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Abstract

Despite our environment is often uncertain, we generally manage to generate stable motor behav-
iors. While reactive control plays a major role in this achievement, proactive control is critical to
cope with the substantial noise and delays that affect neuromusculoskeletal systems. In particular,
muscle co-contraction is exploited to robustify feedforward motor commands against internal senso-
rimotor noise as was revealed by stochastic optimal open-loop control modeling. Here, we extend
this framework to neuromusculoskeletal systems subjected to random disturbances originating from
the environment. The analytical derivation and numerical simulations predict a singular relation-
ship between the degree of uncertainty in the task at hand and the optimal level of anticipatory
co-contraction. This prediction is confirmed through a single-joint pointing task experiment where
an external torque is applied to the wrist near the end of the reaching movement with varying proba-
bilities across blocks of trials. We conclude that uncertainty calls for impedance control via proactive
muscle co-contraction to stabilize behaviors when reactive control is insufficient for task success.

Author summary

This work presents a computational framework for predicting how humans modulate muscle co-contraction
to cope with uncertainties of different origins. In our neuromusculoskeletal system, uncertainties have
both internal (sensorimotor noise) and external (environmental randomness) origins. The present study
focuses on the latter type of uncertainty, which had not been dealt with systematically previously de-
spite its importance in everyday life. Therefore, we thoroughly investigated how random disturbances
occurring with some probability in a motor task shape the feedforward control of mechanical impedance
through muscle co-contraction. Here we provide theoretical, numerical and experimental evidence that
the optimal level of co-contraction steeply increases with the uncertainty of our environment. These
findings show that muscle co-contraction embodies uncertainty and optimally mitigates its consequences
on task execution when feedback control is insufficient due to sensory noise and delays.
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Introduction

The co-contraction of muscles spanning a joint has long been studied in human motor control (see [1]
for a review). Although metabolically costly, humans will rely on an anticipatory –possibly transient–
muscle co-contraction to perform a motor task in various occasions. For instance, muscle co-contraction is
increased when walking on uneven ground than on on flat ground [2]. For upper-limb movements, the use5

of muscle co-contraction has been well characterized in tasks involving adaptation to unstable dynamics
typical of tool use [3–6]. Whether co-contraction serves to modulate the mechanical impedance of the
system [3] or to make feedback control more efficient [7, 8] (for instance via scaling up gains [9, 10] or
enhancing response times of muscles [11]), it does contribute to robustify motor behaviors by making them
more stable, accurate and reproducible [12–14]. However, few models of neuromechanical control provide10

a principled account of muscle co-contraction. The classical stochastic optimal control theory does not
predict well co-contraction as it would constitute a waste of energy compared to the efficient feedback
control [15,16]. Yet, there are substantial noise and delays in the central nervous system (CNS) [17,18] so
that pure feedback control may not be a viable strategy for the task at hand. Other models have proposed
that feedforward control can generate robust motor behaviors, especially with variable impedance systems15

like the human neuromusculoskeletal system [19–21]. When considering the noise and delays in feedback
loops, feedforward co-contraction can even constitute a minimum-effort strategy [22,23].

If most computational models focus on the uncertainty arising from within the CNS, uncertainty can also
come from the environment and trigger motor adaptations (e.g., [24–28]). For instance, when exposed to a
force field that is randomly turned on or off in consecutive trials, humans tend to co-contract the muscles20

of the relevant joints in anticipation as a response [29,30]. Incidentally, the very estimation of mechanical
impedance requires the application of unpredictable disturbances to human limbs (e.g., [31]). Since
humans usually adapt to such disturbances by increasing their mechanical impedance, this illustrates
how uncertainty and impedance are intricately connected quantities. Therefore, the development of
computational models to predict how the CNS should modulate muscle co-contraction as a function of25

task uncertainty will shed light on this ubiquitous motor strategy.

Here, we extend our previous framework of stochastic optimal open-loop control [20,21,32] to handle both
internal and external types of uncertainty. Importantly, this framework can be applied to the nonlinear
neuromusculoskeletal system. This partly comes from the restriction to open-loop control, which allows
us to derive efficient methods for computing the optimal level of feedforward co-contraction given the task30

uncertainty, by leveraging the tools of deterministic optimal control. Our theoretical analysis predicts
the existence of a logarithmic relationship between environmental uncertainty and muscle co-contraction,
so that co-contraction should steeply increase with the degree of task uncertainty. This is tested in an
experiment with human participants, which confirms the plausibility of the theory.
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Results35

Uncertain stochastic optimal open-loop control

The proposed framework assumes a nonlinear control system subjected to uncertainties arising from the
sensorimotor noise in the CNS and the randomness of the environment. These two sources of uncertainty
differ in their nature, hence are modeled distinctly. More precisely, we shall consider the nonlinear
stochastic differential equation in Itô’s sense [33]40

dxt = f(xt, u(t), t; ξ) dt + G(xt, u(t), t) dwt, (1)

where xt ∈ Rn is the state vector (including position, velocity etc.), u(t) ∈ Rm the control vector (e.g.,
muscle activations or torques), ξ a p-dimensional random vector modeling the environmental uncertainty
(discrete or continuous with mean µ and covariance Σ) and w a multi-dimensional Wiener process
modeling the internal uncertainty in the CNS [16, 34, 35]. The drift f and diffusion G are smooth
nonlinear functions. In this framework, each trajectory xt generated by the control u(t) depends on45

the fluctuations of the random variable ξ, the Wiener process w and the random initial state x0 (with
mean m0 and covariance P0, which could originate from a state estimation procedure not modeled here).
Throughout the paper, we will use the notation xt to distinguish the stochastic process solution to
a stochastic differential equations (SDE) from the random time function x(t) solution to an ordinary
differential equations (ODE). The latter occurs when the diffusion term G is null. Furthermore, since50

we focus on the role of feedforward motor commands, we explicitly assume that the control is open-loop
throughout the paper, and writes it as the deterministic function u(t) for t ∈ [0, T ] where T is the length
of the time horizon.

We assume that the motor planning process aims at finding the open-loop control u that minimizes the
cost function55

J(u) = E

[
qf (xT , T ) +

∫ T

0
q(xt, u(t), t) dt

]
, (2)

where q and qf are quadratic functions in the state x and E[·] denotes the expectation with respect to
the random variable (ξ, x0, w).

