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In this Supporting Information Text, we first give details about the case of a discrete random variable
which introduces an alternative method of resolution. We then provide the proofs related to the analytical
toy example and Proposition 1 of the main text.

Case of a discrete random variable ξ

When ξ is a discrete random variable, we can address the problem differently. Let us assume that the
random variable can take the values ξi for i = 1, ..., s with probability αi, and we denote xξi(·) the n-
dimensional trajectory associated with the control u(·) and the value ξi. Given the nature of the problem,
the expected cost in Eq. 2 of the main text can be rewritten

J(u) =
s∑

i=1
αiqf (xξi(T ), T ) +

∫ T

0

s∑
i=1

αiq(xξi(t), u(t), t) dt, (1)

where qf and q are quadratic functions in the state.

If we augment the state of the system by setting x̃ = (xξ1 , . . . , xξs), the cost can be written more
compactly as

J(u) = q̃f (x̃(T ), T ) +
∫ T

0
q̃(x̃(t), u(t), t) dt, (2)

where the function q̃(x̃(t), u(t), t) =
∑s

i=1 αiq(xξi(t), u(t), t) and q̃f (x̃(T ), T ) =
∑s

i=1 αiqf (xξi(T ), T ).

The initial uncertain optimal control problem with discrete random uncertainty ξ is equivalent to a
deterministic optimal control problem in the augmented state x̃ ∈ Rns with a dynamical system of the
form

˙̃x(t) = f̃(x̃(t), u(t), t) (3)

where f̃ = (f(xξ1(t), u(t), t; ξ1), . . . , f(xξs(t), u(t), t; ξs)).
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Remark. There is no restriction on the type of distribution for ξ and on the type of dynamics in this
approach. The main limitation is the size of the augmented space (ns), which may limit the relevance
of the approach when s is too large. In this case, the approach proposed in Problem 3 of the main text
may be more suited. If the system is governed by the nonlinear SDE

dxt = f(xt, u(t), t; ξ) dt + G(xt, u(t), t) dwt

where ξ a discrete random variable, the above approach can be combined with the SOOC approach
of [1, 2], that is, we can introduce the variables mξi(t) and Pξi(t) for i = 1..s.

Proof of the toy stabilization task

To illustrate that random external disturbances lead to impedance control, let us consider a toy stabi-
lization task where analytical computations are tractable. We consider the bilinear system

ẋ(t) = f(t) − k(t)x(t) + ξ, (4)

where x is the scalar state, u = [f, k]⊤ is the control vector composed of a term f representing a force
and a term k representing a stiffness, and ξ is a random external disturbance.

Here the random variable ξ corresponds to an external force that can be applied or not, so that ξ equals
0 with probability α and 1 with probability 1 − α.

We assume as previously that the control law u(t) is open-loop, and is determined as the one that
minimizes the expected cost with scalar weights q ≥ 1, qf > 0,

J(u) = E

[
qf x(T )2 +

∫ T

0

(
f(t)2 + k(t)2 + qx(t)2) dt

]
,

among the open-loop controls u(t) ensuring that the expectation Eξ[x(T )] of the final state equals 0. We
assume that the initial state is x(0) = 0 and that time T is fixed.

We will now prove that the very presence of uncertainty leads to impedance control in this problem.

First case (without uncertainty). Consider the cases where there is no uncertainty, that is when α = 0 or
α = 1. It consists in minimizing the cost

J(u) = qf x(T )2 +
∫ T

0

(
f(t)2 + k(t)2 + qx(t)2) dt,

among the trajectories (x, u) of the deterministic controlled system

ẋ(t) = f(t) − k(t)x(t) + α,

satisfying x(0) = x(T ) = 0.
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Let us apply the necessary conditions of the Pontryagin’s Maximum Principle (PMP) (see [3]). The
Hamiltonian function is

H(x, λ, u) = λ(f − kx + α) − 1
2
(
f2 + k2 + qx2) .

On the one hand, each value of the optimal control u must maximize H with respect to the control,
which yields f = λ, k = −λx. On the other hand, the optimal trajectory and its coadjoint variable λ

must satisfy the Hamiltonian differential equations

ẋ = λ(1 + x2) + α, λ̇ = x(q − λ2).

Taking the derivative of ẋ, we obtain

ẍ =
{

x(1 + x2)(q + λ2) if α = 0,

x
(
x2(q + λ2) + (1 + λ)2 + q − 1

)
if α = 1.

