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Abstract
We consider a last progeny modified branching random walk, in which

the position of each particle at the last generation n is modified by an i.i.d.
copy of a random variable Y . Depending on the asymptotic properties
of the tail of Y , we describe the asymptotic behaviour of the extremal
process of this model as n → ∞.
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1 Introduction
Branching random walk (or BRW for short) is a particle system on the real line
constructed as follows. It starts from a single particle at position 0 forming the
initial generation 0 of the process. Each particle reproduces independently of all
others, by creating an identically distributed point process of children around
its position. We denote by U the set of particles in the branching random walk.
For all u ∈ U , we write Su for the position of particle u, |u| for the generation
to which it belongs and uk for the ancestor of u alive at generation k ≤ |u|.
We only consider in the present article supercritical branching random walks,
satisfying the assumption

E (#{u ∈ U : |u| = 1}) > 1. (1.1)

Note that we do not make any assumption on the finiteness of #{|u| = 1}.
For all θ > 0, we denote by κ(θ) = log E

(∑
|u|=1 e

θSu

)
∈ (−∞,∞] the

log-Laplace transform of (the intensity measure of the reproduction law of) the
BRW. Assuming that κ(θ) < ∞, we write

κ′(θ) = E

∑
|u|=1

Sue
θSu−κ(θ)
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whenever this integral is well-defined, irrespectively of the well-definition of κ
in a neighbourhood of θ. If κ′(θ) is well-defined, we also write

κ′′(θ) = E

∑
|u|=1

(Su − κ′(θ))2eθSu−κ(θ)

 ∈ [0,∞].

Observe that by Lebesgue’s dominated convergence theorem, it is straightfor-
ward to verify that κ′(θ) and κ′′(θ) indeed correspond to the first and second
derivative of κ whenever this function is finite in a neighbourhood of θ. We
also remark that κ′′(θ) = 0 implies that almost surely, all particles in the first
generation have the same position. We bar this degenerate situation from con-
sideration, by always assuming in this article that

∀x ∈ R, P(∃|u| = 1 : Su ̸= x) > 0. (1.2)

Branching random walks have been the subject of a large and still expanding
literature. One of the most studied features of this model is the asymptotic
behaviour of the position of particles at the right tip of the BRW. Biggins [7]
proved that the maximal displacement Mn := max|u|=n Su satisfies

lim
n→∞

Mn

n
= v := inf

θ>0

κ(θ)
θ

a.s. on the survival event of the BRW,

as long as there exists θ > 0 such that κ(θ) < ∞. Addario-Berry and Reed [1]
(see also Bramson and Zeitouni [10]) showed that if there exists θ0 > 0 such
that

θ0κ
′(θ0) − κ(θ0) = 0, (1.3)

and additional integrability conditions hold, then setting mn := nv − 3
2θ0

logn,
the sequence (Mn − mn) is tight, although Hu and Shi [13] proved that this
sequence exhibits almost sure fluctuations on a logarithmic scale. Aïdékon [2]
proved the convergence in distribution of the centred maximal displacement
under close to optimal integrability conditions for a BRW satisfying (1.3).

In order to study the joint convergence in distribution of the first few right-
most particles, one can consider the so-called extremal process of the BRW,
defined as

Zn := τ−mn
Xn,

where Xn =
∑

|u|=n δSu
is the empirical measure of the BRW and τx is the op-

erator corresponding to a shift by x of the point measure. Madaule [17] proved
that under mild conditions, the extremal process Zn of the BRW converges
in law for the topology of vague convergence of point measure to a limiting
decorated Cox process Z∞. We refer to [20] for an overview of branching ran-
dom walks, and [18, 21] for background on decorated Cox processes and their
connections with branching particle systems.

We take interest in this article to the last progeny modified BRW, introduced
by Bandyopadhyay and Ghosh in [6], that can be constructed as follows: Let ν
be a probability measure on R and (Yu, u ∈ U) be a collection of i.i.d. random
variables of law ν, which are independent of the BRW. This model is the family
of point measures defined for n ≥ 0 by

En =
∑

|u|=n

δSu+Yu .
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In other words, in the process En, the position of particles at the last step n in
the BRW are modified by the i.i.d. random variables (Yu, |u| = n).

The asymptotic behaviour of En can be described using the classical additive
martingales of the branching random walk. Let θ > 0 such that κ(θ) < ∞, the
process defined for n ≥ 0 by

Wn(θ) =
∑

|u|=n

eθSu−nκ(θ)

is a non-negative martingale called the additive martingale of the BRW. Assum-
ing that κ′(θ) is finite, Biggins [8] obtained a necessary and sufficient condition
for the non-degeneracy of its almost sure limit W∞(θ) (with an alternative proof
by Lyons [15] based on a spine decomposition argument). More precisely, the
martingale (Wn(θ)) is uniformly integrable if and only if

θκ′(θ) − κ(θ) < 0 and E(W1(θ) log+ W1(θ)) < ∞, (1.4)

where log+(x) = log max(x, 1). If (1.4) does not hold, then W∞(θ) = 0 a.s.
Alsmeyer and Iksanov [5] obtained a more general necessary and sufficient con-
dition for the non-degeneracy of W∞(θ) that does not depend on the well-
definition of κ′(θ).

Let us observe that, by assumption (1.2), the function θ 7→ κ(θ) is a strictly
convex function, therefore θ 7→ θκ′(θ) − κ(θ) is increasing on its interval of
definition. Consequently (1.4) implies that θ < θ0 whenever this quantity is
well-defined.