Let us define the mean m(t) = E[xt] and covariance P(t) = E[
(
xt − m(t)

)(
xt − m(t)

)⊤] of xt, as
well as the cross-covariance D(t) = E[

(
xt − m(t)

)(
ξ − µ

)⊤] between xt and ξ. In general the random
variables x0 and ξ are assumed to be uncorrelated so that D(0) = 0. As shown in the Materials and60

Methods, the uncertain stochastic optimal open-loop control (USOOC) problem defined by Eqs. 1-2 can
be approximated by the following deterministic optimal control problem in augmented state (m, P, D).

Problem 1. The problem defined by Eqs. 1-2 can be approximated by a deterministic optimal control
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problem with dynamics
ṁ(t) = f(m, u, t; µ), m(0) = m0,

Ṗ(t) = A(t)P(t) + P(t)A(t)⊤ + G(t)G(t)⊤ + C(t)D(t)⊤ + D(t)C(t)⊤, P(0) = P0,

Ḋ(t) = A(t)D(t) + C(t)Σ, D(0) = 0,

(3)

where A(t), C(t) and G(t) are defined from Eq. 1 as65

A(t) := ∂f
∂x (m(t), u(t), t; µ), C(t) := ∂f

∂ξ
(m(t), u(t), t; µ), G(t) := G(m(t), u(t), t), (4)

and cost function

J(u) = ϕ(m(T ), P(T ), T ) +
∫ T

0
ℓ(m(t), P(t), u(t), t) dt, (5)

where the functions ϕ and ℓ can be determined from Eq. 2.

To illustrate how the cost function can be obtained, assume for instance that

J(u) = E

[
x⊤

T Qf xT +
∫ T

0
u⊤(t)Ru(t) + x⊤

t Qxt dt

]
, (6)

where R is positive definite and Q, Qf are positive semidefinite matrices of appropriate dimensions. The
expectation can then be rewritten only in terms of m(t) and P(t) as70

J(u) = m(T )⊤Qf m(T ) + tr
(
Qf P(T )

)
+

∫ T

0
u⊤(t)Ru(t) + m(t)⊤Qm(t) + tr

(
QP(t)

)
dt. (7)

We note that a reference trajectory could be added in Eq. 6. Also, additional boundary or path constraints
could be considered in more general formulations of the problem. The only requirement is to be able to
write those additional constraints in terms of the mean and covariance of xt. For instance, a constraint
on the probability to reach a given target can be added in this framework.

Importantly, the above approach yields exact solutions to the original problem when (i) f is an affine75

function of x, and (ii) G is independent on x (see Materials and Methods). The case where ξ is deter-
ministic has been treated in details in [20, 21]. There, it was shown that co-contraction is an optimal
strategy to minimize effort and variance objectives in presence of internal sensorimotor noise. Here, our
focus is instead on the effects of the random variable ξ on the optimal feedforward motor strategy. These
effects can be isolated when G ≡ 0 and, therefore, it is interesting to initially consider this scenario. In80

this case, Eq. 1 rewrites as the ODE

ẋ(t) = f(x(t), u(t), t; ξ), (8)
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and the expectations E[·] are taken with respect to the random variable (ξ, x0). To solve this problem,
the solution proposed by Problem 1 can be used by setting G ≡ 0. However, an alternative approach
consists of extending the original state x with s copies corresponding to different values of ξ. This is
readily the case for discrete variables and it can be obtained via discretization when ξ is a continuous85

variable (e.g., [36–41]). The dimensional advantage of our stochastic linearization approach compared to
the discretization one is discussed in the Materials and Methods.

In what follows, we explore how the occurrence of random disturbances coming from the environment
affect feedforward control in a variety of seminal motor control tasks, in particular the planning of
mechanical impedance and muscle co-contraction.90

Case of a stabilization task

To illustrate our purpose, we first present a toy example capturing the essence of a stabilization task and
allowing us to keep computations tractable analytically. Let us consider the bilinear system

ẋ(t) = f(t) − k(t) x(t) + ξ, (9)

where x is the scalar state, u = (f, k) is the control vector composed of a term f representing a net “force”
and a term k ≥ 0 representing a “stiffness”. The parameter ξ represents an external disturbance, which95

is modeled as a Bernoulli random variable with probability α: pr(ξ = 1) = α and pr(ξ = 0) = 1 − α.
Therefore, the mean and variance of ξ are respectively µ = α and Σ = α(1 − α), the latter being a
measure of task uncertainty. The random variable ξ represents a disturbance that may occur over the
time horizon [0, T ] with probability α (e.g., as if an external force could randomly push our hand during
repeated attempts to stabilize it).100

We thus assume that the optimal control is determined as the one that minimizes the expected quadratic
cost with scalar weights qf > 0 and q ≥ 1,

J(u) = E

[
qf x(T )2 +

∫ T

0
f(t)2 + k(t)2 + qx(t)2 dt

]
, (10)

among the open-loop controls u(t) for t ∈ [0, T ] ensuring that the expectation E[x(T )] of the final state
equals 0. We assume that the initial state is x(0) = 0 and that time T is fixed.

Interestingly, it can be proven that when there is some uncertainty in the environment (i.e., 0 < α < 1),105

the optimal control verifies k > 0 (see Supporting Information Text for the proof). Reciprocally, when
there is no uncertainty in the environment (i.e., α = 0 or α = 1), the optimal control is such that k ≡ 0.
In conclusion, our model predicts a singular relationship between the very presence of uncertainty in the
task and stiffness control.

We performed numerical simulations to visualize this relationship for varying probabilities α with results110

shown in Figure 1 (black traces). Contrary to the mean optimal net force f that evolves linearly depending
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on the probability of the external disturbance ξ, the evolution of the mean optimal stiffness k is strictly
convex upwards and exhibits vertical tangents at α = 0 and α = 1. Accordingly, the evolution of stiffness
with respect to task uncertainty exhibits a logarithmic shape, with a steep increase at low degrees of
uncertainty (Fig. 1C). Interestingly, if we add a multiplicative noise in these simulations (10% of the115

input u), the above relationships remain valid but a lower stiffness becomes optimal. Indeed, a too large
stiffness would increase uncertainty and the expected cost so that it is then better to lower the overall
stiffness in this case.
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Figure 1. Optimal feedforward strategy for the toy stabilization task. A. Evolution of mean stiffness as
a function of probability α which determines the occurrence of the external disturbance. Two conditions
are depicted: in black, only external noise is considered; in grey, internal multiplicative noise (10%) is
added. B. Evolution of mean net force as a function of probability α. C. Evolution of mean stiffness as
a function of uncertainty, that is, the variance of the external disturbance α(1 − α). Parameters of the
simulation were: T = 5 s, qf = q = 104. Note that the 51 values of α were chosen from the extrema of
the Chebyshev polynomial of order 50, in order to better sample values on the edge of the [0,1] range.

