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Abstract

An interpolation strategy based on pre-evaluated integrals of the first-order reversal curves is presented. The proposed
approach allows the seamless integration of different hysteresis models into a single calculation in a way that the most
appropriate curve is picked up for particular subdomains of the Preisach plane. It can be shown that this approach can
contribute to the stabilisation of numerical field calculations.
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1. Introduction

A variety of ferromagnetic hysteresis models exists,
the Preisach [1] or the Jiles–Atherton [2] models being
the most popular ones among others [3, 4]. Each model
has its merits but also serious drawbacks, such as the con-
gruency property of the Preisach model or the incorrect
representation (accommodation) of the minor loops with
the Jiles-Atherton model. Even if solutions exist to bet-
ter represent the minor loops like in [5, 6], they involve a
larger number of parameters. These flaws can be more or
less detrimental depending on the specific application we
are looking at. The congruency property of the Preisach
model for example becomes prohibitive for its use for in-
cremental permeability calculations [5]. Another serious
limitation are instabilities that are introduced in the nu-
merical solver when a hysteresis model is coupled with
the Maxwell equations in order to treat electromagnetic
problems involving ferromagnetic media.

For all this reasons, it would be advantageous if one
could couple different hysteresis models to characterise
a specific material by switching to the most appropriate
model in order to describe specific families of sub-curves
(e.g. major loop, minor loops, weak field domain etc.).
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To proceed to such a hybridisation, the whole family of
hysteresis curves must be first parametrised and described
in some appropriate mathematical space. The coordinates
of the first reversal point combined with the external field
H can be used as coordinates for such a space since they
provide a unique description of the magnetic state in ac-
cordance with Madelung’s rules [7]. The corresponding
model will be then constructed by pre-evaluation of hys-
teresis at specific sample points of the domain using the
most appropriate model. The thus obtained hysteresis rep-
resentation is closely related to the first-order reversal curve
(FORC) diagrams, where the permeability values are in-
tegrated along the path up to the current H value [1].

The herein proposed approach has been applied in the
case of a structural steel, where the Jiles–Atherton model
has been combined with the Rayleigh model in the weak
field domain and integrated in a numerical code for solv-
ing the induction problem in a thin plate. The specific
steel grade is a material of intermediate hardness, and has
been selected as study material because of its common
use in many practical applications. It turns out that the
combination of the two models succeeds in stabilising the
numerical solution and a very good agreement with exper-
imental measurements is achieved.
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2. Formal representation and relation to the Preisach
theory

We shall restrict ourselves in this article to symmetri-
cal loops obtained via periodic external fields. It should
be noticed that the thereupon developed approach is also
applicable to pulsed excitations without cross-over since
only the first magnetisation curve and the descending branch
are involved (i.e., no branch change is resulted). In addi-
tion, it is assumed that the magnetic field H and the mag-
netic induction B are parallel, which means that the mate-
rial can be described by a scalar hysteresis law B(H) with
B = |B| and H = |H|. According to the Madelung rules,
each curve is completely described by the coordinates of
the last reversal point [7], which, under the assumptions
mentioned above, is translated to the formal relation

M = M(H,Hr,Mr(Hr)) (1)

where Mr,Hr are the coordinates of the reversal point. By
hypothesis, all reversal points are lying on the first mag-
netisation curve Mr(Hr), which implies that one of the two
coordinates can be dropped, so (1) reduces to the two vari-
ables expression

M = M(H,Hr) . (2)

Drawing all possible states in the configuration plane (H,Hr),
with −Hr ≤ H ≤ Hr, we end up with the triangular of
Fig. 1.
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Figure 1: Cumulative FORC representation of the magnetisation M
for a system with symmetrical excitation and hysteresis calculations
corresponding to the different points of the configuration space.

The domain is closely related to the FORC diagram
in the Preisach plane, with the difference that each point
of the former corresponds to a FORC integral over the
greyed domain (the sum of the light T1 and dark grey tri-
angle T2 in Fig. 1) [1, 8]

M(H,Hr) =
∫

T1+T2

ρ(α, β) dαdβ (3)

with

ρ(α, β) = −
1
2
∂2MFORC

∂Hr∂H
. (4)

It is recalled the T1 domain stands for the demagnetisation
procedure that has to be followed in order to drive the ma-
terial to its demagnetised state [1]. Although equivalent
to the FORC representation, it turns out that working with
integrated variables gives us enhanced flexibility to focus
on parts of the domain where specific features are sought
and to calculate the inverse curves. These two topics will
be subject of the next paragraphs.

3. Case of interest: small-field limit of the Jiles–Atherton
model

Models that have been identified using the major hys-
teresis curves usually perform badly at the small field do-
main. This is particularly true for the JA model, which is
notoriously unstable in the small field domain if no special
action is taken in its initial description [6].

