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ABSTRACT

Point clouds (PCs) gained popularity as a representation for 3D ob-
jects and scenes and are widely used in numerous applications in
augmented and virtual reality domains. Concurrently, quality assess-
ment of PCs became even more relevant to improve various aspects
of these imaging pipelines. To stimulate further growth and interest
in point cloud quality assessment (PCQA), we created a large-scale
PCQA dataset (called “BASICS”) which provides the research com-
munity with a relevant and challenging dataset to develop reliable
objective quality metrics, and we organized the PCVQA grand chal-
lenge at ICIP 2023. In this paper, we provide a track-based eval-
uation methodology for benchmarking visual quality metrics, mir-
roring the PCVQA grand challenge evaluation scenarios designed to
mimic real-life applications. Furthermore, we provide a state-of-the-
art benchmark for the point cloud quality metrics. The track-based
benchmarking approach shows that there is room for improvement
in certain research directions, drawing attention to open problems in
the PCQA domain.

Index Terms— point cloud, quality assessment, quality of ex-
perience, track-based evaluation, benchmark

1. INTRODUCTION

Immersive multimedia technologies have developed significantly
over the last decade thanks to improvements in devices and method-
ologies to capture, process, and display such content [1]. Fueled
by recent developments, point clouds (PCs) gained popularity as
a representation of immersive media. PCs enable representing the
geometry and color information of 3-dimensional objects, up to
millions of points. In addition, many other attributes can be stored
for each point, further increasing the amount of data that needs to be
stored and transmitted.

Due to the high dimensionality of the PCs, there is an inevitable
need for efficient compression algorithms where the efficiency is
measured with perceptual quality evaluation. Although the ideal
way to measure the perceptual quality is through humans in the loop
(i.e. subjective quality evaluation), it is time-consuming and expen-
sive [2]. Therefore, subjective PC quality datasets are mainly used
to develop PC objective Quality Assessment (PCQA) metrics that
predict the perceptual quality [3, 4, 5].

This work was partially supported by the Knowledge Foundation, Swe-
den, with grant number 2019-0251.

Objective quality metrics are often developed for certain tasks
in mind. For example, some metrics measure the aesthetic quality
of an image, and others might focus on fidelity (e.g., how much an
image is distorted after compression). Since these two metrics target
clearly different tasks, the way to evaluate their performance must
be different. The choice of evaluation data, tasks, and figures of
merit impacts the development of more accurate and ecologically
valid objective quality metrics.

With the aim of promoting research in the PCQA domain by
providing the community with a large-scale dataset and ecologically
valid use cases to develop upon, ICIP23 PCVQA Grand Challenge
was organized1. The comprehensive analyses of the collected metric
submissions over the BASICS dataset [4] and the results of these
analyses make significant contributions to the PCQA domain and
Quality of Experience (QoE) domain in general.

The ICIP23 PCVQA Grand Challenge utilized a track-based
evaluation approach, which is not unheard of in grand challenges [6,
7]. Nevertheless, in this case, the track-based approach brought a
multifaceted evaluation approach that can be converted into a toolkit
for the use of the scientific community. This paper aims to achieve
exactly this particular goal by providing a tool for easier benchmark-
ing of visual quality metrics. The contributions of this work can be
summarized as follows:

• A detailed benchmark of 10 PCQA metrics on three unique
evaluation dimensions, shedding light on the importance of
multi-criteria evaluation.

• An open-source Python toolkit to apply the same set of
detailed analyses with ease. The toolkit is representation-
agnostic, and it can easily be applied to other visual quality
assessment problems, such as images, video, light fields, etc.

• Highlighting the open questions and rooms for improvement
in the PCQA domain.

2. BACKGROUND: ICIP2023 CHALLENGE DESIGN

This section summarizes the ICIP 2023 PCVQA Grand Challenge,
as this challenge created the foundations of the proposed evaluation
methodology.

The PCVQA Grand Challenge consisted of 2 stages: the de-
velopment stage and the test stage. During the development stage,
participants were given access to the PCs and mean opinion scores

1https://sites.google.com/view/icip2023-pcvqa-grand-challenge/



Table 1. Characterization of the five tracks used in the ICIP 2023 PCVQA Grand Challenge.