To investigate further the robustness of this finding and its link with muscle co-contraction, we next120

simulated the inverted pendulum task studied in Hogan’s seminal work [3] but with the addition of a
random external disturbance. In this task, the goal is to maintain the forearm in an upright position for
5 seconds despite the destabilizing action of gravity. In the present simulation, the system is subjected to
both internal (additive motor noise) and external uncertainties (Fig. 2E). For the external uncertainty,
we simulated a random disturbance taking the form of an external torque of 1 Nm applied in each trial125

with some probability α (Bernoulli variable). We varied α between 0 and 1. Note that the case α = 0 (no
external disturbance) corresponds to the solution depicted in Figure 1D of the reference [21] (i.e., param-
eters are the same). Despite sensorimotor noise, the sharp-edged relationship between probability α and
stiffness/co-contraction was still noticeable (Fig. 2D-E). The consideration of internal uncertainty mainly
induced an offset on the latter relationship because there is a nominal level of feedforward stiffness/co-130

contraction even with no environmental uncertainty.
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Figure 2. Optimal feedforward strategy for maintaining the forearm upright. A. Optimal stiffness
trajectory. Stiffness is u1 + u2 where u1 and u2 are respectively the flexor and extensor elbow torques
generated by muscles. The probability α is indicated by a color code. Note that the fluctuations
surrounding the plateau are due to the initial state (small initial state covariance) and finite-time
horizon (allowing specific refinements at the end of the simulation). B. Optimal level of co-contraction.
Here co-contraction is simply defined as min(u1, u2). C. Optimal net torque u1 − u2. D. Evolution of
mean stiffness as a function of α. E. Evolution of mean co-contraction as a function of α. The inset
illustrates the task and posture. F. Evolution of mean net torque as a function of α. Parameters of the
simulations were as in [21] (scenario with a load attached to the hand). Note that the 11 values of α
were chosen from the extrema of the Chebyshev polynomial of order 10.

Case of a reaching task

The two above examples consisted of simple stabilization tasks. Interestingly, as they involved bilinear
drifts and quadratic cost functions, the proposed method yielded an exact solution. We show here that a135

similar result hold for more complex musculoskeletal systems during reaching tasks (Fig. 4). It is known
that when a force field is intermittently applied across trials, participants tend to co-contract (e.g., [30]).
Actually, our model suggests that the optimal level of co-contraction should change with the probability
of occurrence of the force field (α parameter). To get some insights into how the co-contraction would
vary, we simulated a planar reaching task with a two-link arm model actuated by six muscles as in the140
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Figure 4 of reference [21]. The underlying musculoskeletal model is taken from [42]. Here, the task is to
reach forward to a target (at a distance of 25 cm in 750 ms) while minimizing the control effort, Cartesian
acceleration and endpoint variance, subjected to both internal and external uncertainties. The external
random force field was a velocity-dependent lateral force field (i.e., a force pushing to the right with a
magnitude scaling with the forward velocity of the hand) with probability α. Figure 3 shows that when145

α = 0 (no force field) a nominal level of stiffness and co-contraction is optimal to achieve the task. This
means that the intrinsic muscle viscoelasticity is sufficient to deal with internal motor noise affecting
task performance. When α = 0.2, that is when the force field is present in one-fifth of the trials, the
optimal solution is to increase muscle co-activations, which in turn increases joint stiffness u1 + u2 and
co-contraction min(u1, u2) where u1 and u2 are the normalized flexor and extensor torques. For this150

planar arm reaching task, the evolution of the mean stiffness and co-contraction is reported in Figure 4.
It is shown that the steepness of the relationship is reduced but the pattern remains: the optimal stiffness
and co-contraction must increase quite steeply as soon as some external uncertainty arises in the task
before a more gentle increase is observed for larger uncertainties. This is revealed by the logarithmic
curve fitting depicted in Figure 4C.155
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Figure 3. Optimal feedforward strategy for a planar arm reaching task under uncertainty. A.
Illustration of the 6-muscle arm model, the initial posture and the task with the external disturbance.
The horizontal force field is defined as Fξ = 1.5ξẏ where ẏ is the velocity along the y-axis of the motion.
B. Optimal muscle activation pattern (for the 6 muscles) for the α = 0 and α = 0.2 conditions
respectively. In the latter case, Fξ is triggered with a 20% probability in each trial. C. Optimal
co-contraction pattern. Each pair of muscle is treated separately (shoulder, elbow and bi-articular). D.
Optimal joint stiffness pattern. 10



Probability α

0.0 0.5 1.0

S
ti

ff
n
es

s 
[N

m
/r

a
d
]

9.5

10.0

10.5

11.0

11.5

Stiffness

Probability α

0.0 0.5 1.0

C
o-

co
n
tr

a
ct

io
n
 [
a.

u
.]

0.10

0.15

0.20

Co-contraction

Uncertainty α(1-α)

0.0 0.1 0.2

S
ti

ff
n
es

s 
[N

m
/r

a
d
]

9.5

10.0

10.5

11.0

11.5

StiffnessA B C

Figure 4. Evolution of the optimal stiffness/co-contraction. A. Evolution of mean stiffness as a
function of α (computed as the mean stiffness from the 3 pairs of muscles). B. Evolution of mean
co-contraction as a function of α. C. Evolution of mean stiffness as a function of external uncertainty
α(1 − α). Due to the complex nonlinear dynamics, some hysteresis is observed in these simulations. A
logarithm fit is used to describe the relationship between uncertainty and stiffness. Note that the 31
values of α were chosen from the extrema of the Chebyshev polynomial of order 30.

