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Abstract. Glacier mass balance reconstructions provide a
means of placing relatively short observational records into
a longer-term context. Here, we use multiple proxies from
Pinus cembra trees from God da Tamangur, combining tree
ring anatomy and stable isotope chronologies to reconstruct
seasonal glacier mass balance (i.e., winter, summer, and an-
nual mass balance) for the nearby Silvretta Glacier over the
last 2 centuries. The combination of tree ring width, radial
diameter of earlywood cell lumina, and latewood radial cell
wall thickness provides a highly significant reconstruction
for summer mass balance, whereas for the winter mass bal-
ance, the correlation was less significant but still robust when
radial cell lumina were combined with δ18O records. A com-
bination of the reconstructed winter and summer mass bal-
ances allows the quantification of the annual mass balance
of the Silvretta Glacier for which in situ measurements date
back to 1919. Our reconstruction indicates a substantial in-
crease in glacier mass during the first half of the 19th cen-
tury and an abrupt termination of this phase after the end of
the Little Ice Age. Since the 1860s, negative glacier mass

balances have been dominant and mass losses accelerate as
anthropogenic warming picks up in the Alps.

1 Introduction

One of the most iconic and noticeable consequences of an-
thropogenic climate change at high elevations is the decrease
in the snow cover and the mass loss of glaciers (Zemp et al.,
2019; Beaumet et al., 2021). In the European Alps, glaciers
have been retreating since the end of the Little Ice Age (circa
1850) (Zemp et al., 2006), and future ice volumes are pre-
dicted to be largely reduced (Marzeion et al., 2018; Rounce
et al., 2023), with the ice losses of alpine glaciers reaching up
to 90 % by 2100 (Zekollari et al., 2019; Vincent et al., 2019).
The ongoing reduction in the glacier volumes has very direct,
negative implications for water resources, ecosystems, and
livelihoods (IPCC, 2022; Huss and Hock, 2018; Immerzeel
et al., 2020; Cauvy-Fraunié and Dangles, 2019; Bolibar et al.,
2020).
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Glaciers stand as one of the most important freshwater re-
sources for societies and ecosystems. The recent increase
in ice melt directly contributes to altered runoff patterns
and rising sea levels (Anon, 2021). Recognizing their sig-
nificance, the Global Climate Observing System (GCOS,
https://gcos.wmo.int/en/home, last access: 4 June 2024) has
designated glaciers as an essential climate variable (ECV).
To reduce uncertainties in the quantification of future mass
losses and their potential consequences, information on past
glacier variability and changes is essential as it allows the im-
provement of simulations of glacier evolution (e.g., Brunner
et al., 2019). In situ measurements of glacier mass balance
constitute a key element in worldwide glacier monitoring.
Open-access historical datasets – like those available from
the World Glacier Monitoring Service (WGMS, 2024) – are
crucial for an improved understanding of the glacier mass
change and the calibration of models used for projections.
The (net) mass balance of a glacier surface is defined as the
difference between winter accumulation and summer abla-
tion and is generally acknowledged to be the prime variable
of interest to monitor and project the state of glaciers and
their hydrological contribution under global warming sce-
narios (Hock and Huss, 2021). However, only few glaciers
around the world have long-term, direct mass balance obser-
vations as these measurements require considerable human
power, time, and economic resources to be sustained for a
meaningful period of time (Kinnard et al., 2022). Despite re-
cent monitoring efforts, the WGMS database – with more
than 200 glacier mass balance series worldwide – contains
only few records exceeding 20 years.

Various approaches have been used over the last few
decades to estimate mass balance over multi-decadal
timescales, often relying on remotely sensed data. Studies in-
cluded the use of gravimetry (e.g., Wouters et al., 2019), the
interpretation of series of multiple digital elevation models
(e.g., Dussaillant et al., 2019), altimetry (e.g., Gardner et al.,
2013), or glacier length change observations (e.g., Hoelzle
et al., 2003). Where these approaches provided insights into
past changes, the temporal resolution of the results does not
provide information on the inter-annual variability and the
drivers of change in glacier mass balance. Mass balance
modeling based on meteorological series (Huss et al., 2008;
Nemec et al., 2009) allows us to infer glacier mass balance
over longer timescales at a high temporal resolution. How-
ever, accurate modeling requires long records of temperature
and precipitation from high-elevation meteorological stations
that are, in addition, located at the vicinity of the glaciers,
but such datasets are scarce. To address this limitation, me-
teorological series are generally scaled to the glacier sites
(Huss et al., 2021). While air temperatures often show strong
a correlation over large distances (Begert et al., 2005), allow-
ing for confident extrapolation, it is more difficult to estimate
the distribution of precipitation in alpine environments, and
larger uncertainties therefore persist in winter mass balance
reconstructions (Sold et al., 2016).

High-elevation tree ring proxies portray past summer tem-
perature fluctuations and changes and – to a lesser extent –
winter precipitation signals, or, in other words, the main
drivers of glacier fluctuations. Tree ring proxies located at
high-elevation sites and at the vicinity of glaciers should thus
hold the potential to extend glacier mass balance series far-
ther back in time and offer an interesting alternative to mete-
orological series for mass balance reconstructions.

Several dendrochronological studies have been developed
to test this hypothesis and have demonstrated the reliabil-
ity of these proxies as reliable recorders of past mass bal-
ance variations. In the 2000s, seminal papers used tree ring
width (TRW) series to reconstruct mass balance patterns for
glaciers in Canada (Lewis and Smith, 2004; Larocque and
Smith, 2005; Watson et al., 2006). Since 2007, multiproxy
mass balance reconstructions combining TRW with maxi-
mum latewood density (MXD), stable isotopes, or blue in-
tensity (BI) have been developed for glaciers in Pacific North
America Wood et al., 2011; Malcomb and Wiles, 2013),
Scandinavia (Linderholm et al., 2007; Hiemstra et al., 2022),
or Central Asia (Zhang et al., 2019) (see Table 1 for a com-
plete review).