Track-1 Track-2 Track-3 Track-4 Track-5

Comparison range Inter&Intra - SRC Inter&Intra - SRC Inter&Intra - SRC Inter&Intra - SRC Intra-SRC
Quality range Broad Quality Broad Quality High Quality High Quality Broad Quality
Reference availability Full Reference No Reference Full Reference No-Reference Full-Reference

(MOS) in the training set and the PCs in the validation set. Par-
ticipants used CodaLab2 to submit their predictions on the valida-
tion set. In the test phase, participants submitted their model in a
docker3, and each model was evaluated with the same system on the
secret test set.

2.1. Dataset

The BASICS [4] dataset4 was used for the challenge. It consists
of 75 unique PCs (SRCs) from three semantic categories. Each PC
was compressed with GPCC, VPCC, and GeoCNN [8] (a learning-
based PC compression algorithm) at various compression levels (20
Processed Point Cloud (PPC) per SRC), resulting in 1500 PCs. On
Prolific5, a subjective experiment was conducted with the video ren-
derings of the PCs to collect subjective opinion scores on the PC
quality. We invite interested readers to refer to the related publica-
tion [4] for more information.

The dataset was split into training, validation, and test parts to
be used in the development and test phases. 45 SRCs (900 PPCs)
were used for training, 15 (300 PPCs) for validation, and 15 (300
PPCs) for the test.

2.2. Tracks

PCVQA Grand Challenge consists of 5 tracks, summarized through
Table 1. The tracks are designed around three dimensions that allow
for mimicking unique use cases. The traditional and widely applied
evaluation scenario corresponds to Tracks 1 and 2 in our challenge.
For all tracks, we provided the same training set to the participants.
All metrics evaluated in all the tracks based on Reference Availabil-
ity (i.e. Full-Reference (FR) or No-Reference (NR)). Participants
were free to submit different metrics to different tracks.

The first dimension is "comparison range", which is defined by
limiting the evaluations to inter- or intra-SRC comparisons. Eval-
uating metric performances for only intra-SRC comparisons (i.e.,
Track 5) allows us to determine how well the metrics are at dis-
criminating the quality difference between the PPCs derived from
the same SRC. This evaluation criterion is valuable for use cases
such as fine-tuning compression and enhancement algorithms, train-
ing machine learning models for end-to-end applications, and any
other use case where the fidelity of the output is the primary con-
cern over aesthetics. Evaluating metric performances only on intra-
SRC comparisons is achieved by relying on Krasula’s method [9].
Traditional correlation measures (such as Spearman’s Rank Order
Correlation (SROCC) and Pearson’s Linear Correlation Coefficients
(PLCC) are not suitable for this evaluation scenario.

The second dimension is the "quality range". The broad quality
range covers the whole MOS range of [1, 5] whereas the high quality
range is defined as [3.5, 5]. Objective quality metrics that show high

2https://codalab.lisn.upsaclay.fr
3https://www.docker.com/
4BASICS Dataset Link: https://zenodo.org/doi/10.5281/zenodo.8324545
5https://www.prolific.com

Table 2. Evaluation criteria used for each track
Track-1 Track-2 Track-3 Track-4 Track-5

SROCC ✓ ✓ ✓ ✓ -
PLCC ✓ ✓ ✓ ✓ -
D/S AUC ✓ ✓ ✓ ✓ ✓
B/W CC ✓ ✓ ✓ ✓ ✓
Runtime ✓ ✓ ✓ ✓ ✓

accuracy in the broad range may not necessarily perform the same in
the high quality range [10]. Therefore high quality range evaluation
is crucial for applications that aim to deliver top-tier content, such as
high quality streaming and digital twins. To this end, we conducted
an analysis to assess the accuracy of quality metrics specifically on
the high quality part of the dataset, where the MOS is greater than or
equal to 3.5.

Finally, the final dimension is the reference availability. If a met-
ric accesses the reference information for evaluation, it is classified
as FR. Otherwise, it is NR. We used separate tracks based on refer-
ence availability to keep the evaluation fair to NR metrics as it is a
more complicated task.