Assume that the constant θ0 defined in (1.3) exists. In this case, as men-
tioned above, the additive martingale Wn(θ0) converges to 0 a.s. However, the
so-called derivative martingale defined for n ≥ 0 by

Zn :=
∑

|u|=n

(nκ′(θ0) − Su)eθ0Su−nκ(θ0)

plays an important role for the study of extremes of the BRW. Assuming that
κ′′(θ) < ∞, Aïdékon [2] obtained necessary condition that Chen [11] proved
to be sufficient for the convergence of the (signed, non-uniformly integrable)
martingale (Zn) to an a.s. positive limit Z∞. This necessary and sufficient
conditions is

E
(
W1(θ0)(log+ W1(θ0))2)+ E(W 1 log+(W 1)) < ∞, (1.5)

where W 1 =
∑

|u|=1(κ′(θ0) − Su)+e
θ0Su−κ(θ0) and x+ = max(x, 0).

Under some integrability assumptions on the reproduction law of the BRW,
Bandyopadhyay and Ghosh considered in [6] a last progeny modified BRW with
perturbation law ν given by the Gumbel law of parameter 1/θ. Assuming that
θκ′(θ) − κ(θ) ≤ 0, they showed that

lim
n→∞

τ−m
(θ)
n

En = Yθ in law for the topology of vague convergence, (1.6)

with Yθ a random point measure. On the one hand, if θκ′(θ) − κ(θ) < 0, then
m

(θ)
n = nκ(θ)

θ and the limiting point measure Yθ is a Cox process (i.e. a Poisson
point process with a random intensity measure) with intensity θW∞(θ)e−θx dx.
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On the other hand, if θκ′(θ)−κ(θ) = 0, (1.6) holds with m(θ)
n = nκ′(θ)− 1

2θ logn
and Yθ a Cox process with intensity

√
2

πκ′′(θ)θZ∞(θ)e−θx dx.
In [14], Kowalski obtained refined estimates on the position of the largest

atom in the last progeny modified BRW for a more general class of distributions
for ν. The objective of the present paper is to recover the results of Bandyopad-
hyay and Ghosh under close to minimal conditions for the reproduction law of
the BRW or for the law ν. More precisely, we prove that the convergence (1.6)
holds in a variety of cases for a well-chosen centring sequence (mθ

n).
We endow the set of point measures on R with the topology of vague con-

vergence. For µ a Radon measure on R and Q a non-negative random variable,
we denote by PPP(Qµ) a Cox process with intensity Qµ on R, i.e. conditionally
on Q a Poisson point process with intensity Qµ.

We first consider a BRW satisfying the assumptions of [5, Theorem 1.3], and
prove the following result.

Theorem 1.1. Let θ > 0 such that κ(θ) < ∞. We assume that (Wn(θ), n ≥ 1)
is uniformly integrable. Let ν be a probability distribution on R such that there
exists a constant L ∈ (0,∞) satisfying

ν([x,∞)) ∼ Le−θx as x → ∞. (1.7)

Then, writing mn = 1
θ

(nκ(θ) + logL) , the extremal process τ−mnEn converges
in law to a PPP(θW∞(θ)e−θx dx).

Remark 1.2. For the conclusion of Theorem 1.1 to hold, it is not necessary to
assume that κ is finite at any point besides θ, or that κ′(θ) > −∞. Integral
conditions in [5, Theorem 1.3] are a necessary and sufficient condition for the
convergence in distribution of τ−mnEn to hold, assuming that (1.7) is satisfied.

Adding some extra integrability conditions on the reproduction law of the
BRW, we are also able to describe the asymptotic behaviour of the last progeny
modified BRW for any distribution ν satisfying

ν([x,∞)) ∼ L(x)e−θx as x → ∞, (1.8)

where L is a positive regularly varying function at ∞. Let us recall that a
function L is called regularly varying at ∞ with parameter α ∈ R if for all
λ > 0, we have

lim
x→∞

L(λx)
L(x) = λα.

A function is called regularly varying at ∞ if there exists such a parameter α.
We refer to the book of Bingham, Goldie and Teugels [9] for background on
regularly varying functions.

Theorem 1.3. Let θ > 0 such that κ(θ) < ∞. We assume that (1.4) holds, and
that there exists δ > 0 such that κ(θ+ δ) + κ(θ− δ) < ∞. Let ν be a probability
distribution on R such that there exists a regularly varying function L at ∞ with
index α satisfying (1.8). Then, writing

mn = n
κ(θ)
θ

+ 1
θ

logL(n) and c1 =
(
κ(θ)
θ

− κ′(θ)
)α

,

the extremal process τ−mn
En converges in law to a PPP(c1θW∞(θ)e−θx dx).
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We now consider a situation in which ν satisfies (1.8) with the parameter θ0.
In this situation, a similar result can be obtained, assuming a stronger condition
on the function L and using a modified centring term for the extremal process.

Theorem 1.4. Let θ > 0 such that κ(θ) < ∞ and κ′′(θ) < ∞. We assume that

θκ′(θ) − κ(θ) = 0,

i.e. θ = θ0 and that (1.5) holds. Let ν be a probability distribution on R such
that there exists a regularly varying function L at ∞ with index α ∈ (−2, 0)
satisfying (1.8). Then, writing

mn = n
κ(θ)
θ

+ 1
θ

logL
(√
n
)

− 1
2θ logn

and c2 =

√
2

πκ′′(θ) (2κ′′(θ))
α
2 Γ
(α

2 + 1
)
,

the extremal process τ−mnEn converges in law to a PPP(c2θZ∞e
−θx dx).

Remark 1.5. Theorem 1.4 also holds assuming that ν satisfies (1.8) with L a
positive constant, using the same arguments as the one we use below. This
result therefore extends the previous estimate of Bandyopadhyay and Ghosh [6]
for ν a Gumbel distribution with parameter 1

θ0
.

Remark 1.6. We believe that up to adding a stronger integrability condition
on the reproduction law of the BRW, one could prove a result similar to The-
orem 1.4 assuming that ν satisfies (1.8) with L a regularly varying function
with parameter α ≥ 0. However, we predict a sharp phase correction around
α = −2, and that the limiting extremal process should resemble the one ob-
tained in forthcoming Theorem 1.7 if α < −2.