In the Alps, mass balance reconstructions are much
scarcer. Nicolussi and Patzelt (1996) reconstructed 600 years
of glacier mass balance for the Gepatschferner glacier using
TRW records. More recently, both summer and winter mass
balance dating back to 1811 have been reconstructed for the
Careser glacier in the Italian Alps (Cerrato et al., 2020), with
maximum latewood density (MXD) and long meteorological
series available for the Alpine region (Brunetti et al., 2006,
2012, 2014; Crespi et al., 2018).

In Switzerland, GLAMOS (GLAcier Monitoring Switzer-
land; http://www.glamos.ch, last access: 4 June 2024) host
a complete compilation of measured and re-analyzed mass
balance data of Swiss glaciers, of which several span much
of the 20th century (Huss et al., 2015). Despite the unique-
ness of these records and their potential for validation and
calibration of proxy-based reconstructions, no attempts have
been undertaken so far to extend these datasets beyond the
20th century or even to preindustrial times.

In addition, recent developments in quantitative wood
anatomy (QWA), relying on the analysis of dimensions of
wood cells in tree rings, demonstrated that this approach
offers an unparalleled measurement precision and substan-
tial gain in temperature reconstructions (Lopez-Saez et al.,
2023; Seftigen et al., 2022; Allen et al., 2022; Björklund
et al., 2023). In this context, the aim of this study is to as-
sess the reliability of a multiproxy approach, using only tree
ring proxies, in extending historical winter and summer mass
balance series farther into the past. To reach this goal, we
employed stable isotope (δ18O; δ13C) and tree ring anatomy
chronologies of P. cembra, which has recently been shown to
be very sensitive to mean temperature over the ablation sea-
son (April–September; Lopez-Saez et al., 2023). We selected
the Silvretta Glacier in the eastern Swiss Alps as our study
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Table 1. Synthesis of existing dendroclimatic studies, tree ring proxies, and meteorological data used for the reconstruction of winter (Bw),
summer (Bs), and annual (Ba) glacier mass balance.

Reference Location Lat Long Reconstruction Period No. of

Winter Summer Annual trees

Nicolussi and Patzelt (1996) Gepatschfemer, Tyrol,
Austria

46°84′ N 10°75′ E EW (TRW) LW (TRW) EW+LW (TRW) 1400–1987 –

Lewis and Smith (2004) Vancouver Island, British
Columbia, Canada

49°40′ N 125°40′W TRW 1412–1998 53

Larocque and Smith (2005) Mount Waddington,
British Columbia,
Canada

62°01′ N 144°32′W TRW TRW TRW 1550–2000 –

Watson et al. (2006) Peyto Glacier, Canada TRW TRW TRW 1673–1994 74

Linderholm et al. (2007) Storglaciären, Sweden 67°55′ N 18°35′ E Circulation
indices

TRW+MXD Circulation
indices+TRW+
MXD

1780–1981 –

Wood et al. (2011) Place Glacier, British
Columbia, Canada

50°25′ N 122°36′W MXD+TRW TRW 1585–2006 61

Malcomb and Wiles (2013) Various glaciers, USA
and Canada

47° N 123° W TRW +LW+MXD 1500–1999 –

Shekhar et al. (2017) Western Himalayan
Glaciers, India

32° N 77° E TRW 1615–2015 189

Zhang et al. (2019) Tuyuksuyskiy Glacier,
Kazakhstan

43°03′ N 77°05′ E TRW Stable isotope TRW+ stable isotope 1850–2014 50

Cerrato et al. (2020) Careser Glacier, Italy 46°25′ N 10°41′ E Meteorological

records

MXD Precipitation
records+MXD

1811–2013 24

Hiemstra et al. (2022) Jotunheimen, Norway 61°6′ N 8°3′ E Meteorological

records

BI Precipitation
records+BI

1722–2017 32

site due to the availability of glacier mass balance data span-
ning from 1920 to the present, making it one of the longest
continuous series in the Alps. Using increment cores from
trees growing close to the Silvretta Glacier, we (i) construct
TRW, anatomical, and isotope chronologies to (ii) derive an-
nual time series of past summer temperature and winter pre-
cipitation as proxies for the summer and winter glacier mass
balance. Our reconstruction provides new insights into mass
balance dynamics of an Alpine glacier during the maximum
and the termination of the Little Ice Age, which is a phase of
important dynamics in glacier evolution but with very limited
direct evidence on the rates and the exact timing of changes.

2 Materials and methods

2.1 Glacier and tree ring sites

The study focuses on the eastern Swiss Alps close to the
borders with Austria and Italy (Fig. 1a). Silvretta (46.85° N,
10.08° E) is a small, temperate mountain glacier with a sur-
face area of presently 2.7 km2, extending from 3070 down
to 2470 ma.s.l. (above sea level) (Fig. 1a and b). The mean
equilibrium line altitude of Silvretta was 2775 ma.s.l. be-
tween 1960 and 1990, with a standard deviation of 140 m,
and its first mass balance measurements date back to 1919.

Seasonal observations at two stakes were conducted until
1959, which is when the stake network was increased to
40 stakes. Today, 18 stakes are surveyed seasonally. Huss
et al. (2009) re-analyzed and homogenized the seasonal stake
data back to 1959.