Experimental testing

To test the prediction from the computational model on how co-contraction increases with random exter-
nal disturbances, an experiment involving wrist flexion movements was performed with 16 participants.160

An active wrist exoskeleton was used to implement random disturbances with different probabilities
across blocks of 100 trials (Fig. 5A-B). We designed a protocol such that the mechanical disturbances
were applied near the end of the movement to emphasize the role of feedforward control. In this case,
a pure feedback control strategy would fail because the neural delays are too long to ensure the target
can be reached without overshooting when the disturbance suddenly occurs. Here, the disturbance was165

a sigmoidal torque plateauing at 0.75 Nm in 500 ms. The random disturbance was a Bernoulli variable
of probability α ∈ {0, 0.25, 0.5, 0.75, 1}. The two first blocks without uncertainty (i.e., α = 0 and α = 1)
were always performed in this order like in classical motor adaptation protocols. The three other blocks
involving uncertainty were randomized across participants. Details about the experiment are given in the
Materials and Methods section. As expected, participants had to adapt their motor strategy to reach the170

target without undershooting/overshooting in ~500 ms as required by the protocol (Fig. 5C). Differences
were observed depending on the disturbance’s probability within a block.
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Figure 5. Task and behavioral adaptation across trials. A. Picture of the wrist exoskeleton robot and
of the apparatus. B. Protocol with the block of trials. C. Adaptation of success rate, EMG
co-activation and normalized co-activation across blocks of trials. The co-activation was computed
between 150 ms before and 20 ms after the perturbation (based on the trigger position for trials
without perturbation). Shaded areas represent the standard deviation across participants. The average
evolution of the rate of success over 5 trials, computed over a sliding window for each participant before
averaging is depicted. The corresponding trial-by-trial evolution of the muscle co-activation, averaged
across participants, is also depicted as well as the normalized EMG co-activation.

The adaptation of the success rate is reported in the first panel of Figure 5C. It reveals that participants
quickly learned to perform the task in absence of any perturbation (α = 0), with an average success rate
reaching a plateau consistently above 80% after a dozen of trials. For α = 1, the success rate stabilized175

to a plateau above 80% of success rate after ~30 trials. Interestingly, the same levels of success rates were
reached for the three other conditions (i.e., α = 0.25, 0.5, 0.75) after only a couple of trials.

We then analyzed EMG co-activation on the window [-150;20] ms around the disturbance onset, that
is, before any neural feedback could influence EMG signals. Figure 5C show that there was a clear
adaptation trend in the α = 1 condition, with a plateau attained after ~50 trials for the standard EMG180

co-activation index (CI, Eq. 25). Since EMG is known to scale with peak acceleration/deceleration [43],
we also considered a normalized EMG co-activation index (nCI). Indeed, although we attempted to
impose a movement time of ~500 ms, participants tended to move slightly faster when the perturbation

12



was present (mean movement times were: α = 0%: 575 ms, α = 25%: 574 ms, α = 50%: 566 ms,
α = 75%: 562 ms, α = 100%: 506 ms). Thus, nCI describes more faithfully the stiffening of human joints185

as it removes the kinematic-dependent effects. About 30 trials were needed to attain a plateau for this
normalized EMG co-activation index (nCI, Eq. 26). Interestingly, all conditions appeared to be stabilized
in the second half of the block.

In order to compare adapted motor strategies, as assumed by our optimal control model, we focused on
the last 50 trials with nearly constant co-activation level for the subsequent analyses. The evolution of190

CI and nCI as a function of the disturbance’s probability within a block are reported in Figure 6A-B.

Figure 6. Changes in EMG co-activation as a function of the disturbance’s probability α. A. EMG
co-activation index (CI) before any neural feedback response could influence EMG signals. Mean values
across participants are reported and error bars represent the standard errors of the mean. B. Same
information for the normalized EMG co-activation index (nCI). Evolution of the optimal stiffness as a
function of the disturbance’s probability. C. Mean stiffness as a function of probability α in simulation.
D. Mean co-contraction as a function of probability α in simulation. In simulation, the success rate was
about 85%; hence similar to experimental values.

After adaptation, we observed higher values of CI when uncertainty was present in the task (0 < α <

1). A main effect of the disturbance’s probability on CI was found (F4,60 = 17.9, p < 10−6, η2 =
0.54). Subsequent post-hoc comparisons showed that CI values were smaller in the 0% than in all other
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conditions (in all cases: p < 0.009, Cohen’s D > 0.99). Furthermore, co-activation was significantly195

smaller in the 100% condition than in the 50% and 75% conditions (in both cases: p < 0.05, Cohen’s
D > 0.72). Regarding nCI, a main effect of the disturbance’s probability was still present (F4,60 = 18.4,
p < 10−6, η2 = 0.55) and nCI was significantly higher in the 25%, 50% and 75% conditions than in the 0%
condition (in all cases: p < 0.012, Cohen’s D > 0.94). Importantly, these three uncertain conditions also
exhibited significantly higher nCI than the 100% condition (in all cases: p < 0.002, Cohen’s D > 1.2).200

In summary, our results confirm that the participants significantly increased EMG co-activation when
environmental uncertainty was added to the task. An important result was the significant decrease of
EMG co-activation in the 100% condition compared to the 75% condition, thus showing that EMG
co-activation does not simply scale with the frequency of the disturbance.

To verify if this trend was coherent with the model’s predictions, we simulated this uncertain wrist205

reaching task (see Materials and Methods for details). The predicted evolution of stiffness and co-
contraction as a function of the probability α are reported in Figure 6C-D. A good match between
the experimental EMG co-activation and the predicted stiffness/co-contraction can be observed, thereby
showing the plausibility of theory. Because our protocol limits us to only 3 different values of the variance
α(1 − α), we could not display the evolution of uncertainty as a function of stiffness using a logarithmic210

fit.

Discussion

In the subway, we often hold on to the vertical bar to stabilize our body against the jolty movements of
the train. When spreading our legs to widen the base of support is not possible, we can still co-contract
our muscles to stiffen the arm and remain steady. The present study investigated this link between215

environmental uncertainty and impedance control via muscle co-contraction. To this aim, we developed a
computational framework that can be applied to nonlinear musculoskeletal systems subjected to intrinsic
motor noise and extrinsic random fluctuations. In particular, our modeling focused on the adaptation of
the feedforward motor command to the presence of random disturbances induced by the environment.
Theoretical considerations and numerical simulations led to the prediction that mechanical stiffness and220

muscle co-contraction steeply increase with the uncertainty in the task. To test this prediction, we
conducted an experiment involving wrist reaching movements, which confirmed that EMG co-activation
was greater with an uncertain force field compared to conditions where the force field was always turned
on or off. Below, we discuss the implications of these findings, the limitations of our modeling and possible
extensions.225