Thus xẍ ≥ 0 (recall q ≥ 1) which implies that the function t 7→ (xẋ)(t) is nondecreasing. Since this
function is zero at t = 0, it is nonnegative, therefore x2(t) is nondecreasing. The condition x(0) = x(T ) =
0 then implies that the optimal trajectory is x ≡ 0 and the optimal control satisfies f ≡ −α, k ≡ 0,
showing that there is no use of stiffness (or impedance control) in these cases.

Second case (with uncertainty). Let us now show that the above situation (k ≡ 0) never appears in the
presence of uncertainty, that is, when 0 < α < 1.

We first convert the optimal control problem into a deterministic one by augmenting the state of the
system. We set x = (x0, x1), with an augmented dynamics

ẋ0(t) = f(t) − k(t)x0(t), ẋ1(t) = f(t) − k(t)x1(t) + 1, (5)

initial conditions x(0) = 0, and a terminal condition Eξ[x(T )] = (1 − α)x0(T ) + αx1(T ) = 0. The cost
writes as

J(u) = qf ((1 − α)x0(T )2 + αx1(T )2) +
∫ T

0

(
f(t)2 + k(t)2 + q(1 − p)x0(t)2 + qpx1(t)2) dt.

The solutions of the corresponding optimal control problem must satisfy the necessary condition given
by the PMP. Define the Hamiltonian function

H(x, λ, u, ν) = λ0(f − kx0) + λ1(f − kx1 + 1) − ν
(
f2 + k2 + q(1 − α)x2

0 + qαx2
1
)

. (6)

If u(t) is an optimal control with associated trajectory x(t), then there exist ν = 0 or 1/2 and a function
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λ(t) = (λ0(t), λ1(t)) such that (ν, λ) ̸= 0 and, for every t ∈ [0, T ],

λ̇0 = − ∂H
∂x0

(x, λ, u, ν), λ̇1 = − ∂H
∂x1

(x, λ, u, ν), (7)

H(x(t), λ(t), u(t), ν) = maxv H(x(t), λ(t), v, ν), (8)

plus conditions of transversality that we do not need here. A simple computation shows that ν = 0 leads
to a contradiction, so ν = 1/2 and the maximization condition on H is equivalent to

f = λ0 + λ1, k = −λ0x0 − λ1x1, (9)

whereas the Hamiltonian differential equations write as

λ̇0 = q(1 − α)x0 + kλ0, λ̇1 = qαx1 + kλ1. (10)

Assume by contradiction that there exists an optimal solution with no stiffness, that is, an optimal control
with k ≡ 0. This implies by Eqs. 5, 9 and 10 that there exist a solution (x(t), λ(t)) of{

ẋ0 = λ0 + λ1,

ẋ1 = λ0 + λ1 + 1,
x0(0) = x1(0) = 0,

{
λ̇0 = q(1 − α)x0,

λ̇1 = qαx1,
(11)

verifying k = −λ0x0 − λ1x1 ≡ 0. A simple computation shows that the solutions of the above differential
equations are of the form{

x0 = −αt + a sinh(√qt),
x1 = (1 − α)t + a sinh(√qt),

{
λ0 = b0 − q α(1−α)

2 t2 + a
√

q(1 − α) cosh(√qt),
λ1 = b1 + q α(1−α)

2 t2 + a
√

qα cosh(√qt),
(12)

for some constants a, b0, b1. As a consequence, k = −λ0x0 − λ1x1 writes as

k = (αb0 − (1 − α)b1) t − q
α(1 − α)

2 t3 + a(b0 + b1) sinh(√qt) − a2√
q sinh(√qt) cosh(√qt), (13)

and cannot be identically zero when 0 < α < 1, whatever the values of the constants a, b0, b1.

We thus get the conclusion that uncertainty (0 < α < 1) leads to some nonzero impedance control
(k ̸≡ 0). Further note that the random variables has mean α and variance α(1 − α) so that it can be seen
that the level of stiffness directly depends on the variance (that is, the degree of task uncertainty).

Proof of Proposition 1 of the main text

The Proposition results from the two following lemmas.

Lemma 1. Assume that the dynamics f is smooth with compact support and depends affinely of the
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random parameter ξ, i.e.
f(x, u; ξ) = g(x, u) + G(u)ξ.