Silvretta is a global reference glacier of the WGMS, and
the monitoring is maintained in the frame of GLAMOS. The
tree ring site is located ca. 30 km to the southeast of Silvretta
Glacier and known locally as God da Tamangur (46.68° N,
10.36° E), meaning the “forest back there” in Vallader Ro-
mansh. It is the highest, purest, and most continuous P. cem-
bra forest in Europe (Fig. 1a and c). The forest is located at
an elevation of up to 2300 ma.s.l. at the end of Val S-charl
(Grisons, Switzerland) on the NW-facing slope of Piz Star-
lex (3075 ma.s.l.). Lopez-Saez et al. (2023) recently showed
that various wood anatomical parameters extracted from this
forest allow a robust reconstruction of past temperature vari-
ability at annual to multi-decadal timescales.

2.2 Sample collection and wood processing

Tree cores were collected during a field campaign in sum-
mer 2018. To perform TRW analyses, 46 trees were sam-
pled using a 12 mm increment borer. From each tree, we
extracted two increment cores at breast height (ca. 130 cm

https://doi.org/10.5194/cp-20-1251-2024 Clim. Past, 20, 1251–1267, 2024
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Figure 1. (a) The study site is in the eastern part of Switzerland, close to the municipality of Scuol. (b) Overview of the Silvretta Glacier
(http://www.glamos.ch, last access: 4 June 2024) and (c) detailed view of a century-old P. cembra tree from God da Tamangur (Val S-charl,
Scuol, Grisons, Switzerland) selected for analysis.

above ground). Ring widths were measured to the nearest
0.01 mm using TSAP-Win (Rinntech, Germany), cross-dated
using standard dendrochronological procedures (Stokes and
Smiley, 1996), and checked for dating and measurement er-
rors with the COFECHA software (Holmes, 1983). Ring
widths from single radii were summarized to mean widths
per tree. Values from 20 individual trees showing the best
TRW inter-series correlation and covering the period 1802–
2017 were averaged into a master TRW chronology to ensure
a consistent sample depth across time.

2.3 Wood anatomical analyses

To perform wood anatomical analyses, the first of the two
sampled cores from each of the 20 individuals included in the
master TRW chronology was split into 4–5 cm long pieces
to obtain 15 µm thick cross sections with a rotary micro-
tome (Leica RM2255/2245). The sections were stained with
safranin and astra blue to increase contrast and fixed with
Canada balsam, following standard protocols (Gärtner and
Schweingruber, 2013; von Arx et al., 2016). Digital images
of the microsections – at a resolution of 2.27 pixels µm−1 –
were produced at the Swiss Federal Research Institute WSL
(Birmensdorf, Switzerland) using a Zeiss AxioScan Z1 (Carl
Zeiss AG, Germany). For the 20 trees, we used the ROXAS
(v3.1) image analysis software (von Arx and Carrer, 2014) to
automatically detect the anatomical structures for all tracheid

cells and annual ring boundaries for the period 1800–2017.
We excluded measurements of samples with cell walls dam-
aged during sampling or preparation and focused on two pa-
rameters in quantitative wood anatomy analyses, namely the
radial cell lumen diameter (Drad) and radial cell wall thick-
ness (CWTrad) (Prendin et al., 2017; von Arx and Carrer,
2014).

Following Lopez-Saez et al. (2023), we assigned each cell
to tangential bands of 40 µm in radial width (with distances
measured parallel to ring boundaries). In addition, we de-
termined the transition from earlywood to latewood cells for
each ring using Mork’s index= 1, at a 10 µm radial resolution
(Denne, 1989; see Lopez-Saez et al., 2023, for more details).
For each ring, maximum values of Drad and CWTrad were
extracted from the bands identified as belonging to the ring.
For Drad, maximum values were extracted from each ring in
the earlywood. For CWTrad, maximum values were extracted
from the latewood.

2.4 Isotopic analyses

For the isotopic analyses (δ18O and δ13C), we selected 10
trees showing the best inter-series correlation out of the 20
trees used for TRW and QWA analyses. Selected samples
were between 242 and 634 years old at the time of sam-
pling. Cores were cut, ring by ring, with a scalpel at the
Laboratoire des Sciences du Climat et de l’Environnement
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(LSCE, Gif-sur-Yvette, France). The wood from each ring
was processed separately between 1968 and 2017 and every
fifth year between 1802 and 1967, so that, in total, 83 years
were measured on each individual core. For all other years
between 1802 and 1965, material from the 10 trees of the
same year was pooled prior to analysis. The wood samples
were grounded and α-cellulose was extracted according to
the Soxhlet chemical method (Leavitt and Danzer, 1993) and
homogenized ultrasonically. The oxygen and carbon isotopic
composition was obtained by high-temperature pyrolysis in
a high-temperature conversion elemental analyzer (Thermo
Scientific) coupled to an IsoPrime mass spectrometer (see
Penchenat et al., 2022, for details). The measured sample
values were corrected based on an internal laboratory ref-
erence of cellulose (Whatman® CC31) analyzed every three
samples in each sequence of analysis. The analytical preci-
sions of the instruments were within ± 0.20 ‰ for δ18O and
± 0.10 ‰ for δ13C, respectively, based on the standard un-
certainty of the mean. A correction to the δ13C raw series
was applied by means of linear interpolation to compensate
for decreasing δ13C in organic matter related to fossil fuel
combustion and increasing atmospheric concentration. The
oxygen and carbon isotopic composition were expressed as
δ as follows (Francey et al., 1999; McCarroll and Loader,
2004):

δ = (Rsamp−RVSMOW− 1)× 1000,

where Rsamp is the isotopic ratio in the sample, and RVSMOW
the isotopic ratio in the Vienna Standard Mean Ocean Water
(for oxygen) or the Vienna Pee Dee Belemnite (for carbon)
(Coplen, 1996).