We have shown that any type of uncertainty, be it internal or external to the CNS, calls for impedance
control via muscle co-contraction. Our theoretical and experimental results confirmed that this is part of
an optimal feedforward strategy to mitigate the effects of unpredictable disturbances. The larger muscle
co-contraction when facing a greater uncertainty is coherent with a large body of the literature. First,
most adaptation studies start with a baseline condition before a specific force field is suddenly turned230
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on. Admittedly, the exposure to a novel force field can be viewed as an increase in task uncertainty.
Coherently, muscle co-contraction is generally larger at the beginning of motor adaptation to a novel
force field, and is progressively reduced through practice that decreases uncertainty [19, 29]. The same
pattern of adaptation was also noticeable in our data for the 100% condition. Second, the study [30]
found that co-contraction tends to increase when a force field is randomly turned on and off across235

trials, which is closely related to the type of uncertainty we considered in the present work. At last, in
divergent force fields amplifying the intrinsic noise, participants exploit muscle co-contraction to adjust
the endpoint stiffness, even at the end of the adaptation process [4, 6, 29]. However, in this case, it is
the very presence of internal sensorimotor noise that makes such external force fields “unpredictable”.
Indeed, the force field is perfectly deterministic per se but, for the participant, it is pushing left or right at240

random, hence the greater co-contraction. Indeed, simulations without sensorimotor noise do not predict
any relevant co-contraction in a divergent force field (e.g., inverted forearm simulation) whereas they do
in a random force field. This illustrates the conceptual difference between the uncertainty originating
from the sensorimotor system itself and that from the environment.

As far as the feedforward component of the motor command is concerned, more uncertainty justifies245

an increase of muscle co-contraction. However, feedback is also present and crucial to human motor
control as well as metabolically cheaper than co-contraction in general [15, 44, 45]. To model environ-
mental uncertainty with feedback control, robust H-infinity control is another approach which represents
a “model-free” strategy as the worst-case scenario is considered to design the control policy [30, 46, 47].
H-infinity control defines a feedback control policy to reject unmodeled disturbances, which leads to larger250

control gains compared to stochastic optimal control. Nevertheless, H-infinity control does not predict
muscle co-contraction and has been restricted to linear systems so far, which makes it hardly applicable
to more complex neuromechanical systems. In contrast, nonlinear systems can easily be considered in
our framework. However, the mean and variance of the external disturbance must be estimated to opti-
mally adjust the feedforward motor command and the level of co-contraction. This seems to be plausible255

with respect to the literature [25] and such an inference might be possible through adaptation, learning
and inference [48, 49]. Participants may build an internal model of the task, including its uncertainty,
based on their prior or recent experience [50]. Concretely here, µ and Σ could be meta-parameters that
the brain adapts to modulate of co-contraction across repeated trials [19]. After a series of undisturbed
trials, it is likely that the brain will decrease Σ whereas it will increase it following a disturbance. This260

could account for the trial-by-trial modulation of co-contraction found in [30]. More generally, it is likely
that a combination of feedforward and feedback control will be used by the CNS to perform uncertain
motor tasks [51]. Indeed, feedforward co-contraction likely provides a nominal level of stability in the
task, which in turn makes feedback control more efficient by allowing larger gains and improving muscle
reactivity.265

It could thus be argued that the absence of feedback is a weakness in our modeling and this is a fair point.
However, isolating the feedforward component of the motor command was advantageous to unveil the
singular relationship between uncertainty and muscle co-contraction, and to rigorously set the foundations
for future extensions. The main consequence of neglecting the effects of high-level feedback is that the
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predicted muscle co-contraction or stiffness is likely over-estimated in our model [52]. Indeed, sensory270

feedback would help to perform the task so that a lower co-contraction would probably be required
in reality. In the experiment, the disturbance was actually introduced at the end of the movement so
that the delays in feedback loops were too long to reject the disturbance with feedback-only control.
At least two approaches can be envisioned to consider the effects of high-level feedback loops in our
framework. The first one is to complement the control scheme with a locally-optimal feedback control275

law as in [32, 53]. While the feedback command automatically adapts to the feedforward command in
this approach (e.g., the nominal stability offered by co-contraction is taken into consideration to set
the feedback controller), the reverse is not true. In other words, the presence of feedback does not
automatically affect the feedforward control. The second one is to consider a model predictive control
approach [54–56]. Intermittent feedback control could allow the system to re-estimate its current state280

and plan a feedforward motor command on a receding horizon [57]. In any case, the cornerstone of
high-level feedback control is the state estimation process optimally mixing sensory information and
predictions with forward models [58–60]. By definition, unpredictable disturbances cannot be anticipated
through forward models and, therefore, only the sensory information (innovation) provides relevant cues
to update the state estimate after a random disturbance has occurred. Sensory noise and delays strongly285

limit the efficiency feedback control in this case. Feedforward co-contraction seems to be the solution
used by the CNS to circumvent this limitation, and it fully exploits the variable impedance of muscles
and the antagonistic organization of the musculoskeletal system [3]. In sum, knowing that the task
is uncertain is an information that the CNS integrates to plan subsequent motor commands. Future
work will focus on deriving a more comprehensive framework in which co-contraction and feedback gains290

are concurrently planned, taking into account the consequences of noise/delays on state estimation and
feedback control with respect to the task at hand. This framework could be applied to the development
of soft robot control [61] and variable impedance actuators [62], and more generally to human-robot
interaction towards health and manufacturing applications [63].

Materials and Methods295

Theoretical developments

Here, we describe the different variants of the uncertain stochastic open-loop optimal control framework,
which can be used depending on the task at hand. For clarity in the presentation, we introduce the
different variants by order of complexity and we start by considering the case without diffusion term G
in Eq. 1. We shall focus first on the affine case and then on the nonlinear case.300

Affine case without diffusion Let us consider the affine system

ẋ(t) = A(u(t), t)x(t) + b(u(t), t) + C(u(t), t)ξ, (11)
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where the variables x(t) ∈ Rn, u(t) ∈ Rm, ξ ∈ Rp are defined as in the Results section. The terms A,
b and C are assumed to be known functions of the time t ∈ [0, T ] and of the open-loop control u(t). In
practice they represent the internal model of the limb dynamics and of the task built by the CNS through
learning. The cost function to minimize is in the form of Eq. 2. The problem is to find the open-loop305

control u(t) and the trajectory distribution x(t) starting from an initial state x(0) = x0 (which can be a
random variable with mean m0 and covariance P0) minimizing the chosen expected cost.

To solve this problem, we will formulate an equivalent deterministic optimal control problem. To do so,
let us express the ODE satisfied by the mean m(t) and covariance P(t) of x.

