be obtained by the formula

[HbO2]N = [HbT]N − [Hb]N + 1 (62)

where the total normalized concentration of hemoglobin [HbT]N is given by

[HbT]N = [Hb]N CBFN

MN
, (63)

with normalized cerebral blood flow CBFN and normalized change of oxygen consumption
MN .

The main chromophores contributing to absorption in the biological tissues of the brain
are deoxy- and oxyhemoglobin as well as water. The absolute absorption coefficient at
rest can therefore be related to the concentrations of the chromophores by

µa,0 = µa,waterPwater + αHb[Hb]0 + αHbO2 [HbO2]0, (64)

where Pwater is the proportion of water in the cortex, and αHb and αHbO2 are the specific
extinction coefficients of Hb and HbO2 [23]. Changes in deoxy- and oxyhemoglobin con-
centrations during cerebral activation lead to the modification of µa,0 which is expressed
in terms of the time-dependent normalized concentrations [Hb]N and [HbO2]N :

∆µa(t) = αHb[Hb]0 ([Hb]N (t) − 1) + αHbO2 [HbO2]0 ([HbO2]N (t) − 1) . (65)

The effect of cerebral activity on the scattering coefficient µs is less documented and will
be neglected here.
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Figure 2: The full pipeline for simulation of co-registered EEG- and DOT-signals with a
simplified representation of the different compartments of the ODE system.

4 Numerical simulation of co-registered EEG/DOT signals
In this section, we explain the numerical pipeline from an input stimulation current up
to simulated co-registered EEG/DOT signals at the electroptodes according to Figure 2.
Electroptodes are a medical device which allows to monitor simultaneously the neuronal
and vascular activities of the brain [5].

We provide numerical simulations on a realistic head model of a healthy fullterm
newborn obtained from coregistration of MR and CT images of the Amiens’ hospital
database (courtesy GRAMFC, INSERM U1105, Amiens, France (H. Azizollahi [5])). The
model distinguishes between four tissues: brain, CSF, skull, fontanels and scalp. Table 3
summarizes the mesh parameters. Tables 1 and 2 give respectively the conductivity σ and
the optical parameters µa,0 and µ′

s of the tissues.

Nodes Tetrahedra hmin [m] hmax [m] diameter [m]

108 669 590 878 3.4 10−4 14 10−3 0.12

Table 3: Characteristics of the realistic head mesh.

Synthetic measurements are observed at L = 8 pointwise electroptodes {eℓ}L
ℓ=1 situ-

ated in different regions of the scalp on the boundary Γ. In Figure 3 (left), one distinguishes
the electroptodes e3 and e5 situated respectively in the frontal and central area as well
as e2 and e8 which are placed above the left hemisphere. We numerically simulate the
measured EEG/DOT signals at electroptodes during the observation time interval [0, T ],
with T = 150ms. We consider a single dipolar source point S below the electroptode e2
and a moment q(t) directed normally to the brain/LCS interface (Figure 3 middle and
right). We assume that the changes ∆µa(t), given by (65), of the absorption parameter
µa,0 (at rest) are located in a ball Br(S) of radius r = 1.2cm and center S (see Figure 4).
The volume of the ball represents 1.6% of that of the brain. We thus model a small and
localized perturbation (in space) of the absorption coefficient caused by changes in deoxy-
and oxyhemoglobin concentrations in the area of the electrical activity.

The method consists first in solving the complete system (56) of differential equations
which, recall, models the neurovascular coupling at the neuron level. To this end, we
apply the ode15s stiff solver with a variable step of Matlab [38]. Indeed, we need to
simulate phenomena that occur at different time scales. The neuronal activity takes a few
milliseconds and can show strong variations. The vascular part is characterized generally
by a smooth behaviour along a period of several seconds. An order of 10000 time steps
(tk)1≤k≤M is required to obtain accurate results.

Simulations at the neuron level. We first analyse the link between the input stimulus
Istim and the output of the postsynaptic current Ipost on the one hand and variations in the
normalized concentrations [Hb]N and [HbO2]N of deoxy- and oxyhemoglobin on the other.
The model parameters are those of the neurotransmitter GABAA. In Figure 5, we present
the coupling between Ipost and the variations of [Hb]N and [HbO2]N for a rectangular pulse
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Figure 3: Position of the electroptodes (left). Frontal and sagittal view of position and
orientation of the source.

Figure 4: Localization in the brain of the perturbation in the absorption coefficient.

stimulation Istim with amplitude Istim,max = 22[mA] which occurs during 1s in the time
interval [100, 101]. We may notice that the most significant electrical activity is limited
to the stimulation interval whereas an increase in [HbO2]N and a symmetrical decrease in
[Hb]N arise a few seconds after the neural activity.

We next study the influence of the stimulation current on the postsynaptic current
and the hemodynamic concentrations. In Figure 6, we present Ipost and the variations of
[Hb]N and [HbO2]N for a rectangular pulse stimulation Istim with different amplitudes,
Istim,max = 22[mA] (left column) and Istim,max = 19[mA] (middle). We notice that the
amplitude of the stimulation pulse influences the spike density of the postsynaptic current.
Results in the right column of Figure 6 correspond to an input stimulus Istim containing
two rectangular pulses (the first one of amplitude Istim,max = 22[mA] and the second
Istim,max = 19[mA]). The postsynaptic current has two periods of spikes, associated to
the two pulses, with a higher density for the first one. One may notice that the global
behavior of the hemodynamic response (lower line of Figure 6) is the same for the three
configurations.

We have numerically exhibited the neurovascular coupling at the neuron level. In the
next step, we are going to simulate the corresponding EEG/DOT measurements at the
electroptodes. The EEG and DOT problems are solved simultaneously with input data
obtained from system (56).