2.5 Establishment of wood proxy chronologies

The conventional TRW measurements were detrended with
a negative exponential function to eliminate non-climatic
(e.g., age-related growth trends and other biological distur-
bances) effects from the series (Fritts, 1976; Cook and Kair-
iukstis, 1990). The detrended series were then aggregated
into a TRW chronology using a biweight robust mean which
reduces the influence of outliers (Cook and Peters, 1981).
Given the absence of any evident long-term ontogenetic trend
in the anatomical series, detrending is not normally consid-
ered necessary (Carrer et al., 2018; Lopez-Saez et al., 2023)
in QWA studies. As isotope chronologies were pooled prior
to analysis, we did not detrend the data further. This absence
of detrending has little influence on subsequent analyses as
δ18O only contains minor changes related to age (Torben-
son et al., 2022), while the presence of age-related trends re-
mains debated for δ13C for which studies show age trends
throughout the lifespan (Helama et al., 2015) – but also the
lack thereof (Büntgen et al., 2021).

In a next step, empirical measures of dendroclimatic sig-
nals (Hughes et al., 2011) were computed to test the strength
of the environmental information embedded in each wood

proxy chronology using the maximum overlap of pairwise
correlations (Bunn et al., 2013). These included the average
inter-series correlation (RBAREFF) and expressed population
signal (EPS) (Wigley et al., 1984). All analyses were per-
formed in R Studio (R Studio Team, 2023) using the R pack-
age dplR (Bunn, 2008; Bunn et al., 2013).

2.6 Meteorological series

In this study, the gridded (1 km× 1 km) daily mean tempera-
ture and precipitation time series available from Imfeld et al.
(2023), hereafter referred to as Imfeld23, were used to both
identify the main drivers of radial growth and to reconstruct
glacier mass balance fluctuations. The dataset (1763–2020)
includes meteorological data rescued by various initiatives
(Brugnara et al., 2020; Pfister et al., 2019; Brugnara et al.,
2022) for the late 18th and early 19th centuries and system-
atic measurements available in Switzerland since 1864. Time
series were initially checked and homogenized on a subdaily
basis (following Brugnara et al., 2020). The dataset was then
reconstructed at a 1 km× 1 km resolution using an analogue
method which resamples meteorological fields for a histori-
cal period based on the most similar day in a reference pe-
riod. The fields were improved with data assimilation for
temperature and bias correction with quantile mapping for
precipitation (Imfeld et al., 2023). Several limitations must
be considered when working with this exceptional dataset:
(1) the reconstruction skills decrease prior to 1864 as fewer
stations provide direct observations, (2) larger reconstruction
errors are observed for precipitation than for temperature due
to the heterogeneous nature of precipitation, and (3) the qual-
ity of the dataset is spatially heterogeneous and considerably
reduced in the Alps and the southern side of the Alps due
to both the scarcity of observations and more complex topo-
climatic conditions.

2.7 Climate–growth relationships

In a first step, we correlated wood proxy data with Imfeld23
by selecting the grid point centered over the God da Taman-
gur study site. To test for the robustness of the mixed prox-
ies series for climate–growth relationship, we calibrated re-
gression models on temperature and precipitation averaged
over 30 to 365 d windows, starting on 1 October of the year
preceding ring formation (n− 1) and ending on 30 Septem-
ber of the year in which the ring was formed (n) using the
R package dendroTools (Jevšenak and Levanič, 2018). This
time window was chosen according to the growing season
of P. cembra trees in the Alps (Saulnier et al., 2011). The
selected time window encompasses both the accumulation
and ablation periods which are used to derive the winter
(1 October–30 April) and summer (1 May–30 September)
mass balance series. Correlations were computed over the
1802–2017 period covered by the tree ring proxy series.

https://doi.org/10.5194/cp-20-1251-2024 Clim. Past, 20, 1251–1267, 2024
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2.8 Glacier mass balance multiproxy reconstructions

In a next step, wood proxies correlated with precipitation
totals and average air temperature during the ablation and
accumulation periods were used as predictors to reconstruct
winter (Bw) and summer (Bs) mass balance of the Silvretta
Glacier, respectively. The glacier-wide time series of winter
and summer mass balance available for the Silvretta Glacier
(1919–2022) from the WGMS (Huss et al., 2015; WGMS,
2024) were used as predictands. Seasonal point measure-
ments acquired in early May and September, respectively,
were extrapolated to unmeasured areas of the glacier using
a model-based extrapolation technique (Huss et al., 2015).
Changes in the glacier geometry due to advance or retreat
have a direct impact on the overall mass balance, mainly due
to changes in the elevation range. These effects are included
in the observational dataset of glacier-wide mass balances,
as the latter always refer to the instantaneous glacier geome-
try. For the period before 1920, however, we do not explicitly
adapt glacier geometry but assume the relations derived and
tested over a 100-year period with significant changes to be
representative.

A multiple linear regression model was selected for the
reconstruction of winter and summer mass balances. When
more than two proxies were included in the model, the num-
ber of predictors was lowered using principal component
analysis. The first n principal components with eigenvalues
exceeding 1 were retained in the principal component regres-
sion. We computed 10 000 summer and winter mass balance
reconstructions using a split calibration–verification proce-
dure coupled with a bootstrap approach in which 50 % of
the years covered by both the mass balance observation and
wood proxy datasets were randomly extracted for calibration,
while the remaining years were used for validation over the
1920–2017 period. For each sampling, the root mean square
error (RMSE), coefficient of determination (r2 for the cali-
bration and R2 for the verification periods), reduction in the
error (RE), and coefficient of efficiency (CE) statistics (Cook
et al., 1995) were applied to test the predictive capacity of
the transfer function. Calibration and validation statistics are
illustrated for each of the TRW, wood anatomical, and iso-
tope parameters with their 5th, 50th, and 95th percentiles.
In a final step, annual mass balance (Ba) was reconstructed
using the sum of the final winter and summer mass balance
reconstructions.