A direct computation shows that the propagation of the mean m(t) = E[x(t)] is given by the ODE310

ṁ(t) = A(u(t), t)m(t) + b(u(t), t) + C(u(t), t)µ, m(0) = m0, µ = E[ξ]. (12)

In order to get an equation for the propagation of the n×n covariance matrix P(t) = E[
(
x(t)−m(t)

)(
x(t)−

m(t)
)⊤], we introduce the n × p cross-covariance matrix D(t) = E[

(
x(t) − m(t)

)(
ξ − µ

)⊤] between x and
ξ, and the p × p covariance Σ = E[(ξ − µ)(ξ − µ

)⊤] of ξ. Again, a direct computation shows that the
covariance propagation is governed by the ODE{

Ṗ(t) = A(u(t), t)P(t) + P(t)A(u(t), t)⊤ + C(u(t), t)D(t)⊤ + D(t)C(u(t), t)⊤,

Ḋ(t) = A(u(t), t)D(t) + C(u(t), t)Σ.
(13)

The initial conditions of P and D are respectively the covariance of the initial state P(0) = E[(x0 −315

m0)(x0 − m0
)⊤] = P0 and D(0) = E[(x0 − m0)(ξ − µ

)⊤]. As already mentioned, the random variables
x0 and ξ are generally uncorrelated so that we assume that D(0) = 0.

Problem 2. For the affine case, the original uncertain optimal open-loop control problem can be replaced
by an equivalent deterministic optimal control problem in augmented state (m, P, D) with dynamics

ṁ(t) = A(u(t), t)m(t) + b(u(t), t) + C(u(t), t)µ, m(0) = m0,

Ṗ(t) = A(u(t), t)P(t) + P(t)A(u(t), t)⊤ + C(u(t), t)D(t)⊤ + D(t)C(u(t), t)⊤, P(0) = P0,

Ḋ(t) = A(u(t), t)D(t) + C(u(t), t)Σ, D(0) = 0,

(14)

and cost function320

J(u) = ϕ(m(T ), P(T ), T ) +
∫ T

0
ℓ(m(t), P(t), u(t), t) dt. (15)

From the above, it can be noted that we made no assumption on the distribution of the random variable ξ,
and that the optimal solution only depends on the mean µ and covariance Σ of ξ. Furthermore, additional
boundary conditions that would only involve the mean and covariance (and possibly the cross-covariance
as well) can be easily considered.

If the initial state x0 is deterministic (i.e., x0 = m0), the problem admits a much simpler expression.325
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Because P(0) = 0 and D(0) = 0, we can express P(t) as a function of D(t) as follows:

P(t) = D(t)Σ−1D(t)⊤. (16)

The equivalent deterministic optimal control problem drastically simplifies as it can be fully written in
terms of the augmented state (m, D), and P can be directly computed from Eq. 16.

Nonlinear case without diffusion Let us consider the same problem but with an uncertain nonlinear
system of the form330

ẋ(t) = f(x(t), u(t), t; ξ). (17)

In this case, it is necessary to resort to approximation techniques. Again, we introduce the mean mx =
E[x] and covariance Px = E[

(
x − mx

)(
x − mx

)⊤] of x. The subscript x is introduced here because, in
contrast to the affine case, now mx(t) and Px(t) cannot be obtained as solutions of a finite-dimensional
control system. Indeed, the nonlinearity of f may introduce moments of any order. However, using
statistical linearization techniques (see [20, 64]), we can approximate these quantities by (m, P)(t), the335

first two components of the trajectories (m, P, D)(t) of
ṁ(t) = f(m(t), u(t), t; µ), m(0) = m0,

Ṗ(t) = A(t)P(t) + P(t)A(t)⊤ + C(t)D(t)⊤ + D(t)C(t)⊤, P(0) = P0,

Ḋ(t) = A(t)D(t) + C(t)Σ, D(0) = 0,

(18)

where

A(t) := ∂f
∂x (m(t), u(t), t; µ), C(t) := ∂f

∂ξ
(m(t), u(t), t; µ), µ = E[ξ], Σ = E[

(
ξ−µ

)(
ξ−µ

)⊤]. (19)

The latter system can be obtained by augmenting the system’s state with ξ and including all the uncer-
tainty in the initial state, and then use the method in [20] with a null diffusion term (see also the proof
of Lemma 1 in the Supporting Information Text). Alternatively, we can directly write the propagation340

of mx(t) and Px(t) as in Eq. 14 of the Supporting Information Text and use a first order Taylor series
expansion to obtain the above equations.

Problem 3. For the nonlinear case, the original uncertain optimal open-loop control problem can be
approximated by a deterministic optimal control problem in augmented state (m, P, D) among the trajec-
tories (m, P, D)(t) satisfying Eq. 18 and minimizing the cost given in Eq. 15.345

Remark. In general, the dimension of the augmented state will be n(p + 1 + n+1
2 ). Therefore, it grows

quadratically with the dimension of the state x but only linearly with the dimension of the random
parameter ξ. Interestingly, if there is no uncertainty about the initial state x0, the dimension of the
augmented state reduces to n(p+1). Alternative approaches propose to directly discretize the parameter
space ξ [36–41], the expected cost being then approximated by a weighted finite sum. If s samples of ξ350
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are used, an associated deterministic optimal control problem in dimension ns can be formulated using s

copies of the dynamical system. We refer the reader to the Supporting Information Text where this kind
of approach is explicitly developed for a discrete random variable ξ . The challenge when such approaches
are applied to continuous random variables is to find a small number s allowing accurate approximations of
the expected cost. Comparing dimensions, we see that our method might be advantageous if 2s > 2p+n+3355

or s > p + 1 if x0 is deterministic. If we consider the internal uncertainty coming from the diffusion term,
the covariance must be added anyway in the augmented state (see Supporting Information Text), and
the approach with s copies requires to solve a deterministic problem in n( n+1

2 )s dimensions, such that
our approach can become even more advantageous when s is too large.

In a practical setting (compactly supported dynamics), the accuracy of the approximation in Problem 3360

we make is guaranteed by the following result (see Supporting Information Text for the proof and [65]
for more general results of this kind).

Proposition 1. Assume that f is smooth, that the set U of control values is a compact subset of Rm,
that the random vector ξ takes values in a compact set, and that all the vector fields x 7→ f(x, u; ξ) have
the same compact support. Let T > 0. Then (m, P)(·) converges uniformly on [0, T ] to (mx, Px)(·) when365

(P(·), D(·), Σ) converges uniformly to 0.
If moreover the dynamics is affine with respect to the random parameter ξ, then the convergence holds
independently on Σ, that is, when (P(·), D(·)) converges uniformly to 0.