EEG signals. We compute the postsynaptic current Ipost(tk) from (58) (see Section
3.4) and deduce the time-dependent source term F of the forward EEG model (14). We
solve problem (14) by the subtraction approach and use the finite element method with
Lagrange-P1 elements implemented in FreeFem++ [18] to compute the regular potentials
w

(i)
m , i ∈ {1, . . . , d}, solution to the variational formulation (21). Notice, that w

(i)
m is time-

independent in the present context of static source positions. Then, the potential u is
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Figure 5: A: Simulated postsynaptic current Ipost for a rectangular pulse stimulation of
amplitude Istim,max = 22[mA] between 100 and 101[s]. B: Zoom of Ipost to the interval
[100, 101]. C: Normalized concentrations in deoxy- and oxyhemoglobin for the same stim-
ulation.

Figure 6: Simulated postsynaptic currents Ipost (middle line, zoom on interval [100, 101])
and normalized concentrations of deoxy- and oxyhemoglobin (lower line) for different stim-
ulation currents (upper line): rectangular pulse with amplitude Istim,max = 22[mA] (left)
and Istim,max = 19[mA] (middle), two rectangular pulses of amplitudes 22[mA] and 19[mA]
(right).

computed by linear combination from (22) and EEG measurements are given by

Uk,ℓ = u(tk, eℓ), k = 1, . . . , K, ℓ = 1, . . . , L. (66)

where K is the number of time steps. Due to the Neumann boundary condition, the
solution u is determined up to an additive constant only. In Section 1, we considered
the subspace of functions in H1(Ω) with vanishing mean value to get uniqueness of the
solution. In practice, the absolute potential cannot be measured by EEG and the measured
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voltage is the difference between the potential at electroptode eℓ and the potential at a
reference electroptode. Numerically, we therefore impose a Dirichlet boundary condition
on a single node of the mesh to fix the constant. Since the singularity of the potential u
is taken into account exactly in the subtraction approach, the discretization error is given
by the error on the regular potential. We refer to [6] for a detailed error analysis.

DOT signals. Concerning the vascular part, the resolution of system (56) allows the
computation of the variation ∆µa at time tk from formula (65) (see Section 3.5) and the
perturbed absorption coefficient is given by

µa(tk, x) = µa,0(tk, x) + ∆µa(tk)χBr(S)(x),

where χ is the characteristic function of the perturbation Br(S) in the brain. The light
source q0 is modeled as a Gaussian function

q0(x) = As exp
(

−∥x − xs∥
2σ2

s

)
where σs = 5 × 10−3 fixes the beam diameter and the amplitude is set to As = (2πσs)−1.
xs is the center of the source which should be located at a distance δ ∼ 1/µ′

s away from
the surface Γ in order to justify an isotropic source term. We solve problem (34) by means
of Lagrange-P1 finite elements implemented in FreeFem++ on a coarsened time grid. This
is numerically justified since variation in time for DOT arises at a larger time scale than
in EEG, and allows to reduce the computational cost for the DOT problem. We normalize
the photon density ϕ with respect to the reference configuration with no perturbation, i.e
µa(tk, x) = µa,0. DOT measurements are thus expressed by

ϕk,ℓ = |ϕ(tk, eℓ)|
|ϕ0(tk, eℓ)|

, k = 1, . . . , K ′, ℓ = 1, . . . , L,

where ϕ0 is the solution of the DOT problem (34) with piecewise constant absorption
coefficient µa,0 and K ′ ≪ K is the number of reduced time steps. Baseline values for µa,0
and µ′

s are those from Table 2.
In Figure 7, we report EEG/DOT-measurements associated with the rectangular pulse

stimulation Istim of amplitude Istim,max = 22[mA]. According to formula (22), the electric
potential u depends linearly on Ipost. Thus, EEG measurements have the same temporal
behavior than Ipost (see Figure 5). Spikes are visible between t = 100[s] and t = 101[s]
whereas the amplitude differs with respect to the position of the electrode. Electroptode e2,
which is located near the brain source S, records the most important changes in both the
electric potential and the photon density. We observe that the simulated EEG and DOT
measurements are correlated in time. These numerical results illustrate the neurovascular
coupling and are consistent with clinical observations [36].

5 Conclusion
In this paper, we have developed and analysed a mathematical model for simulating co-
registered EEG and DOT measurements. It combines a non-linear system of differential
equations which models the neurovascular coupling at the neuron level, and PDE-based
models for EEG and DOT that allow to compute signals at the electroptodes on the
scalp. To this end, we have introduced evolution in time into the standard EEG and DOT
models and justified the time-dependent models via a dimensional analysis. Existence
and uniqueness results in appropriate vector spaces attest the well-posedness of both
models. We have detailed the pipeline from the input stimulation of cerebral activity up
to the co-registered EEG/DOT signals. Numerical results on a three-dimensional realistic
head model illustrate the electric potential and hemodynamic changes occurring from
neurovascular coupling. Up to the best of our knowledge, this is the first contribution

20



Figure 7: Simulation of co-registered EEG and DOT signals at electroptodes e2 (left), e3
(middle) and e5 (right) for a rectangular pulse stimulation of Istim,max = 22[mA]. Upper
line: electric potential u (zoom on interval [100, 101]). Lower line: photon density Φ (in
log10).

for modeling coupled EEG and DOT signals by solving both ODEs and PDEs. The
generalization to other ionic models that provide both the postsynaptic current and the
concentrations of deoxy- and oxyhemoglobin is straightforward.

Co-registered EEG/DOT signals give valuable information to clinicians for a deepful
understanding of brain disorders. The derivation of a EEG/DOT forward model is there-
fore an essential preliminary step to the resolution of the corresponding inverse problem
which consists in reconstructing simultaneously the location of electric sources and the
optical parameters in the brain.
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