In parallel, we reconstructed winter and summer mass bal-
ances over the 1763–2020 period using the gridded tempera-
ture and precipitation field records from Imfeld23. With the
purpose to identify the optimal time window for the recon-
struction, we selected the grid point closest to the Silvretta
Glacier and calibrated regression models between daily tem-
perature series computed over 1–365 d windows starting on
1 January of the year preceding observations of summer mass
balance and ending on 31 December of the year in which
the mass balance measurement was acquired. In addition,

Table 2. Statistics of chronologies based on TRW, Drad, CWTrad,
and δ13C, δ18O. EPS is the expressed population signal, and Rbar
is the average inter-series correlation.

Wood proxy Bandwidth (µm) EPS Rbar

Tree ring width (TRW) 0.85 0.39
Radial diameter (Drad) –
earlywood

40 0.75 0.16

Radial cell wall thickness
(CWTrad) – latewood

40 0.84 0.25

δ13C (10-year interval) 0.9 0.46
δ18O (10-year interval) 0.91 0.48

daily precipitation–temperature series were used as regres-
sors for observed winter–summer mass balances. For each
optimal precipitation and temperature time window identi-
fied, we computed 10 000 reconstructions following the cali-
bration/verification procedure described for tree rings.

3 Results and discussion

3.1 Isotope and wood anatomical features chronology
characteristics

We measured wood anatomical features for the period 1802–
2017 on the 20 sampled trees for a total of 75–100 radial
files per ring, with anatomical information catalogued by its
position in each dated tree ring. After the exclusion of cells
with walls damaged during sampling or preparation, a total
of 2 277 779 tracheid cells were used for analysis.

Figure 2 showcases the evolution of wood anatomical pa-
rameters as a function of relative distance to ring border. It
also shows that, based on Mork’s index, latewood represents
roughly 10 % of total ring width on average. P. cembra trees
feature the classical ring structure of conifers growing in
cold, temperate environments, with an increase in radial cell
wall thickness (CWTrad; Fig. 2a) and a monotonic reduction
in radial diameter (Drad; Fig. 2b) from earlywood to late-
wood. Statistical characteristics of the Tamangur chronolo-
gies are summarized in Table 2.

The EPS and Rbar values show that TRW has a stronger
common signal (Rbar= 0.39; EPS= 0.85) than the wood
anatomical chronologies (Drad; CWTrad), with the Rbar for
the latter ranging between 0.16 (for Drad at 40 µm radial
band width) and 0.25 (for a CWTrad at 40 µm radial band
width). Several studies report lower common signals in wood
anatomical parameters than in the TRW series from decid-
uous (Fonti and García-González, 2004) and conifer trees
(Seftigen et al., 2022).

This weaker signal is generally attributed to inter-annual
variability in microscopic wood features (Olano et al., 2012;
Liang et al., 2013; Pritzkow et al., 2014), heterogeneous
intra-annual internal physiological processes which regulate
carbon assimilation and allocation in tree rings, or to rela-
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Figure 2. Profiles of (a) radial cell wall thickness (CWTrad) and (b) radial cell diameters (Drad) along P. cembra tree rings. Purple dots
represent the mean values of 20 trees over 217 years (1800–2017) smoothed with a polynomial regression (black line) represented with its
95th confidence interval (shadowed purple areas). The blue line represents maximum values for each of the wood parameters analyzed for
40 µm wide radial bands. The red line shows the mean relative position of the transition between earlywood (light grey area) and latewood
(dark grey area) according to Mork’s index= 1.

tionships with intra-annual environmental variables (Yasue
et al., 2000; Ziaco et al., 2016) rather than to limiting fac-
tors exerted over the entire growing season (Eckstein, 2004;
Ziaco et al., 2016). Regarding isotope parameters, Rbar val-
ues computed for 10-year windows are 0.46 (δ13C) and 0.48
(δ18O).

3.2 Climate–growth relationships

Correlation coefficients between the TRW chronology from
God da Tamangur and the gridded temperature and precip-
itation fields from Imfeld23 show that the spring to sum-
mer temperature increase is the main driver of radial growth
(rmax= 0.38; p< 0.001; 14 May–2 August) between 1802
and 2017 (Fig. 3a). For wood anatomical parameters, sig-
nificant correlations exist between radial diameter (Drad)
and early-spring to early-summer temperatures (r = 0.40;
p< 0.001; 1 April–1 July). This association spans a longer
seasonal window than the ones reported by Carrer et al.
(2017, 2018) for earlywood cell areas of P. cembra and
P. abies trees in the Italian Alps. In these studies, correlations
were restricted to mid-May/early June and mid-June/mid-
July, respectively. At God da Tamangur, highest correlations
were obtained between the CWTrad chronology and tem-
peratures over a 58 d time window extending from 15 July
to 10 September (r = 0.68; p< 0.001; Fig. 2). R values
computed between CWTrad and summer temperatures agree
with results reported by Carrer et al. (2018) for the Ital-
ian Dolomites (r > 0.6 with 15 July–15 August tempera-
tures; 1926–2014) or Ştirbu et al. (2022) for the Carpathi-
ans (r = 0.65 with July–August temperatures; 1961–2013).
The period overlaps with the wall-thickening phase observed

in latewood during summer for high-elevation P. abies trees
(Gindl et al., 2001; Rossi et al., 2008). Its duration also
agrees with current knowledge on xylogenesis, which can
last from 1 (mild environments) to 2 months (cold environ-
ments) in latewood cells (Rossi et al., 2008; Cuny et al.,
2013; Castagneri et al., 2017).