Finally, if ν satisfies (1.8) with θ > θ0, then the asymptotic behaviour of En

can be deduced from the asymptotic behaviour of Zn, the extremal process of
the BRW.

Theorem 1.7. We assume that the reproduction law of the BRW is non-lattice,
and there exists θ0 > 0 satisfying (1.3). We assume that κ′′(θ0) < ∞ and
that (1.5) holds. Let ν be a probability measure such that there exist C > 0 and
θ > θ0 verifying

ν([x,∞)) ≤ Ce−θx for x ∈ R. (1.9)

Then, writing
mn = nκ′(θ0) − 3

2θ0
logn,

the extremal process τ−mn
En converges in law to∑

i∈N
δzi+Yi

, (1.10)

where (zi, i ∈ N) are the atoms of the limiting extremal process Z∞ of the BRW
and (Yi) is an independent sequence of i.i.d. variables with law ν.
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Theorem 1.7 follows as a direct consequence of the convergence in distri-
bution of the extremal process of the branching random walk of Madaule [17].
The condition (1.9) is used to ensure that the point process defined in (1.10) is
well-defined.

The rest of the article is organized as follows. We introduce in the next
section some estimates that allow us to study the Laplace transform of En. We
then use the convergence of this Laplace transform to prove our main theorems
in Section 3.

2 Laplace transform of the last progeny modi-
fied branching random walk

To prove the convergence in distribution of τ−mnEn to a limiting point measure
Z in law for the topology of vague convergence, it is sufficient to show that for
all continuous compactly supported function φ, we have

lim
n→∞

⟨τ−mnEn, φ⟩ = ⟨Z, φ⟩ in law,

where we write ⟨X , φ⟩ =
∫
φdX . As a result, it is sufficient to prove the

convergence of the Laplace transform of τ−mn
En, defined as

φ ∈ T 7→ E (exp (−⟨τ−mn
En, φ⟩)) ,

where T is the set of all non-negative continuous compactly supported functions,
i.e., to show that for each φ ∈ T , we have

lim
n→∞

E (exp (−⟨τ−mnEn, φ⟩)) = E (exp (−⟨Z, φ⟩)) . (2.1)

In the rest of the section, we introduce some methods and results allowing to
study this Laplace transform.

Let x ∈ R and n ∈ N. Using the independence between (Yu, u ∈ U) and the
BRW, we observe that

E (exp (−⟨τxEn, φ⟩)) = E

exp

−
∑

|u|=n

gφ(x+ Su)


= E (exp (−⟨τxXn, gφ⟩))

(2.2)

where we have set
gφ : x 7→ − log

∫
e−φ(x+y) ν(dy),

and we recall that Xn is the counting measure of the BRW at time n.
As mentioned above, applying Madaule’s theorem [17] to (2.2) immediately

yields Theorem 1.7. To prove Theorems 1.1, 1.3 and 1.4, we first show that
max|u|=n Su −mn converges to −∞ in probability (for mn the process defined
in each of these theorems), then study the asymptotic behaviour of gφ(x) as
x → −∞. Let us first state the following generic lemma for BRW.

Lemma 2.1. If κ(θ) < ∞, then limn→∞ max|u|=n θSu − nκ(θ) = −∞ a.s.
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Remark 2.2. Recall that Wn(θ) =
∑

|u|=n e
θSu−nκ(θ) is a non-negative martin-

gale, hence converges almost surely. As a result, using the bound

Wn(θ) ≥ eθMn−nκ(θ),

it is immediate that supn∈N θMn − nκ(θ) < ∞ a.s.

Proof. To prove that θMn − nκ(θ) → −∞, we strengthen the bound of Re-
mark 2.2 with the following observation. The martingale (W (θ)) converges
almost surely, therefore (Wn(θ)) is almost surely a Cauchy sequence.

Let x ∈ R, we set Ax := {lim supn→∞ θMn − nκ(θ) > x}. We define a
sequence (Tn) of stopping times by T0 = 0 and

Tn+1 = inf{k > Tn : θMk − kκ(θ) > x}.

By definition, Tn is finite for all n on Ax. We define Ax,n := {Tn < ∞}. Note
that Ax,n ∈ FTn

and Ax,n+1 ⊆ Ax,n for all n, and Ax =
⋂

n∈NAx,n, where (Fn)
is the usual filtration of the BRW. We write rn for the label of one individual
at generation Tn such that Srn = MTn , and we define

WTn+1(θ) =
∑

|u|=Tn+1

eθSu−(Tn+1)κ(θ)
1{u ̸≻rn} + eθSrn −Tnκ(θ)

∑
j∈N

eθXj−κ(θ),

where u ≻ v means that u is a descendant of v, and (Xj , j ∈ N) is a random
sequence with same law as (Su, |u| = 1), independent of the BRW. In words,
we obtain WTn+1(θ) by replacing the offspring of an individual alive at position
MTn by an independent copy of that point process. It is therefore apparent that
WTn+1(θ) has, conditionally on FTn

, the same law as WTn+1(θ). Moreover, we
have that on Ax,n,

∣∣WTn+1(θ) −WTn+1(θ)
∣∣ = eθSrn −(Tn+1)κ(θ)

∣∣∣∣∣∣
∑
j∈N

eθ(Srnj−Srn ) − eθXj

∣∣∣∣∣∣
≥ ex−κ(θ)

∣∣∣∣∣∣
∑
j∈N

eθ(Srnj−Srn ) − eθXj

∣∣∣∣∣∣ ,
with rnj being the jth descendant of individual rn. In particular, there exists
δ > 0 such that

E
(
1Ax,n

(∣∣WTn+1(θ) −WTn+1(θ)
∣∣ ∧ 1

))
≥ δP(Ax,n) ≥ δP(Ax).