2.3. Evaluation Criteria

Five different criteria were used to evaluate the performance of the
submissions. Two correlation measures (SROCC, PLCC), “Different
vs Similar” and “Better vs Worse CC” from the Krasula’s method,
and runtime complexity. No fitting function was applied prior to
evaluation. A brief explanation of each evaluation criteria is given
below.

Correlation Measures: PLCC measures the prediction accu-
racy of the objective metrics and SROCC measures the prediction
monotonicity [11]. For both correlation coefficients, the values are
in the range [0, 1], and higher values indicate a better correlation.

Krasula’s method [9]: For the “Different vs Similar” analy-
sis, pairs of PCs are categorized into two groups as pairs with (i.e.,
different) and without (i.e., similar) statistically significant differ-
ences. For a given pair of PPC, the Tukey’s honest significance dif-
ference test [12] is used to measure the statistical significance. We
assume that the absolute differences in metric predictions for “dif-
ferent” pairs should be larger than the “similar” pairs. Area Under
the ROC Curve (AUC) of the Receiving Operating Characteristics
(ROC) of the metric score differences between the two categories is
used to quantify the metric performance. It is denoted as “D/S AUC”
and its values are in the range [0, 1] where higher values indicate a
better performance.

In the “Better vs Worse” analysis, different pairs from the D/S
analysis are used. The goal is to measure the metrics performance
on how well they distinguish the better PC in pairs with statistically
significant difference. Metric performances then can be expressed as
the correct classification percentage. It is denoted as “B/W CC” and
its values are in the range [0, 1] where higher values indicate better



performance.
Runtime Complexity: Runtime complexity was assessed in

terms of milliseconds required to run the metric on a PC on aver-
age. For a fair assessment of the runtime complexities of the metrics,
we used the same system configurations. No additional process was
run in parallel and each metric was evaluated individually. Lower
runtimes are more desirable.

Table 2 shows which criteria are used in each track. Note that
runtime complexity is only used in the test phase. In the test phase,
the models were ranked based on the available criteria for each track.
Similar to Borda count [13], the models with ranking [1, 2, 3, 4, 5]
will receive [4, 3, 2, 1, 0] points respectively for each criteria. Then,
for each track, the participants were ranked based on the collected
points.

3. TRACK-BASED BENCHMARKING TOOLKIT

In this section, we introduce the track-based benchmarking tool,
which evaluates the selected metrics in three main tracks, following
the example of ICIP23 PCVQA Grand Challenge. The benchmark-
ing tool is made publicly online for researchers to use6.

3.1. Preprocessing for Subjective Quality Data

Both “Different vs Similar” and “Better vs Worse” measures of Kra-
sula’s method [9] require statistical significance analysis for the sub-
jective quality data to be able to identify whether the selected pair of
stimuli are statistically significantly different from one another (i.e.,
different) or not (i.e., similar).

The statistical significance of the subjective scores can be found
in two different ways. The first option is to employ a one-way analy-
sis of variance (ANOVA) to find out the variance and use Tukey’s
honestly significant difference (HSD) criterion to account for the
multiple comparison bias [21]. This approach works only if the in-
dividual subjective opinion scores are available. The second option
the z-scores can be calculated from the MOS and standard deviation
values, followed by Tukey’s HSD.

After the preprocessing is done, the objective visual quality met-
ric scores and the subjective quality scores (along with significance
information) can be passed onto the Python toolkit for track-based
benchmarking.

3.2. Evaluation over a Specific Quality Range

The first track is evaluation over a specified quality range, which can
be the whole quality range (e.g., [1, 5] or [0, 100] depending on the
initial quality scale) or a specific quality range (e.g., [3.5, 5] or [0,
20], etc.), for example, high quality range ([3.5, 5]) as it is done in
the PCVQA Grand Challange.

This track does not have any other restrictions when it comes
to reference availability or comparison range. So, it corresponds to
the Track-1, Track-2, Track-3, and Track-4 of the ICIP23 PCVQA
Grand Challenge.