Affine case with diffusion Let us now consider the case where the dynamical system is a linear SDE
with a drift that depends linearly on the uncertain parameter, that is,370

dxt = (A(u(t), t)xt + b(u(t), t) + C(u(t), t)ξ) dt + G(u(t), t) dwt. (20)

With the diffusion term, the problem is more complicated but can still be solved by formulating an
equivalent deterministic optimal control problem with augmented state.

To derive the result, first remind that the cost J(u) in Eq. 2 can be rewritten as a function of the mean
mx = E[x] and covariance Px = E[

(
x − mx

)(
x − mx

)⊤] of the process xt, where the expectation is
taken with respect to ξ, x0 and w. Second, it is convenient to distinguish the role of the two sources375

of uncertainty in the following way. For a fixed instance of the parameter ξ, let xξ be the solution of
Eq. 1 with initial condition x0 and let mxξ , Pxξ be respectively its mean and covariance with respect to
(x0, w). Then, denoting by Eξ the expectation with respect to ξ, a computation shows that

mx = Eξ[mxξ ], Px = P1 + P2 where P1 = Eξ

[
Pxξ

]
, P2 = Eξ

[(
mxξ − mx

)(
mxξ − mx

)⊤]
.

The covariance Pxξ satisfies the differential equation Ṗxξ = A(u)Pxξ + PxξA(u)⊤ + G(u)G(u)⊤ with
P0 = E[(x0 − m0)(x0 − m0

)⊤] as an initial condition. Neither the differential equation nor the initial380

condition depend on ξ, so Pxξ does not depend on ξ, which implies that P1 is obtained as the solution
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of
Ṗ1(t) = A(u(t), t)P1(t) + P1(t)A(u(t), t)⊤ + G(u(t), t)G(u(t), t)⊤, P1(0) = P0. (21)

On the other hand, mxξ is solution of the ODE

ṁxξ = A(u(t), t)mxξ + b(u(t), t) + C(u(t), t)ξ, mxξ(0) = E[x0] = m0.

Arguing as in the affine case without diffusion, we obtain that (mx, P2) are the first two components of
the trajectories (mx, P2, D)(t) of385 

ṁx(t) = A(u(t), t)mx(t) + b(u(t), t) + C(u(t), t) µ, mx(0) = m0,

Ṗ2(t) = A(u(t), t)P2(t) + P2(t)A(u(t), t)⊤ + C(u(t), t)D(t)⊤ + D(t)C(u(t), t)⊤, P2(0) = 0,

Ḋ(t) = A(u(t), t)D(t) + C(u(t), t)Σ, D(0) = 0,

(22)
where µ and Σ are respectively the mean and covariance of ξ.

Problem 4. For the affine case with a diffusion term, the original uncertain stochastic optimal open-
loop control problem is equivalent to the following deterministic one: minimize the cost J(u) written
as a function of mx and Px = P1 + P2 as in Eq. 15 among the trajectories (mx, P1, P2, D)(t) of the
equations (21)-(22).390

Nonlinear case with diffusion For the general nonlinear case where the system writes

dxt = f(xt, u(t), t; ξ) dt + G(xt, u(t), t) dwt, (23)

we can combine the results of [20] and of the nonlinear case without diffusion described above to propose a
deterministic optimal problem approximating the original one. This deterministic problem is constructed
as follows: its cost is obtained by replacing in Eq. 15 the mean mx and covariance Px by m and
P = P1 + P2 respectively, and (m, P, D)(t) are obtained by combining Eqs. 18-21-22 to obtain the395

USOOC problem approximation given in Problem 1.

Uncertain wrist reaching experiment

Experimental protocol A total of N = 16 participants were recruited for the experiment and test
the model’s prediction. They were healthy right-handed adults with the following anthropometric char-
acteristics: age 27 ± 5 years old, height 177 ± 7.1 cm, weight 73 ± 8.95 kg, hand length 19.7 ± 1 cm. The400

hand length was measured for each participant between the tip of the middle finger and the wrist centre
(estimated as the middle of the segment formed by the head of the ulna and the radial styloid process).
The protocol was approved by the Université Paris-Saclay ethical committee for research (CER-Paris-
Saclay-2021-048/A1). This study used the HRX-1 (HumanRobotix, London, UK) wrist exoskeleton to
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record the motion and implement the mechanical disturbance. This device is a 1-degree-of-freedom active405

wrist exoskeleton controlled at 100 Hz. It is equipped with an encoder (Encoder MILE 512-6400, 6400
counts per turn) to measure the position of the human wrist. The participant’s hand and forearm were
each attached to the exoskeleton with two cuffs. Their respective positions were adjusted closer or further
from the exoskeleton’s joint axis to match the participant’s forearm length.

The task involved 60◦ wrist flexion and extension reaching movements centered around 0◦, which corre-410

sponds to the hand aligned with the forearm. Participants were asked to reach targets that were displayed
on a screen as 3-cm long green squares. Two targets were considered: left (wrist flexion posture) and
right (wrist extension posture). For both targets, participants had to remain static and inside the target
during 1.5 s to validate the trial. Whenever a target was validated, it disappeared and the other target
appeared. The right target was always green whereas the left target was initially blue for 500 ms, then415

green for 500 ms and then blue again until target validation. For a successful trial, the participant had to
attain the left target during the green period but could start moving during the first blue period, yielding
valid movements for durations between 0.5 s and 1 s when considering both reaction time and motion
time. If the target was attained before or after the green period, the trial was failed and if an overshoot
was detected, the left target turned red and the trial was failed.420

During the flexion movements, a mechanical disturbance was triggered at 90% of movement amplitude
with a given probability in a series of trials. Five different probabilities of disturbance were tested
across 5 separate blocks of 100 trials. Hence 500 flexion movements per participant were recorded and
analyzed. The disturbance was presented with a Bernoulli distributed probability α. In the first block,
no disturbance was applied (α = 0), so that participants could familiarize with the task and perform425

it seamlessly. In the second block, the disturbance was always present (α = 1) so that participants
could adapt to it and potentially learn to compensate it. The three next blocks were randomized and
the disturbance probability in these blocks was one of the following: α ∈ {0.25, 0.5, 0.75}. To limit
muscle fatigue, 3-minute breaks were imposed between blocks. In order to motivate participants, their
instantaneous rate of success during the block was displayed (both absolute and percentage) and they430

were told a fictitious highest success rate obtained by the “best participant” so far (selected between 90%
and 95%).