On the other hand, we have

E
(
1Ax,n

(|WTn+1(θ) −WTn
(θ)| ∧ 1)

)
= E

(
1Ax,n

∣∣WTn+1(θ) −WTn
(θ)
∣∣ ∧ 1

)
.

Therefore, we have

E
(
1Ax,n

(|WTn+1(θ) −WTn
(θ)| ∧ 1)

)
≥ δP(Ax)/2

for all n ∈ N. As (Wn(θ)) converges almost surely as n → ∞, we conclude by
dominated convergence theorem that P(Ax) = 0.

To complete the proof, we observe that

P(lim sup
n→∞

θMn − nκ(θ) > −∞) = P(∪k∈N P(A−k)) = 0.
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Lemma 2.1 is enough to conclude that max|u|=n Su −mn → −∞ under the
assumptions of Theorems 1.1 and 1.3. To obtain a similar result under the
assumptions of Theorem 1.4, we will use the tightness of

Mn − nκ′(θ) + 3
2θ logn,

proved under the assumptions1 of Theorem 1.4 in [19]. Using the above obser-
vations, the asymptotic behaviour of the Laplace transform of En as n → ∞ can
be obtained by studying the asymptotic behaviour of gφ under assumption (1.8)
as x → −∞.

Lemma 2.3. Let ν be a probability distribution satisfying (1.8). For all φ ∈ T ,
we have

lim
x→−∞

e−θx

L(−x)gφ(x) =
∫
θe−θz(1 − e−φ(z)) dz.

Proof. Let φ ∈ T . We observe that we can rewrite

gφ(x) = − log
(

1 −
∫

1 − e−φ(z+x) ν(dz)
)
,

and that y 7→ 1−e−φ(y) is continuous and compactly supported, i.e. an element
of T . By the dominated convergence theorem, we have that

lim
x→−∞

∫
1 − e−φ(z+x) ν(dz) = 0,

which implies

gφ(x) ∼
∫

1 − e−φ(z+x) ν(dz) as x → −∞.

Therefore, it is enough to show that

lim
x→−∞

∫
e−θx

L(−x)ψ(x+ z) ν(dz) =
∫
θe−θzψ(z) dz (2.3)

for all ψ ∈ T to prove Lemma 2.3. We observe that for all a < b,

lim
x→−∞

e−θx

L(−x)ν([a− x, b− x)) = e−θa − e−θb =
∫ b

a

θe−θz dz,

from which we deduce (2.3) by approximations, which completes the proof.

To simplify the notation, in the rest of the article, we write for all φ ∈ T
and θ > 0

cφ(θ) =
∫
θe−θz(1 − e−φ(z)) dz.

We can then restate Lemma 2.3 as gφ(x) ∼ cφ(θ)L(−x)eθx as x → −∞ under
assumption (1.8).

Similarly to Lemma 2.3, we observe that an upper bound for the right tail
of ν implies a similar upper bound for gφ as x → −∞.

1By [2, Equation (B1)], if κ′′(θ0) < ∞ then (1.5) implies [19, Equation (1.4)].
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Lemma 2.4. Let ν be a probability distribution satisfying (1.9). For all φ ∈ T ,
there exists C ′ > 0 such that for all x ∈ R,

gφ(x) ≤ C ′eθx.

Proof. Let φ ∈ T , as φ is compactly supported, there exists B > 0 such that
φ(z) = 0 for all z < −B. Therefore,

e−gφ(x) =
∫
e−φ(x+z) ν(dz) ≥ ν((−∞,−x−B)) ≥ 1 − Ceθ(x+B).

As a result, we deduce that

lim sup
x→−∞

e−θxgφ(x) ≤ lim
x→−∞

−e−θx log
(

1 − Ceθ(x+B)
)

= CeθB .

Using that gφ is bounded, the proof is now complete.

To complete the proofs of Theorems 1.1, 1.3 and 1.4, it will be enough to
show that ∑

|u|=n

gφ(Su −mn) converges in probability,

and to identify its limit. This is mainly done using the so-called many-to-one
lemma (see [20, Theorem 1.1]), that we now state.

Lemma 2.5. Let θ > 0 such that κ(θ) < ∞. There exists a random walk
(Tn, n ≥ 0) such that for all measurable non-negative function f , we have

E

∑
|u|=n

eθSu−nκ(θ)f(Su1 , . . . , Sun)

 = E (f(T1, . . . , Tn)) .

Moreover, E(T1) = κ′(θ) whenever this quantity is well-defined.

3 Proof of the theorems
We prove in this section our main theorems. We first consider the asymptotic
behaviour of En below the boundary case, i.e. when θ < θ0, assuming that
this quantity is well-defined. We then turn to the proof of Theorem 1.4, i.e.
assuming that θ = θ0. Finally, we prove Theorem 1.7 in Section 3.3.

3.1 BRW below the boundary case
In this section, θ is a fixed positive constant, and we assume that κ(θ) < ∞ and
(Wn(θ), n ≥ 0) is uniformly integrable. We denote by W∞(θ) = limn→∞ Wn(θ)
the almost sure limit of this martingale. We start by proving Theorem 1.1.

Proof of Theorem 1.1. Let φ ∈ T , using Lemma 2.3, under assumption (1.7),
for all ε > 0, there exists A > 0 such that for all x ≤ −A, we have∣∣gφ(x) − cφ(θ)Leθx

∣∣ ≤ εeθx. (3.1)
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Observe that for all a, b > 0, we have |e−a − e−b| ≤ |a− b| ∧ 1 using that exp is
1-Lipschitz on R−. Therefore,

E
(∣∣∣e−⟨τ−mn Xn,gφ⟩ − e−cφ(θ)Wn(θ)

∣∣∣) ≤ E (|⟨τ−mn
Xn, gφ⟩ − cφ(θ)Wn(θ)| ∧ 1)

≤ E

∣∣∣∣∣∣
∑

|u|=n

hφ(Su −mn)

∣∣∣∣∣∣ ∧ 1

 ,

where hφ(x) = gφ(x) − cφ(θ)Leθx, using that e−θmn = L−1e−nκ(θ). By (3.1),
we have

E

1{Mn≤mn−A}

∣∣∣∣∣∣
∑

|u|=n

hφ(Su −mn)

∣∣∣∣∣∣ ∧ 1

 ≤ εL−1 E(Wn(θ)),

hence

E
(∣∣∣e−⟨τ−mn Xn,gφ⟩ − e−cφ(θ)Wn(θ)

∣∣∣) ≤ εL−1 + P(Mn ≥ mn −A).