Then there exists a constant C > 0 such that, for any t ∈ [0, T ],

sup
s∈[0,t]

∥mx(s) − m(s)∥2 + sup
s∈[0,t]

∥Px(s) − P(s)∥ ≤ C

(
sup

s∈[0,t]
∥P(s)∥ + sup

s∈[0,t]
∥D(s)∥

)
.

Proof. Note first that, by a direct computation, mx = E[x], Px = E[
(
x − mx

)(
x − mx

)⊤] and Dx =
E[
(
x − mx

)(
ξ − µ

)⊤] satisfy

ṁx = E[g(x, u)] + G(u)µ,

Ḋx = E
[(

g(x, u) − E[g(x, u)]
)(

ξ − µ
)⊤
]

+ G(u)Σ,

Ṗx = E
[(

g(x, u) − E[g(x, u)]
)(

x − mx
)⊤
]

+ E
[(

x − mx
)(

g(x, u) − E[g(x, u)]
)⊤
]

+G(u)D⊤
x + DxG(u)⊤.

(14)

whereas (m, P, D) satisfies Eq. 14, and (mx, Px, Dx)(0) = (m, P, D)(0).

We will use a Taylor expansion with integral rest of the function g,

g(x, u) = g(m, u) + h(m, x, u)(x − m),

the function h being smooth with compact support. Thus,

∥ṁx − ṁ∥ ≤ ∥E [g(x, u)] − g(m, u)∥ ≤ ∥E [h(m, x, u)(x − m)] ∥ ≤ C∥E [x − m] ∥

This inequality, together with Cauchy-Schwarz and Jensen inequalities, yields to

sup
s∈[0,t]

∥mx(s) − m(s)∥2 ≤
(∫ t

0
∥ṁx(s) − ṁ(s)∥ ds

)2

≤ C

(∫ t

0
∥E [x(s) − m(s)] ∥ ds

)2

≤ C

∫ t

0
∥E [x(s) − m(s)]2 ∥ ds.

Writing x − m as x − mx + mx − m and using the fact that tr(Px) ≤ C∥Px∥, we obtain

sup
s∈[0,t]

∥mx(s) − m(s)∥2 ≤ C

∫ t

0

(
∥mx(s) − m(s)∥2 + tr(Px(s))

)
ds,

≤ C

(∫ t

0
sup
[0,s]

∥mx − m∥2ds + sup
s∈[0,t]

∥Px(s)∥
)

.
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Finally, using Gronwall’s inequality and Px = Px − P + P, we obtain

sup
s∈[0,t]

∥mx(s) − m(s)∥2 ≤ C

(
sup

s∈[0,t]
∥Px(s) − P(s)∥ + sup

s∈[0,t]
∥P(s)∥

)
.

A similar estimate shows

sup
s∈[0,t]

∥Px(s) − P(s)∥ ≤ C

(
sup

s∈[0,t]
∥Dx(s) − D(s)∥ + sup

s∈[0,t]
∥P(s)∥ + sup

s∈[0,t]
∥D(s)∥

)
,

sup
s∈[0,t]

∥Dx(s) − D(s)∥ ≤ C sup
s∈[0,t]

∥D(s)∥.

Combining the last three inequalities, we obtain the lemma.

Lemma 2. Assume that the dynamics f is smooth with compact support. Then there exists a constant
C > 0 such that, for any t ∈ [0, T ],

sup
s∈[0,t]

∥mx(s) − m(s)∥2 + sup
s∈[0,t]

∥Px(s) − P(s)∥ ≤ C

(
sup

s∈[0,t]
∥P(s)∥ + sup

s∈[0,t]
∥D(s)∥ + ∥Σ∥

)
.

Proof. Set x̃ = (x, ξ), ξ̃ = 0, x̃0 = (x0, ξ), and

f̃(x̃, u; ξ̃) =
(

f(x, u; ξ)
0

)
.

With the notations of the Materials and Methods, we have for the extended system:

m̃x = (mx, µ), m̃ = (m, µ), D̃x = D̃ = 0, P̃x =
(

Px Dx

D⊤
x Σ

)
, P̃ =

(
P D

D⊤ Σ

)
.

Since the dynamics f̃ is not perturbed by a random parameter, it can be considered as affine with respect
to this parameter. Thus Lemma 1 applies and we obtain the desired estimate.
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