3.3. Codec-Specific Evaluation

The second track is codec-specific evaluation, which mimics the
point of view of codec developers. Since the developers mainly
focus on evaluating their own codec after algorithmic changes are
made, the codec is not evaluated as part of a bigger dataset. Instead,

6The track-based benchmarking toolkit is freely and publicly available at:
https://github.com/kyillene/MTB-PCQA

a metric (or set of metrics) was run particularly for the codec in ques-
tion, disregarding other processing methods (e.g., capture, compres-
sion, transmission, and display processing which creates artifacts).

3.4. Intra-SRC Evaluation

The third track is intra-SRC evaluation (that is evaluation within the
same visual source content). As also mentioned above, this track
provides insight into the metrics on how well the metrics are at dis-
criminating the quality difference between the PPCs derived from
the same SRC. This level of scrutiny might be really important in
applications such as high-end security applications, enhancement al-
gorithms, and identifying the sources of errors while developing vi-
sual processing methods. This track corresponds to the Track-5 of
the ICIP23 PCVQA Grand Challenge.

3.5. Advantages and Limitations

The proposed track-based benchmarking toolkit is advantageous in
getting more insight into metric performances by exposing the met-
ric in question to different use cases and different challenges. Rather
than only relying on correlation values, the scientific community
has been trying to find new methods that could provide more in-
sight into visual quality metric performance. This includes con-
verting the correlation problem into a classification problem [22],
generating discriminability measures for objective quality metrics
(∆V QM, τ0.05) [22, 21], and finding the metric performance con-
sidering the classification problem [21, 9]. The proposed track-based
evaluation method can point out the deficiencies of a metric, which
can consolidate research efforts to the unsolved parts of the broader
QA problem.

Limitations can be seemingly reduced performance for some
metrics that are not trying to address the QA problem in all the
tracks. That is, metrics developed for specific purposes might come
out as underachieving in other tracks, which could be misleading.

Despite the limitations, the proposed track-based evaluation
approach combines the strengths of different approaches into one
toolkit. In the following sections, we showcase a benchmark for
point cloud quality metrics which shows how the results can be
analysed and validates the proposed toolkit simultaneously.

4. OVERVIEW OF QUALITY METRICS

To demonstrate the benchmarking tool, we relied on 10 metrics (5
FR and 5 NR) including the 2 top-performing FR metrics from the
BASICS [4] dataset and the 3 FR and 5 NR metrics from the test
phase of the ICIP23 PCVQA Grand Challenge. In this section, we
will briefly introduce these metrics before presenting the results

4.1. FR Metrics

RWatanabe-FR [16] is a point-based metric that relies on geometry
and color features extracted from the PC and its graph representation.
In addition, it penalizes high differences in the number of points
between the reference and distorted PCs. Geometry features consist
of point2point [23] and point2plane[24] features while color features
are based on the difference between global and local color variation
on the graph. A Support Vector Regression (SVR) algorithm is used
to quantify the distortions.

XZhou-FR [18] (also called PointPCA+) uses Principal Compo-
nent Analysis (PCA) over the extracted features. 16 geometry and 6



Table 3. Metric performances in terms of SROCC and PLCC over the test set of BASICS [4] dataset. Metric performances over broad and
high quality ranges as well as codec-specific performances are given and indicated in each column. Metrics are categorized as FR and NR
metrics, and each category is ordered based on the broad quality range rankings.

Broad Quality High Quality GPCC-Predlift GPCC-Raht VPCC GeoCNN
SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC

ZZhang-NR [14] 0.8817 0.9088 0.6458 0.6237 0.8691 0.9587 0.8847 0.9547 0.8265 0.8169 0.8114 0.7988
QZhou-NR [15] 0.7932 0.8062 0.5536 0.4005 0.8789 0.9249 0.8464 0.9080 0.7349 0.6538 0.6656 0.5730

RWatanabe-NR [16] 0.7637 0.7994 0.4563 0.4275 0.8563 0.8846 0.8223 0.8607 0.5786 0.5666 0.7427 0.8194
OMessai-NR [17] 0.5492 0.5923 0.2983 0.1692 0.7331 0.7724 0.6922 0.7451 0.2282 0.1759 0.3703 0.2581