Letting n → ∞, then ε → 0, we conclude, by Lebesgue’s dominated convergence
theorem and (2.2), that

lim
n→∞

E
(
e−⟨τ−mn En,φ⟩

)
= lim

n→∞
E
(
e

−cφ(θ)
∑

|u|=n
eθSu−nκ(θ)

)
= E

(
exp

(
−W∞(θ)

∫
θe−θz(1 − e−φ(z)) dz

))
.

To complete the proof, it is then enough to observe that this limit is the Laplace
transform of the PPP(θW∞(θ)e−θz dz).

Theorem 1.3 follows from very similar computations. We use the extra inte-
grability condition κ(θ+δ) < ∞ to guarantee that under our stated assumptions,
Mn−mn almost surely decays linearly, and the condition κ(θ−δ) < ∞ to control
the contributions of particles far from position mn.

Proof of Theorem 1.3. We compute the asymptotic behaviour of the Laplace
transform of τ−mn

En using similar computations as for the proof of Theorem 1.1.
We recall that for all φ ∈ T , we have

E (exp (−⟨τ−mn
En, φ⟩)) = E

exp

−
∑

|u|=n

gφ(Su −mn)

 ,

and that c1 =
(

κ(θ)
θ − κ′(θ)

)α

. Let η > 0 such that 4η < κ(θ)
θ − κ′(θ). Using

Lemma 2.3 and the regular variations of L at ∞, we deduce that almost surely,
for all n large enough,

(1 − 2
c

1/α
1

η)|α|c1cφ(θ)
∑

|u|=n

eθSu−nκ(θ)
1{|Su−nκ′(θ)|≤nη}

≤
∑

|u|=n

gφ(Su −mn)1{|Su−nκ′(θ)|≤nη}

≤ (1 − 2
c

1/α
1

η)−|α|c1cφ(θ)
∑

|u|=n

eθSu−nκ(θ)
1{|Su−nκ′(θ)|≤nη}.
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Here we use the Uniform Convergence Theorem [9, Theorem 1.5.2], which states
that limz→∞

L(λz)
L(z) = λα holds uniformly on compact subsets of (0,∞). Note

that there exists r > 0 so that

[(1 − 3
c

1/α
1

η)|α|, (1 − 3
c

1/α
1

η)−|α|] ⊂ [1 − rη, 1 + rη].

Using Lemma 2.5, together with the law of large numbers, we observe that

lim
n→∞

E

∑
|u|=n

eθSu−nκ(θ)
1{|Su−nκ′(θ)|>nη}

 = lim
n→∞

P(|Tn − E(Tn)| > nη) = 0.

(3.2)
Consequently, using the a.s. convergence of Wn(θ) to W∞(θ), we deduce that

lim
n→∞

∑
|u|=n

eθSu−nκ(θ)
1{|Su−nκ′(θ)|≤nη} = W∞(θ) in probability.

Hence, we conclude that

P

∣∣∣∣∣∣
∑

|u|=n

gφ(Su −mn)1{|Su−nκ′(θ)|≤nη}− c1cφ(θ)W∞(θ)

∣∣∣∣∣∣ > rηc1cφ(θ)W∞(θ)


converges to 0 as n → ∞. In order to show that

∑
|u|=n gφ(Su −mn) converges

to c1cφ(θ)W∞(θ) in probability and complete the proof of Theorem 1.3, we now
show that

lim
n→∞

∑
|u|=n

gφ(Su −mn)1{|Su−nκ′(θ)|>nη} = 0 in probability. (3.3)

On the one hand, using that θ 7→ κ(θ) is C2 on (θ − δ, θ + δ), and that
θκ′(θ) − κ(θ) < 0, we observe that ϑ 7→ κ(ϑ)/ϑ is decreasing on [θ, θ + δ] for δ
small enough. Thus, by Lemma 2.1, there exists ε > 0 such that

lim
n→∞

Mn − n(κ(θ)/θ − ε) = −∞ a.s.

As logL(n)/n → 0 as n → ∞, we conclude that almost surely, for all n large
enough, Mn −mn ≤ −εn/2. Therefore, almost surely, for n large enough∑

|u|=n

gφ(Su −mn)1{Su−nκ′(θ)>nη}

=
∑

|u|=n

gφ(Su −mn)1{Su−nκ′(θ)>nη,Su−mn<−nε/2}

≤ 2cφ(θ)
∑

|u|=n

L(mn − Su)e
θSu−nκ(θ)

L(n) 1{Su−nκ′(θ)>nη,Su−mn<−nε/2}.

Therefore, using again [9, Theorem 1.5.2], there exists a constant C depending
on ε and η such that almost surely, for all n large enough∑

|u|=n

gφ(Su −mn)1{Su−nκ′(θ)>nη} ≤ C
∑

|u|=n

eθSu−nκ(θ)
1{Su−nκ′(θ)>nη}.
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This, together with (3.2), implies that

lim
n→∞

∑
|u|=n

gφ(Su −mn)1{Su−nκ′(θ)>nη} = 0 in probability. (3.4)

With similar computations, we observe that for all B > 0, we have

lim
n→∞

∑
|u|=n

gφ(Su −mn)1{Su−nκ′(θ)<−nη}1{Su−mn>−nB} = 0 in probability.