The δ13C chronologies are negatively correlated with
mean daily temperature from October (n− 1) to Septem-
ber (n) (r =−0.4; p< 0.001) and especially from 8 Octo-
ber (n− 1) to 7 May (n) (r =−0.42; p< 0.001) (Fig. 3a).
Mean daily temperatures from October (n− 1) to Septem-
ber (n) (r = 0.36; p< 0.001) and during the growing sea-
son (11 April–14 September; r = 0.44; p< 0.001) are the
main drivers of δ18O variations. A negative correlation is also
found between δ13C and 26 May–26 July (n) (r =−0.22;
p< 0.01) and between δ18O and fall (n− 1) to summer (n)
precipitation totals (r =−0.25; p< 0.01) (Fig. 3b). Both
chronologies also portray a significant association with win-
ter precipitation (October (n− 1)–April (n)) that is posi-
tive for δ13C (r = 0.17; p< 0.01) and negative for δ18O
(r =−0.21; p< 0.01).

The analysis of δ13C and δ18O stable isotope signals in
P. cembra trees has been initiated only recently in the Alps
(Haupt et al., 2014; Arosio et al., 2020) and in the Carpathi-
ans (Nagavciuc et al., 2021, 2022; Kern et al., 2023). In the
Alps, studies have focused on the detection of age-related
trends in the series (Arosio et al., 2020) but did not provide
correlation profiles with climatic variables. In the Carpathi-
ans, by contrast, positive correlations were reported with
April–August temperatures δ18O (Nagavciuc et al., 2021), in
line with our results. By contrast, no significant correlation
was found between δ13C and temperature. Consistent results
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Figure 3. Correlations between the TRW,Drad, CWTrad, δ13C, and δ18O chronologies from God da Tamangur, gridded temperature (a) and
precipitation (b) fields from Imfeld23, as well as winter (c) and summer (d) mass balance series from the Silvretta Glacier. In panels (a) and
(b), correlation coefficients and their associated p values are presented in italics for the growing (GS; 1 October (n− 1)–30 September (n)),
ablation (Abl; 1 May (n)–30 September (n)), and accumulation (Acc; 1 October (n−1)–30 April (n)) seasons. Time periods with the highest
coefficients (highlighted in bold) are delineated by black rectangles. The beginning and end of these optimal periods are denoted by white
numbers on a grey background.
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Table 3. Statistics of summer (Bs) and winter (Bw) mass balance reconstructions based on several combinations of tree ring proxies.

Glacier mass balance Wood proxies RMSE r2 RE CE

Winter mass balance (Bw) Drad (343.22–353.31) 345.38 (0.03–0.2) 0.1 (−0.12–0.16) 0.08 (−0.23–0.14) 0.04
δ18O (350.47–359.87) 352.44 (0.01–0.14) 0.06 (−0.10–0.10) 0.04 (−0.21–0.08) −0.001
δ18O – Drad (335.45–347.15) 338.47 (0.07–0.25) 0.15 (−0.11–0.20) 0.08 (−0.22–0.18) 0.06

Summer mass balance (Bs) TRW (701.07–721.41) 705.59 (0.05–0.26) 0.14 (−0.1–0.23) 0.12 (−0.19–0.20) 0.07
Drad (685.76–706.51) 690.2 (0.07–0.29) 0.17 (−0.08–0.27) 0.16 (−0.16–0.25) 0.12
CWTrad (585.93–602.33) 589.35 (0.28–0.51) 0.38 (0.18–0.51) 0.37 (0.12–0.5) 0.35
δ18O (728.86–755.31) 734.63 (0.01–0.18) 0.07 (−0.19–0.12) 0.04 (−0.29–0.1) −0.002
TRW – Drad (669.76–699.32) 677.34 (0.12–0.34) 0.16 (−0.09–0.3) 0.16 (−0.18–0.27) 0.12
TRW – CWTrad (555.33–576.75) 560.95 (0.35–0.58) 0.47 (0.21–0.56) 0.43 (0.15–0.55) 0.4
TRW – δ18O (689.24–719.44) 697.43 (0.08–0.31) 0.18 (−0.16–0.25) 0.11 (−0.25–0.23) 0.07
Drad – CWTrad (584.24–606.58) 589.88 (0.29–0.53) 0.41 (0.14–0.52) 0.35 (0.08–0.5) 0.33
Drad – δ18O (657.71–687.24) 665.3 (0.15–0.38) 0.25 (−0.07–0.33) 0.19 (−0.15–0.31) 0.15
CWTrad – δ18O (584.65–609.98) 591.26 (0.30–0.52) 0.41 (0.11–0.5) 0.34 (0.08–0.48) 0.32
CWTrad – TRW – Drad (471.23–601.00) 537.12 (0.37–0.6) 0.49 (0.19–0.57) 0.43 (0.14–0.55) 0.4

are also found with precipitation for δ13C in both Tamangur
and Carpathian chronologies which show a negative corre-
lation with June precipitation. The winter signal embedded
in the δ18O chronologies of God da Tamangur echoes the
significant associations observed between the isotope series
and winter precipitation in the Arctic (Holzkämper et al.,
2008), Kazakhstan (Qin et al., 2022), the Tibetan Plateau,
northwestern China (Grießinger et al., 2017; Wernicke et al.,
2017; Liu et al., 2013; Qin et al., 2015), Iran (Foroozan et al.,
2020), or Pakistan (Treydte et al., 2006) and are thus inter-
preted as the result of the trees’ use of precipitation from
before the growing seasons stored in the soil or in groundwa-
ter reservoirs. In the Russian Arctic, Holzkämper and Kuhry
(2009) suggested that the thickness of the snowpack and the
timing of snowmelt has a strong impact on the δ18O compo-
sition of tree ring α-cellulose because moisture in the early
summer is most critical for wood formation. Soil and atmo-
spheric droughts caused by a deficit in previous winter alpine
snowfall therefore lead to δ18O enrichment in tree ring α-
cellulose.