YZhang-NR 0.3899 0.5154 0.0888 0.0993 0.6360 0.7167 0.5792 0.6714 0.1625 0.1049 0.1482 0.3065

RWatanabe-FR [16] 0.8726 0.9169 0.5453 0.5073 0.8912 0.9732 0.9037 0.9733 0.8745 0.8877 0.6742 0.6353
XZhou-FR [18] 0.8717 0.9092 0.5983 0.4618 0.8916 0.9746 0.9185 0.9712 0.8095 0.7855 0.6821 0.7794

ZZhang-FR [14] 0.8725 0.8974 0.6421 0.6104 0.8807 0.9561 0.8834 0.9497 0.7931 0.7812 0.8142 0.7775
PCQM [19] 0.7139 0.7615 0.2163 0.2434 0.8036 0.8692 0.8476 0.8660 0.6732 0.5871 0.1219 0.4283

PointSSIM [20] 0.6493 0.7156 0.2515 0.3171 0.7502 0.8566 0.8117 0.8584 0.4965 0.4185 0.5775 0.6199

color features were extracted. Recursive Feature Elimination (RFE)
algorithm is used to identify the most relevant set of features.

ZZhang-FR [14] is a projection-based metric that relies on a
cube-like projection and extracts features from the projected views
via popular vision backbones. The similarity between the feature
maps of reference and distorted projections is then used to estimate
the quality of the distorted PC.

PCQM [19] is a point-based metric which uses several geometry
and color features with a simple linear model mapping the feature
space to perceptual quality scores. It was shown to be performing
relatively well in the BASICS [4] benchmark.

PointSSIM [20] provides structural similarity scores for a given
PC in comparison to its pristine reference. Structural similarity
scores are obtained per attribute. The feature maps are computed by
statistical dispersion estimators.

4.2. NR Metrics

ZZhang-NR [14] is another projection-based metric similar to the
authors’ FR implementation. In ZZhang-NR, features are extracted
only from the distorted PC projections and inputted to the fully con-
nected layers.

QZhou-NR [15] (also called BPQA) leverages the green learn-
ing paradigm [25]. It consists of three modules. The first module cal-
culates the color saliency of points and is used in the 3D-to-2D patch
projection module to generate multiple maps in module 2. These
maps are then fed into the green learning module where channel-
wise Saab transform is utilized.

RWatanabe-NR [16] utilizes geometry features based on PCA as
well as the graph total variation features which captures both geom-
etry and color features. Similar to their FR implementation, an SVR
model is adopted to quantify the PC quality.

OMessai-NR [17] is a lightweight metric that utilizes vision
transformers and deformable convolutional networks. Geometry
and color information with frequency magnitude maps are inputted
to a deep learning model named Deep CNN-ViT which consists of
deformable convolution, depth-wise convolution, and vision trans-
former.

5. MULTI-TRACK EVALUATION RESULTS

In this section, we evaluate and discuss the performance of the met-
rics over different quality ranges, for different codecs, and in the
intra-SRC comparison scenario.

5.1. Evaluation over Quality Range

Table 3 presents the metric performances in terms of SROCC and
PLCC. First two columns present the results in the broad quality
range while the third and fourth rows present the correlations in high
quality range. In broad quality range, we observe relatively high per-
formances from the FR metrics and few of the NR metrics. However,
we cannot obtain the same accuracy in metric predictions in the high
quality range.

Moreover, we can visually inspect the difference in correlations
in Figure 1. Pink ( ) points represent the high quality range stim-
uli while the rest of the stimuli are represented with blue ( ) color.
When looked at in isolation, it is evident that metric predictions are
far from ideal in the high quality range. Metrics often cannot dis-
tinguish the perceptual difference between high quality stimuli. For
example, RWatanabe-FR rates most of the stimuli close to 4.5 with
few exceptions despite they span the range [3.5, 5] despite its supe-
rior performance in the broad quality range.

This shows that there is still room for improvement in point
cloud quality assessment for high quality content transmission (i.e.,
high quality, high bitrate) or offline applications that still need to be
compressed but not transmitted (e.g., cultural heritage and education
applications).