(3.5)
On the other hand, using that limx→∞ x−1 logL(x) = 0, we observe that for

all x large enough, we have

gφ(−x) ≤ 2cφ(θ)L(x)e−θx ≤ 4cφ(θ)e−(θ−δ/2)x.

Therefore, for all n large enough, we have∑
|u|=n

gφ(Su −mn)1{Su−mn<−nB} ≤ 4cφ(θ)
∑

|u|=n

e(θ−δ/2)(Su−mn)
1{Su−mn<−nB}

≤ 4cφ(θ)Wn(θ − δ)enκ(θ−δ)−(θ−δ)mn−δnB/2.

Using that Wn(θ − δ) converges almost surely, we observe that for B large
enough, we have

lim
n→∞

∑
|u|=n

gφ(Su −mn)1{Su−mn<−nB} = 0 in probability. (3.6)

Consequently, combining (3.4), (3.5) and (3.6), we get (3.3), which implies

lim
n→∞

∑
|u|=n

gφ(Su −mn) = c1cφ(θ)W∞(θ) in probability.

Using the dominated convergence theorem together with (2.2), we conclude that
for all for all φ ∈ T ,

lim
n→∞

E
(
e−⟨τ−mn En,φ⟩

)
= E (exp (−c1W∞(θ)cφ(θ))) .

We can now complete the proof, observing that the right-hand side is the Laplace
transform of the PPP(c1θW∞(θ)e−θx dx).

3.2 BRW in the boundary case
We turn in this section to the proof of Theorem 1.4. The proof follows a sim-
ilar scheme as the one used above, with the added introduction of a shaving
procedure. More precisely, for all A > 0, we set

Gn(A) = {|u| = n : Suk
≤ kκ′(θ) +A, k ≤ n},

the set of particles that stayed at all times below the line x 7→ xκ′(θ)+A. Using
that limn→∞ Mn −nκ′(θ) = −∞ a.s. we observe that almost surely, for A large
enough, we have Gn(A) = {|u| = n}. In other words, writing

SA := {sup
n∈N

Mn − nκ′(θ) < A},
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we observe that on the event SA, we have Gn(A) = {|u| = n} for all n ∈ N, and
that limA→∞ P(SA) = 1.

As a first step towards the proof of Theorem 1.4, we show that no particle in
Gn(A) above position mn − εn1/2 contribute to the extremal process with high
probability, as soon as ε > 0 is small enough.

Lemma 3.1. Under the conditions and notation of Theorem 1.4, for all B > 0,
we have

lim
ε→0

lim sup
n→∞

P(∃|u| = n : Su ≥ mn − εn1/2, Su + Yu ≥ mn −B) = 0.

Proof. We first recall from [19, Theorem 1.1], that

lim
ε→0

lim sup
n→∞

P(Mn ≥ nκ′(θ) − 3
2θ logn+ ε−1) = 0.

Letting an = 1
θ (logn+ logL (

√
n)), we can rewrite this as

lim
ε→0

lim sup
n→∞

P(Mn ≥ mn − an + ε−1) = 0.

Moreover, we have limA→∞ P(SA) = 1. Therefore it is enough to prove that for
all A > 0 large enough,

lim
ε→0

lim sup
n→∞

P
(

∃u ∈ Gn(A) : mn − Su ∈ [an − ε−1, εn1/2],
Su + Yu ≥ mn −B

)
= 0. (3.7)

Using the Markov inequality, we have

P
(

∃u ∈ Gn(A) : mn − Su ∈ [an − ε−1, εn1/2], Su + Yu ≥ mn −B
)

≤ E

 ∑
u∈Gn(A)

1{mn−Su∈[an−ε−1,εn1/2]}ν([mn −B − Su,∞))


≤ 2 E

 ∑
u∈Gn(A)

1{mn−Su∈[an−ε−1,εn1/2]}L(mn − Su)eθ(Su+B−mn)


for all n large enough, where we used the independence between Y and S, and
the fact that an → ∞, therefore we can apply (1.8) to mn − Su.

We then use the formula of mn and the many-to-one lemma to compute

E

 ∑
u∈Gn(A)

1{mn−Su∈[an−ε−1,εn1/2]}L(mn − Su)eθ(Su−mn)


= n1/2 E

 ∑
u∈Gn(A)

L(mn − Su)
L(n1/2)

eθSu−nκ(θ)
1{mn−Su∈[an−ε−1,εn1/2]}


= n1/2 E

(
L(m̂n − T̂n)
L(n1/2)

1{
m̂n−T̂n∈[an−ε−1,εn1/2],−T̂j≥−A,j≤n

}) ,
where T̂k = Tk − kκ′(θ) and m̂n = mn − nκ′(θ). Let ρ ∈ (0, α + 2), we define
L : x 7→ xρ−αL(x). Observe that L is a regularly varying function at ∞ with
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index ρ > 0. Therefore, by [9, Theorem 1.5.2], for all δ > 0, there exists Nδ

such that for all x > Nδ,∣∣∣∣L(λx)
L(x) − λα

∣∣∣∣ = λα−ρ

∣∣∣∣L(λx)
L(x) − λρ

∣∣∣∣ < δλα−ρ for all λ ∈ (0, 2ε].

As a result, for all n large enough, we have

E
(
L(m̂n − T̂n)
L(n1/2)

1{
m̂n−T̂n∈[an−ε−1,εn1/2],−T̂j≥−A,j≤n

})

≤ E
((

m̂n − T̂n

n1/2

)α

1{
m̂n−T̂n∈[an−ε−1,εn1/2],−T̂j≥−A,j≤n

})

+ δE

(m̂n − T̂n

n1/2

)α−ρ

1{
m̂n−T̂n∈[an−ε−1,εn1/2],−T̂j≥−A,j≤n

} .

We now compute this quantity using the ballot theorem to the centred random
walk (−T̂n) with finite variance.