Since we will use this particular model as example, the
JA expression for the differential magnetic susceptibility
is given for convenience

dM
dH
=

1
1 + c

Ma − M(
c δkµ0
− α
)

(Ma − M)
+

c
1 + c

dMa

dH
(5)

where Ma is the anhysteretic curve, whose relation with H
is, in most cases, approximated by Langevin’s function

Ma = Ms [coth(He/a) − a/He] . (6)

µ0 is the magnetic permeability of the free space, δ is a
sign parameter that defines the working branch δ = sign(dH/dt)
and Ms, a, α, k, c are the model parameters determined by
identification. Other relations of this differential suscepti-
bility can be found in the literature. They would adapt to
the proposed method just as well.

A possible remedy for improving the low field be-
haviour is to couple the model with the Rayleigh formula,
which is very robust and precise in this domain.

MRay(H,Hr) = (χin + νHr) +
ν

2

(
H2

r − H2
)
. (7)

The multidimensional representation of the hysteresis
considered here is particularly well suited for coupling a
given hysteresis model (like the JA model in this case)
with an asymptotic expression by locally replacing the
corresponding part of the B(H,Hr) domain. The princi-
ple is illustrated in Fig. 2. Defining a transition threshold
for the reversal field value Hr (in this particular example,
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it has been chosen as the 10% of the maximum field value
Hm, i.e. Hr = Hm/10), we replace the M values lying in
the domain Hr ≤ Ht with the ones calculated using the
Rayleigh expression.

Hr

H

Figure 2: (Upper panel) Support of the JA model (in light blue) and
Rayleigh expression (in orange) for the coupled model in the (H,Hr)
plane. (Lower panel) Resulting family of inner curves. The inset
shows a zoom of the low-field curves obtained if only the JA model
is employed. The improvement achieved via the application of the
Rayleigh expression is demonstrated by comparing with the inner
loops of the main figure.

Assuming that the principle model has been identi-
fied using one or a set of external curves, we need also
to determine the Rayleigh model parameters χin and ν.
Their values are obtained by imposing the continuity of
the magnetisation and its derivative (i.e., the differential
susceptibility) at the transition threshold, namely:

MRay(Ht) = MJA(Ht) (8)

χRay(Ht) = χJA(Ht) (9)

This procedure can be imagined being extended for
hyrbridising the basic hysteresis model with other asymp-
totic expressions, models, or even experimental curve sets
in specific subdomains of the (H,Hr) plane. In that way
M(H,Hr) can be viewed as a generic hysteresis meta-model
[9].

4. Numerical evaluation

Having defined the magnetisation function M(H,Hr),
we shall focus now on the details of its numerical evalu-
ation. Introducing a computational mesh G spanning the

(H,Hr) domain, the magnetisation function is evaluated at
each node thus yielding a set of numerical values

M(i) = M
(
H(i),H(i)

r

)
. (10)

The magnetisation value at all intermediate points is sim-
ply obtained by interpolation, namely:

M(H,Hr) =
∑
i∈G

ciwi(H,Hr) (11)

where wi(H,Hr), ∀i ∈ G is the interpolation basis and ci

the expansion coefficients, which are evaluated by impos-
ing the fulfilment of (10) at the grid nodes. In its simplest
form, it can be formed by polynomial expressions with
global or local support or more sophisticated elements like
radial basis functions etc. [10].

When we are interested in the solution of the field
problem, where B instead of H is the variable of inter-
est, we need an inverse relation that maps B to H. Al-
though efficient approaches have been proposed in the lit-
erature for the JA inversion [11], a straight-forward nu-
merical inversion can be applied with this particular ap-
proach. Noting that the right-hand side can be formally
written M

(
H(i),H(i)

r

)
= M
(
H(i),Hr

(
M(i)

r

))
= M
(
H(i),M(i)

r

)
and using the magnetic constitutive relation, B = µ0 (H + M),
(10) becomes

B(i) = B
(
H(i), B(i)

r

)
. (12)

The inverse relation is then obtained by permutation
of the discrete sets

(
B(i),H(i), B(i)

r

)
→
(
H(i), B(i), B(i)

r

)
, with

magnetic field values at the intermediate points been given
by a similar interpolation relation with (11).

5. Solution of the field problem: the evolution opera-
tor

The (B, Br) representation approach of the hystere-
sis operator also facilitates the solution of the field prob-
lem when ferromagnetic materials with hysteresis are in-
volved. When solving Maxwell’s equations is usually prefer-
able to work with the vector magnetic potential A instead
of the magnetic induction B with the two quantities being
related via the equation

B = ∇ × A. (13)

which holds as definition relation of A. Let us consider a
uniform discretisation of the time axis tn = n∆t with n =
1, 2, . . .N and ∆ a constant time step. We define the state
vector

(
An,Ar

n
)T , where An and Ar

n are the potential value
and the potential that corresponds the reversal magnetic
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induction at the nth timestep. An is obtained by integrating
Maxwell’s equations using an implicit Euler scheme and
a fixed-point approach for the linearisation of the material
operator [12, 13].