5.2. Codec-Specific Evaluation

The last 8 columns in Table 3 present correlation coefficients be-
tween the metric predictions and MOS for PCs that are compressed
by each codec in the BASICS dataset.

Instead of basing the judgment only on the whole dataset and for
broad quality range, codec-specific evaluation helps identify the hard
to address codecs and the weaknesses of certain metrics, as it is done
by many other benchmarking articles. For example, PointSSIM has
quite acceptable results for GPCC-Predlift and GPCC-Raht codec.
Nevertheless, PointSSIM’s performance on VPCC shows that this
metric might not be very dependable for VPCC codec. Similarly,
PCQM’s performance on the learning-based GeoCNN codec might
indicate that PCQM might be more relevant to use on G-PCC and
V-PCC.

5.3. Intra-SRC Evaluation

Intra-SRC evaluation can be seen as a subset of the Inter-SRC evalu-
ation and thus it can be considered a relatively simpler task. Despite



Fig. 1. Metric predictions plotted against the MOS. Metrics are ordered from left to right based on their rankings in the broad range quality.
NR and FR metrics are displayed in the rows above and below, respectively. Data points are color-coded based on the quality range for better
readability.

its relative simplicity, metric performances in this track are not at
desirable levels. Figure 2 presents the distribution of metric score
differences for D/S (top row) and B/W (bottom row) tasks. In the
D/S task, we expect higher absolute metric score differences for
pairs with statistically significant differences (i.e. Different pairs)
and lower for pairs without statistically significant differences (i.e.
Similar pairs). As shown in Figure 1, all metrics show a significant
overlap between the absolute metric score differences of different
and similar pairs (i.e., top row), which is far from the ideal case (the
leftmost plot). In the B/W task, results show that the evaluated met-
rics can identify the better PC in pairs with statistically significant
differences.

6. DISCUSSION & CONCLUSION

The proposed track-based benchmarking methodology highlights
the strengths and weaknesses of different visual quality assessment
metrics. We define several tracks based on comparison range, qual-
ity range, and reference availability dimensions. By designing the
evaluation scenario with the proposed dimensions, various use cases
can be replicated. In addition, we propose to evaluate metric per-
formances for specific distortion types, i.e., codecs. We provide a
Python toolkit containing the preprocessing, evaluation, and data
visualization scripts to run the same analyses on other datasets.

By conducting extensive analyses on the performance of objec-
tive quality metric predictions, we show that each dimension used for
designing the tracks has a great influence on the metric performance.
Metric performances drop significantly when tested on high quality
range. Considering this together with the higher performance for

broad quality, one can deduct that the tested metrics are designed for
the broad quality range. For use cases aiming to deliver high quality
content, such as digital twins, relying on the high quality range for
evaluation is crucial.

Each metric relies on unique sets of features to predict the per-
ceptual quality. Due to this fundamental difference, we may ob-
serve significant differences in metric performances with the codec-
specific evaluations. For example, RWatanabe-FR [16] has the high-
est accuracy in broad quality range while performing poorly on as-
sessing GeoCNN distortions. When the use case concerns only a
specific set of distortions rather than a more generalized approach,
evaluation criteria should be adjusted accordingly.

Intra-SRC evaluations show that the metrics trained on the broad
quality range are not suitable for fidelity-based tasks such as com-
pression pipeline optimization. Metrics struggle at determining sta-
tistically significant differences in pairs of stimuli.

To summarize, although it provides an easy mean to compare
the metrics, it is not enough to benchmark metric performances only
over the broad quality range. Metrics should be designed and eval-
uated for different use cases. The evaluation scenario should be de-
signed according to the targeted use case by including related dis-
tortion types and selecting appropriate figures of merit. We show
in detail how each dimension in the evaluation scenario impacts the
outcome of the benchmarking. Although the analyses were done on
the PCQA task with the BASICS dataset, the proposed benchmark
can be easily extended to other domains with the provided Python
toolbox.



Fig. 2. Distribution of prediction differences for each FR metric shown as histograms. Absolute prediction differences are used for the
Different vs Similar analysis at the top row. The bottom row shows the Better vs Worse analysis results. Ideal distributions are shown at the
left for each analysis.
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