3.3 Multiproxy glacier mass balance reconstruction

Based on the above climate–growth relation analyses, we
tested several combinations of parameters to reconstruct win-
ter (Bw) and summer (Bs) glacier mass balances. The iso-
topic parameter δ13C has been excluded from the combina-
tions for Bw and Bs reconstruction because statistically, it
is not significant. Statistics of these reconstructions are re-
ported in Table 3.

For the winter mass balance Bw, the best combination in-
cludes Drad and δ18O. Both proxies are sensitive to precipi-
tation during the accumulation period and show a significant
positive (Drad; r = 0.33; p< 0.001) and negative (δ18O; r = -
0.21; p< 0.05) correlation with the winter mass balance se-
ries recorded at Silvretta Glacier (Fig. 3c). Both parameters
allow a statistically significant reconstruction (RE= 0.08;

CE= 0.06) over the period 1920–2017 (Table 3; Fig. 4a)
covered by glaciological measurements and tree proxy re-
constructions. At decadal timescales, the 11-year spline-
smoothed winter mass balance reconstructions correlate at
0.65 with observations and capture positive (i.e., from the
late 1940s to the late 1950s) and negative (i.e., from the
1960s to 1980s) anomalies over the entire period (Fig. 4a).

The best combination of proxies for summer glacier mass
balance Bs includes the TRW, Drad, and CWTrad chronolo-
gies (Table 3; Fig. 3d), each showing significant negative cor-
relations with Bs at −0.37 (p< 0.001), −0.42 (p< 0.001),
and −0.63 (p< 0.001), respectively. Based on these prox-
ies, the two first principal components of the principal
component regression allow a robust reconstruction of Bs
(r2
= 0.49) and significant RE (0.43 (0.19–0.57)) and CE

(0.4, (0.14–0.55)) statistics (Table 3). These values exceed
those computed by (Cerrato et al., 2020) using P. cembra
MXD series for Careser glacier over the period 1967–2005
(r2
= 0.45). The summer balance reconstruction also depicts

the positive (1960s to early 1980s) and negative (i.e., 1950s
and since the late 1980s) anomalies found in the measure-
ments (Fig. 4b).

Figure 5 shows the 30-year moving correlations computed
between the reconstructed and observed glacier mass bal-
ances. Specifically, for winter, it shows a lower correlation
for time windows ending between 1981 and 2000 and the
smallest correlations (r < 0.25) for time windows ending be-
tween 1983 and 1999 (Fig. 5a). As this period coincides with
the last phase of positive annual mass balance in the (South-
ern) Alps (Huss et al., 2015), one can hypothesize that the
limited correlations could be related to specific environmen-
tal conditions at the site and the complexity of capturing an-
nual glacier mass balance adequately with the tree ring prox-
ies selected for the Bw reconstruction. In addition, no in situ
measurements of Bw exist between 1984 and 2003 (Huss and
Bauder, 2009), and these gaps in winter mass balance series
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Figure 4. Winter (a) and summer (b) mass balance of the Silvretta Glacier reconstructed from tree ring proxies over the 1802–2017 period.
The thin light blue and orange curves illustrate inter-annual variations in winter and summer mass balance, respectively, derived from δ18O
and Drad (winter) and TRW, CWTrad, and Drad (summer). The dark blue and dark brown curves represent the winter and summer mass
balance records of Silvretta Glacier from 1919–2017. Thick lines indicate decadal variations smoothed with an 11-year spline. The black
line represents the mean of the winter (a) and summer (b) mass balance reconstructed series.

Figure 5. (a) 30-year moving correlations (r) of summer (Bs) and winter (Bw) mass balances estimated from gridded temperature and pre-
cipitation fields (Imfeld et al., 2023) and multiple wood proxy Bs and Bw mass balance reconstruction (this study) with the Silvretta Glacier
Bw and Bs records (Huss et al., 2015). (b) 100-year moving correlations of proxy Bs, Bw, and annual (Ba) mass balance reconstruction
(Imfeld et al., 2023).

were filled with a calibrated mass balance model driven by
data from nearby meteorological stations (Huss et al., 2015).
Therefore, it is also possible that the decrease in correlation
may be attributed in part to the quality of the mass balance
time series and not the result from the tree proxy dataset.

For Bs, the 30-year correlations between observations and
the multiproxy reconstructions consistently exceed r = 0.48
throughout the period covered by the reconstruction, with

a limited standard deviation (0.06) between 1920 and 2017
(Fig. 5a). However, while correlation values show an increas-
ing trend (from r = 0.52–0.74) for time windows ending be-
fore 2000, they significantly decrease to reach r = 0.50 by
2017. This reduction in prediction skills, from r = 0.74 to
r = 0.50, starting in the 1970s, is comparatively less marked
than the one documented by Cerrato et al. (2020) (from 0.45
to r = 0.2) for P. cembra, based on MXD records, despite oc-
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curring a decade earlier. These results confirm that our mul-
tiproxy reconstruction records only suffer from limited di-
vergence and standardization issues which notoriously affect
both TRW and MXD records but seem to be largely absent in
wood anatomical series (Cook et al., 1995; Björklund et al.,
2019; Cerrato et al., 2019).

Considering the annual glacier mass balance reconstruc-
tion (Ba), we finally combined proxy values for winter and
summer balance (Fig. 6a), thus extending the GLAMOS
record by 120 years. At inter-annual timescales, Pearson cor-
relation coefficients between the wood proxy annual glacier
mass balance and in situ measurements at the Silvretta
Glacier (Fig. 6b) are highly significant at r = 0.62 (p< 0.05).
When applying a 11-year spline to both the reconstructed
and measured time series, correlations reach r = 0.87. The
influence of proxy winter balance on proxy annual balance
is limited, explaining only 8 % of the annual average vari-
ance. These results are consistent with Zemp et al. (2015) for
glaciers in the European Alps, where winter mass balance ex-
plains 6 % of the annual mass balance variations on average.