Using e.g. [3, Lemma 4.1], there exist C > 0 and h > 0 such that for all
n ∈ N, a ≥ 0 and b ≥ −a, we have

P(−T̂n ∈ [b, b+ h],−T̂j ≥ −a, j ≤ n) ≤ C
((a+ 1) ∧ n1/2)((a+ b+ 1) ∧ n1/2)

n3/2 .

Let γ ∈ (−2, 0). For all n large enough, we have

E
((

m̂n − T̂n

)γ

1{
m̂n−T̂n∈[an−ε−1,εn1/2],−T̂j≥−A,j≤n

})

≤
⌈εn1/2/h⌉∑

k=1
(kh)γ P(m̂n − T̂n ∈ [kh, (k + 1)h],−T̂j ≥ −A, j ≤ n)

≤ Chγ(A+ 1)
n3/2

⌈εn1/2/h⌉∑
k=1

kγ(A+ kh+ C ′ logn+ 1)

≤ 2Chγ(A+ 1)2

n3/2

⌈εn1/2/h⌉∑
k=1

kγ(kh+ C ′ logn),

where C ′ is chosen so that |m̂n| ≤ C ′ logn for all n large enough. Decomposing
this sum for k ≤ logn and k ≥ logn, we obtain, for n large enough

E
(

(m̂n − T̂n)γ
1{

m̂n−T̂n∈[an−ε−1,εn1/2],−T̂j≥−A,j≤n
})

≤ 2Chγ(A+ 1)2(C ′ + h)
n3/2

(logn)γ+2 +
⌈εn1/2/h⌉∑
k=⌈log n⌉

kγ+1


≤ Kγ

n3/2 (logn)γ+2 +
K ′

γ

n3/2 ε
γ+2nγ/2+1,
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for some Kγ ,K
′
γ > 0 since γ + 1 > −1. As a result, letting n → ∞, we obtain

lim sup
n→∞

P
(

∃u ∈ Gn(A) : mn − Su ∈ [an − ε−1, εn1/2],
Su + Yu ≥ mn −B

)
≤ 2eθB lim sup

n→∞
n1/2 E

(
L(m̂n − T̂n)
L(n1/2)

1{
m̂n−T̂n∈[an−ε−1,εn1/2],−T̂j≥−A,j≤n

})
≤ 2eθBK ′

αε
α+2 + 2eθBδK ′

α−ρε
α−ρ+2.

Using that α > α− ρ > −2, we conclude that (3.7) holds, which completes the
proof.

We now turn to the proof of Theorem 1.4.

Proof of Theorem 1.4. For any n ∈ N and ε > 0, we write

Ẽ(ε)
n =

∑
|u|=n

δSu+Yu1{Su≤mn−εn1/2}.

Using Lemma 3.1, together with the inequality |e−a − e−b| ≤ |a − b| ∧ 1, we
observe that for all φ ∈ T ,

lim sup
ε→0

lim sup
n→∞

∣∣∣E(e−⟨τ−mn En,φ⟩
)

− E
(
e−⟨τ−mn Ẽ(ε)

n ,φ⟩
)∣∣∣

≤ lim
ε→0

lim sup
n→∞

E

∑
|u|=n

φ(Su + Yu −mn)1{Su≥mn−εn1/2}

 ∧ 1

 = 0. (3.8)

It is therefore enough to study the asymptotic behaviour of E
(
e−⟨τ−mn Ẽ(ε)

n ,φ⟩
)

to identify the limiting distribution of τ−mnEn.
Let φ ∈ T . Using the same computations as in (2.2), we have

E
(

exp
(

−⟨τ−mn
Ẽ(ε)

n , φ⟩
))

= E

exp

−
∑

|u|=n

gφ(Su −mn)1{Su≤mn−εn1/2}

 .

We study the asymptotic behaviour of
∑

|u|=n gφ(Su − mn)1{Su≤mn−εn1/2} as
n → ∞ then ε → 0. By Lemma 2.3, we get that for all δ > 0, for all large
enough n,

(1 − δ)cφ(θ)n1/2
∑

|u|=n

L(mn − Su)
L(n1/2)

eθSu−nκ(θ)
1{mn−Su≥εn1/2}

≤
∑

|u|=n

gφ(Su −mn)1{mn−Su≥εn1/2}

≤ (1 + δ)cφ(θ)n1/2
∑

|u|=n

L(mn − Su)
L(n1/2)

eθSu−nκ(θ)
1{mn−Su≥εn1/2}.
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Recall that L is regularly varying with index α < 0. We use again [9,
Theorem 1.5.2], yielding

lim
x→∞

sup
λ>ε/2

∣∣∣∣L(λx)
L(x) − λα

∣∣∣∣ = 0.

As a result, for all 0 < δ < ε, for all n large enough, we have

(1 − δ)cφ(θ)n1/2
∑

|u|=n

hε,δ((mn − Su)/n1/2)eθSu−nκ(θ)

≤
∑

|u|=n

gφ(Su −mn)1{mn−Su≥εn1/2}

≤ (1 + δ)cφ(θ)n1/2
∑

|u|=n

hε,δ((mn − Su)/n1/2)eθSu−nκ(θ),

where hε,δ and hε,δ are continuous functions satisfying for all x ∈ R

(xα − δ)1{[ε+δ,∞)} ≤ hε,δ(x) ≤ (xα − δ)1{[ε,∞)}

and (xα + δ)1{[ε,∞)} ≤ hε,δ(x) ≤ (xα + δ)1{[ε−δ,∞)}.

As a result, using a combination of [16, Theorem 1.2] and [4, Theorem 1.1],
then letting δ ↓ 0 we conclude that

lim
n→∞

∑
|u|=n

gφ(Su −mn)1{mn−Su≥εn1/2}

=

√
2

πκ′′(θ)cφ(θ)Z∞ E
((√

κ′′(θ)R1

)α

1{√
κ′′(θ)R1≥ε

}) in probability,

where (Rt, t ∈ [0, 1]) is a Brownian meander. Since R1 has Rayleigh distribution,
we observe that E ((R1)α) < ∞. Now, letting ε ↓ 0, we obtain by monotonicity
that

lim
ε→0

lim
n→∞

∑
|u|=n

gφ(Su −mn)1{mn−Su≥εn1/2}

=

√
2

πκ′′(θ)cφ(θ)Z∞ E
((√

κ′′(θ)R1

)α)
in probability.