∇×µ−1
0 ∇×An+

σ

∆t
An =

σ

∆t
An−1+Jn+∇×M̂

(
An,Ar

n−1

)
.

(14)
where σ is the piece conductivity, and Jn is the excita-
tion current density. M̂

(
An,Ar

n
)

stands or the magnetisa-
tion function which is expressed in terms of the state vari-
ables. It is formally related to the magnetisation operator
described above via the relation

M̂
(
An,Ar

n
)
=M
(
∇ × An,∇ × Ar

n
)
. (15)

Since we have restricted ourselves in this work to scalar
hysteresis law, M should be understood acting on the mag-
netic potential modulus instead of the potential itself, i.e.
M = M

(
|∇ × An| ,

∣∣∣∇ × Ar
n

∣∣∣)1. The generalisation to or-
thotropic materials where a hysteresis operator can be de-
termined per direction is straight-forward. The general
case of vector hysteresis however requires modifications
to the present approach. Equation (14) is implicit in terms
of the potential solution An, hence it is solved iteratively.
Once An is known, one can easily obtain the new value of
the reversal field by examining if the An is local minimum
with respect to time:

Ar
n =


An−1, if A0

n = 0
An−1, if |∇ × An| <

∣∣∣∇ × Ar
n

∣∣∣
A0

n−1, elsewhere.
(16)

The update equations (14) and (16) constitute an up-
date operator which translates the state vector at the n − 1
timestep to the n timestep: F : F ◦

(
An−1,Ar

n−1

)T
→(

An,Ar
n
)T . A visualisation of the state vector evolution

in the augmented
(
An,Ar

n
)T space is given in Fig. 3 The

state vector initially moves along the An = Ar
n line (zero

reversal field) up to the first reversal, where it shifts to a
constant Ar

n line (there is one trajectory per field point).
Upon the next excitation reversal (end of the half-period)
the state vector shifts to the opposite, −Ar

n, line and so on
for every half-period. For illustration purposes, the tra-
jectories are drawn for one of the potential components.

The above described approach has been tested for the
calculation of the magnetic field in a thin planar ferromag-
netic specimen. The examined configuration is shown in

1At that stage, no space adaptation of the J-A model parameters
have been done even if the stability of the code would allow it.

A

Ar

Figure 3: Trajectory of the state vector
(
An,Ar

n
)T for a symmetric ex-

citation. Different colours correspond to different points in the piece.
The drawn trajectories must be imagined applying for each component
of A .

Fig. 4. The plate thickness is 1.54 mm. The plate material
is a standard structural steel of intermediate hardness. Its
hysteresis curves are shown in Fig. 2b. The magnetic field
is excited using a pair of coaxial coils fed with a sinu-
soidal current. The two coils are connected in series and
at opposite polarity in order to enhance the parallel to the
surface magnetic field component, thus forming a kind of
open half-magnetic-circuit. The coils inner and outer di-
ameter equal to 18 and 50 mm, respectively; their length
is 67 mm, and they are wound with 545 turns each. The
signal frequency is 10 Hz. The magnetic field is then mea-
sured at a point lying beside the coils by means of a Hall
magnetic field sensor. The comparison between simula-
tion and measurements for different levels of excitation is
shown in Fig. 5. For the purpose of comparison, the sim-
ulation results have been rescaled by a factor of 1.1, and a
4 ms shift has been introduced. It is important to note the
good agreement at small amplitudes, demonstrating the
hysteresis stabilisation beneficial effect with the Raleigh
formula.

Figure 4: Measurement setup. A large (infinite) plate is excited by a
pair or coaxial coils. The arrangement is described by a cylindrical
coordinate system whose origin coincides with the centre of the plate.

6. Conclusions

A hysteresis representation in an augmented space spanned
by the external H and the reversal Hr field has been pre-
sented. Including the reversal field as an additional axis
transforms the multi-branch hysteresis function to a single
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Figure 5: Comparison between simulation results and measurements
for the time evolution of the tangential magnetic field component Hρ
at the observation point. Solid line: measurements, dashed line: sim-
ulation. The different colours correspond to the different values of
excitation voltage. Notice the increasing distortion with growing exci-
tation.

branch, which offers a certain convenience in the descrip-
tion and a seamless integration with a field solver. Com-
bining different hysteresis models (or even experimental
sets of curves) is straightforward. This latter point proves
very important for the stabilisation of field calculations
involving ferromagnetic materials.

In this work, only the case of symmetrical curves has
been considered. Although this assumption is applica-
ble to a large number of problems with practical inter-
est, namely systems undergoing periodic or pulsed elec-
tromagnetic excitation it remains a special case. Systems
with arbitrary excitation will necessitate a generalisation
of the present approach, which will be the subject of a
future work. The extension also to full vector hysteresis
models is a subject worthy of investigation.
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