3.4 Comparison with Imfeld23 records and
reconstructions

For the mass balance of the Silvretta Glacier, correlations be-
tween the observed glacier mass balance and Imfeld23 are
higher than those obtained with the wood proxies. Over the
ablation period, lasting from 1 May to 30 September, the
correlation is r = 0.85 (p< 0.001; 1920–2017) and reaches
r = 0.87 (p< 0.001) for the optimal time window extending
from 17 May to 19 September. Correlations between pre-
cipitation from Imfeld23 and Bw are r = 0.48 (r < 0.001)
over the accumulation period sensu stricto from 1 October
to 30 April and r = 0.49 for the optimal time window ex-
tending from 17 October to 9 March (r = 0.49; p< 0.001),
respectively. At the annual scale, the Imfeld23 reconstruc-
tion explains 74 % of annual glacier mass balance variabil-
ity observed over the period 1920–2017. Over the full period
(1802–2017), theBs,Bw, andBa wood proxy reconstructions
significantly correlate (r = 0.63, 0.15, and 0.61; p< 0.001)
with the reconstruction based on Imfeld23 (Fig. 6c). Syn-
chronous periods are characterized by positive anomalies in
the 1810s, 1840s, 1910s, and the late 1970s, and likewise,
negative anomalies are observed in the two time series in the
1870s, the early 20th century, the 1950s, and since the mid-
1980s. This is well in line with contemporary and documen-
tary sources, as well as information on dated moraines avail-
able for the Swiss Alps (e.g., Zumbühl et al., 2008; Nuss-
baumer and Zumbühl, 2012; Schimmelpfennig et al., 2014).
More interestingly, the proxy reconstruction shows a strong
glacier mass increase in the first part of the 19th century and
confirms the abrupt mass loss previously reported in the Alps
in the 1850s and 1860s considered to correspond to the end
of the Little Ice Age (Holzhauser et al., 2005; Vincent, 2005;
Zemp et al., 2006; Painter et al., 2013). Sigl et al. (2015,

2018) hypothesized that the mass gain in the Alps in the early
19th century could result from the strong negative radiative
forcing induced by at least five large tropical eruptions be-
tween 1809 and 1835 (Sigl et al., 2015; Toohey and Sigl,
2017) in tandem with the Dalton solar minimum (Usoskin
et al., 2013; Jungclaus et al., 2017).

By contrast to the wood proxy reconstruction, this positive
annual mass balance pattern is not reproduced by the Im-
feld23 reconstruction, and therefore, the moving correlations
computed for 100-year time periods between both records
thus decrease significantly before the 1960s (Fig. 5b). One
could hypothesize that this divergence during preindustrial
times between the two reconstructions could be attributed
(i) to tree ring proxy, particularly with respect to their re-
duced explanatory power in colder periods as evidenced by
time windows ending between 1983 and 1999 (see Sect. 3.3).
The divergence could also stem (ii) from the optimal fixed-
length window utilized in the Imfeld23 reconstruction and
calibrated on recent environmental conditions. This method-
ology has assumed a constant length for the accumulation
and ablation seasons since the early 19th century, despite sig-
nificant variations in temperature, precipitation, and snow-
pack conditions compared to the present (Carrer et al., 2023).
Such an assumption may introduce bias into the reconstruc-
tion (Cerrato et al., 2020). Finally, (iii) the complete absence
of high-elevation records in the Imfeld23 dataset prior to
1864 (see Sect. 2) also raises questions about the robustness
of the reconstruction prior to the mid-19th century. It is possi-
ble that the gridded temperature and precipitation fields may
fail to accurately reproduce changes in winter precipitation
distributions in the early stages of their reconstruction.

4 Conclusions

Mountain glaciers are reliable and unequivocal indicators of
climate change due to their sensitivity to changes in tempera-
ture and precipitation (Zhang et al., 2019). The advance or re-
treat of a glacier is thereby related to the amount of snow ac-
cumulation, as well as snow and ice melt, commonly referred
to as its mass balance. This study allowed developing of mul-
tiproxy chronologies from P. cembra wood traits based on the
dynamic relationships between climate processes that jointly
influence tree (cell) growth and glacier mass balance. The
Silvretta Glacier has been monitored since 1919 and there-
fore forms a very robust baseline against which the wood
proxy reconstruction presented here can be compared. The
study also constitutes an important step in extending glacier
mass balance records beyond the instrumental period for the
Swiss Alps. By combining wood anatomical parameters and
stable isotopes, we obtain very promising results for seasonal
glacier mass balance reconstructions because some proxies
are sensitive to mean temperatures over the entire ablation
period, while others estimate winter precipitation during the
accumulation period. Our results based on multiple wood
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Figure 6. Comparison between annual (thin grey lines) and 11-year spline-smoothed (thick lines) variations in (a) the multiple wood proxy
annual mass balance (Ba) reconstruction, (b) observed Ba, and (c) Ba reconstructed from gridded temperature and temperature fields (Imfeld
et al., 2023). Periods with positive mass balance are shown in blue, and periods with negative mass balance are given in red.

proxies reveal that glacier mass gains during the final stages
of the Little Ice Age were strongest between 1810 and 1820.
Considering the synchronicity of increasing mass balance
with a cluster of volcanic eruptions and diminished solar ac-
tivity, we align with Sigl et al. (2015, 2018) in hypothesiz-
ing that these gains may partly result from the co-occurrence
of volcanic forcing and the Dalton minimum. This period of
positive mass balances and resulting glacier advances rapidly
ended in the 1860s and 1870s when a first episode of substan-
tial negative mass balances led to a first phase of “modern”
glacier downwasting.
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