Finally, we set

c2 =

√
2

πκ′′(θ) E
((√

κ′′(θ)R1

)α)
=

√
2

πκ′′(θ) (2κ′′(θ))
α
2 Γ
(α

2 + 1
)
.

We now conclude, by equation (3.8) that

E(e−c2cφ(θ)Z∞) = lim
ε→0

lim
n→∞

E(e−⟨τ−mn Ẽ(ε)
n ,φ⟩)

= lim
n→∞

E(e−⟨τ−mn En,φ⟩).

Identifying the Laplace transform of the PPP(c2θZ∞e
−θx dx), the proof of The-

orem 1.4 is now complete.
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3.3 BRW above the boundary case
We prove in this section Theorem 1.7 as a consequence of the convergence of
the extremal process of the BRW observed by Madaule [17]. Recall that by [17,
Theorem 1.1], for all φ ∈ T , we have

lim
n→∞

E
(
e−⟨Zn,φ⟩

)
= E

(
e−⟨Z∞,φ⟩

)
,

where Z∞ is the limiting extremal process of the BRW, a decorated, randomly
shifted Poisson point process with exponential intensity. Moreover, [17, Propo-
sition 1.3] shows that for all θ > θ0, we have

lim
n→∞

E

exp

−
∑

|u|=n

eθ(Su−mn)

 = E
(
e−⟨Z∞,eθ⟩

)
,

where eθ : x 7→ eθx. Using these two results and assuming (1.9), we show that
for all φ ∈ T ,

lim
n→∞

E
(
e−⟨Zn,gφ⟩

)
= E

(
e−⟨Z∞,gφ⟩

)
,

which implies the convergence of the extremal process of the last progeny mod-
ified BRW.

Proof of Theorem 1.7. Let K > 0, we write χK a function in T such that

1[−K,K] ≤ χK ≤ 1[−2K,2K].

Let φ ∈ T , using (2.2), we can write for all n ∈ N,∣∣∣E(e−⟨τ−mn En,φ⟩
)

− E
(
e−⟨Z∞,gφ⟩

)∣∣∣
=
∣∣∣∣E(e−

∑
|u|=n

gφ(Su−mn)
)

− E
(
e−⟨Z∞,gφ⟩

)∣∣∣∣
≤ I1(n,K) + I2(n,K) + I3(K),

where we have set

I1(n,K) =
∣∣∣∣E(e−

∑
|u|=n

gφ(Su−mn)
)

− E
(
e

−
∑

|u|=n
χKgφ(Su−mn)

)∣∣∣∣
I2(n,K) =

∣∣∣∣E(e−
∑

|u|=n
χKgφ(Su−mn)

)
− E

(
e−⟨Z∞,χKgφ⟩

)∣∣∣∣
I3(K) =

∣∣∣E(e−⟨Z∞,χKgφ⟩
)

− E
(
e−⟨Z∞,gφ⟩

)∣∣∣ .
Observe that χKgφ ∈ T . Therefore, by [17, Theorem 1.1], we know that

for all K > 0, limn→∞ I2(n,K) = 0. Additionally, limK→∞ I3(K) = 0 by
Lebesgue’s dominated convergence theorem. To complete the proof of Theo-
rem 1.7, we now bound I1(n,K) in n.
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Let θ1 ∈ (θ0, θ), using the inequality |e−a − e−b| ≤ |a− b| ∧ 1, we have

I1(n,K) ≤ E

∑
|u|=n

(1 − χK)gφ(Su −mn)

 ∧ 1


≤ E

∑
|u|=n

gφ(Su −mn)1{|Su−mn|≥K}

 ∧ 1


≤ E

∑
|u|=n

gφ(Su −mn)1{Su−mn≤−K}

 ∧ 1


+ E

∑
|u|=n

gφ(Su −mn)1{Su−mn≥K}

 ∧ 1

 ,

by sub-additivity of x 7→ x ∧ 1. We first observe that

E

∑
|u|=n

gφ(Su −mn)1{Su−mn≥K}

 ∧ 1

 ≤ P(Mn −mn ≥ K),

which converges to 0 uniformly in n as K → ∞, by tightness of (Mn − mn).
Moreover, using Lemma 2.4, we have

E

∑
|u|=n

gφ(Su −mn)1{Su−mn≤−K}

 ∧ 1


≤ E

C ′
∑

|u|=n

eθ(Su−mn)
1{Su−mn≤−K}

 ∧ 1


≤ C ′ E

1{∑
|u|=n

eθ1(Su−mn)≤K

} ∑
|u|=n

eθ(Su−mn)
1{Su−mn≤−K}


+ P

∑
|u|=n

eθ1(Su−mn) ≥ K

 ,

for an arbitrary θ1 ∈ (θ0, θ). As a result

E

∑
|u|=n

gφ(Su −mn)1{Su−mn≤−K}

 ∧ 1


≤ C ′Ke−K(θ−θ1) + P

∑
|u|=n

eθ1(Su−mn) ≥ K

 .

Using [17, Proposition 1.3], we observe that
∑

|u|=n e
θ1(Su−mn) converges in

distribution, thus is tight. As a result, we conclude that

lim
K→∞

sup
n∈N

I1(n,K) = 0.
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We conclude that

lim
n→∞

E
(
e−⟨τ−mn En,φ⟩

)
= E

(
e−⟨Z∞,gφ⟩

)
= E

(
exp

(
−
∑
i∈N

φ(zi + Yi)
))

which completes the proof.
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