The disturbance applied by the HRX-1 robot to the human wrist took the form of a sigmoidal torque
with a plateau at τmax = 0.75 Nm that was reached in roughly 500 ms. When the 90% threshold was
crossed, the disturbance torque was generated as follows:435

τe(t) = τmax(
1 + 2e−γ(t−σ)

)2 (24)

where γ = 9.9903 and σ = 0.0652. These values were chosen to ensure 500 ms between 5% and 95% of the
plateau. Note that the disturbance plateau was maintained longer than the time necessary to validate a
trial (i.e., 2.5 s). Thus, the release of the disturbance could not impact the performance in the task.

To assess muscle co-activations, the muscle activity of the flexor carpi radialis (wrist flexor) and of the
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extensor carpi radialis (wrist extensor) were recorded using bipolar surface EMG (Wave Plus, Wireless440

EMG, sample rate 2 kHz; Cometa, Bareggio, Italy). The EMGs were placed according to the SENIAM
recommendations [66]. Before placing the electrodes, the skin was locally shaved and cleaned with a
hydro-alcoholic solution.

Data processing EMG signals were band-passed filtered (Butterworth, 4th order, [20; 450] Hz cut-off
frequencies), centered and rectified [67]. They were then normalized by the maximum value obtained for445

each muscle over the course of the whole experiment. The averaged sum of the two signals over different
time windows of interest were used as an EMG co-activation index, defined as

CI = 1
0.17

∫ t0+0.02

t0−0.15
uF (t) + uE(t) dt (25)

where t0 is the onset time of the disturbance, and uF (t) and uE(t) are processed EMG signals of the
flexor and extensor respectively. Note that this time window was chosen such that only anticipatory
EMG activity was analyzed (hence it excludes any reflex occurring after the mechanical perturbation).450

Given that muscle activity is known to correlate with joint acceleration/deceleration for single-joint
movements [43], we also computed a normalized EMG co-activation index that accounts for motion
deceleration as follows:

nCI = CI
PD , (26)

where PD is the peak of deceleration of the reaching considered movement. This normalization was chosen
because the disturbance was applied near the end of the movement, that is, during the deceleration phase.455

Movements were segmented based on motion kinematics as described below. Wrist joint angles were
measured at 100 Hz with the encoder of the HRX-1 exoskeleton. Successive positions of the wrist were low-
pass filtered (Butterworth, 5th order, 5 Hz cut-off frequency). Wrist joint angular velocity and acceleration
were obtained through numerical differentiation. Individual movements were first isolated based on
the time spent by participants inside targets. Then, for each movement, initial and final times were460

computed using a threshold at 5% of the peak wrist angular velocity. The kinematics, task events (i.e.
targets appearing and disappearing) and muscle activities were all synchronously collected using a Matlab
(R2023b, Mathworks, USA) custom code.

Statistical analyses Main effects of the level of uncertainty were first assessed using one-way repeated
measurements ANOVAs. In case sphericity conditions were not satisfied (i.e. ϵ < 0.75), a Greenhouse-465

Geisser correction was applied. For all significant ANOVA, we report the η2 as a measure of the effect
size. The significance level of ANOVA was set at p < 0.05. In case a main effect was found, we performed
pairwise t-tests between the different levels of uncertainty. For all significant comparisons, we report
the Cohen’s D as a measure of the effect size. The level of significance of post-hoc comparisons was set
at p < 0.05. All statistical analyses were performed using custom Python 3.8 scripts and the Pingouin470

package [68].
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Modeling of the uncertain wrist reaching experiment

We modeled the drift term f by the following system:
Iθ̈ = τ1 − τ2 − bθ̇ + τp(t)ξ
ȧ1 = (u1 − a1)/ρ

ȧ2 = (u2 − a2)/ρ

(27)

where u1, u2 ∈ [0, 1] are the muscle inputs of the biceps and triceps respectively, a1, a2 are the correspond-
ing muscle activations, τ1, τ2 are the corresponding muscle torques and q, q̇ are the joint angle/velocity.475

The parameters I = 0.01 kg.m2 and b = 0.05 Nm.s/rad are respectively the moment of inertia about the
elbow and the joint’s viscosity, and ρ = 0.04 s is the response time for muscle activations. As before, ξ

was a Bernoulli variable with probability α and τp was defined as in Eq. 24 with τp(t) = τe(t − 0.8T )
where T is the movement duration. This value was taken from experimental data which showed that the
disturbance was activated around 80% of the total duration on average. The muscle torques were defined480

as in [3] to capture their variable viscoelasticity:{
τ1 = a1[kn − ks(θ − θr) − kd(θ̇ − θ̇r)]
τ2 = a2[kn + ks(θ − θr) + kd(θ̇q − θ̇r)]

(28)

In the above equation, θr, θ̇r were taken from a reference trajectory built from a minimum jerk solution [69]
and we set kn = 15 Nm, ks = 15 Nm/rad and kd = 1.5 Nm/rad/s based on order of magnitudes found in
the literature [31,70,71].

By denoting the state as x = [θ, θ̇, a1, a2]⊤ and the control as u = [u1, u2]⊤, the system of Eq. 27 can be485

written as a drift f(x, u) in the form of Eq. 1.

The diffusion term was modeled by the matrix:

G(u) =


0 0 0 0
0 0 0 0
σa

σmu1

ρ
0 0

0 0 σa
σmu2

ρ

 , (29)

where σa = 0.02% and σm = 2% represent the magnitudes of additive noise and multiplicative respec-
tively. These values were chosen such that the predicted co-contraction in the 0% condition and the rate
of success overall matched the experimental values.490

The task was to move the wrist from an initial random state x(0) = x0 ∼ N (m0, P0) with m0 =
[−π/6, 0, 10−4, 10−4]⊤ and P0 = 10−5I to mT = [π/6, 0, ·, ·]⊤ where · stands for undefined/free values.

The objective was to minimize the expectation of a quadratic expected cost mixing error and effort terms
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as follows:

J(u) = E

[(
θ(T ) − π/6

)2 + 0.1 θ̇(T )2 +
∫ T

0
u1(t)2 + u2(t)2 dt

]
. (30)

In all cases, the associated deterministic optimal control problems were solved numerically using Julia495

1.10, JuMP [72] and Ipopt [73]. More precisely, we transcribed the continuous problem into an NLP
problem using a trapezoidal scheme [74]. The Cholesky decomposition was used to rewrite the covariance
differential equation as in [75] so that simple box constraints on the augmented state could be used to
ensure the positive definiteness of the covariance matrix along the trajectory. All figures were made with
Makie [76]. The code used to generate all simulations and all figures is open-source [link to be added500

upon acceptance].
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