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Abstract

In an era of low-code and no-code technologies, when many Computer Science graduates never use
MPI or CUDA, explicit parallel programming, compiling and performance tuning appears to become
even more of the narrow specialist skill it always was. To improve on this situation we advocate the
direct production of high performance executables from a declarative language of array expressions,
and we present here the results of an extensive experiment on its basic building block and use-case:
matrix multiplication. Dense array algorithms would seem to lack generality as application building
blocks, but in fact they are the basis for most of scientific computing, much of today’s machine learning
and signal processing. Our previous work has shown that the array formalism we use can express all
known numerical codes. Our experiments described here show how the choice of algorithm variants,
mapping to architecture, vectorization-, multithread parallelization, compiler- options and program
annotations can all blend into a mechanizable code-generation + compilation process to produce high
and predictable performance. Once perfected and supported by appropriate tools, this methodology
will increase productivity for experts and help non-experts make substantial performance gains while
avoiding non-determinism and other sources of numerical errors.

Keywords: Efficient code generation, auto-tuning, and optimization for parallel programs. Domain-specific
languages: design, implementation and applications.

1 Introduction

Predictable and portable functional behaviour of application source code is often taken for granted 1

at least for well-understood algorithms like those of dense numerical algebra, and assuming negligible
numerical errors. So it would seem that such algorithms can be programmed once and for all in a high-
level portable language, then reused as reliable building blocks in their many applications: scientific
computing, machine learning, signal processing, real-time embedded computing etc.

One could argue that parallel execution time is inherently unpredictable, so that so-called parallel
cost models are useless. But as every parallel programmer knows, a bad choice of algorithm or mapping to
the architecture can lead to execution times that are asymptotically different from the best-known imple-
mentations. So execution time variations should be kept within a reasonable and predictable percentage,
otherwise expensive parallel hardware and work-intensive parallel coding is wasted.

One attempt to simplify parallel programming and make performance predictable is the bulk-
synchronous parallel (BSP) model of computing. In this model, [1, 2] one must define explicit parallel
processes and use explicit structured communications (although a shared-memory version exists). BSP

1Despite being difficult to guarantee in many cases, as system verification is complex and costly.
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programming usually produces deterministic output when the implementation of its structured commu-
nications avoids race conditions. That kind of predictability is very useful for parallel software debugging
and an important step towards real software engineering. But the BSP model, like MPI, comes at the
expense of requiring expertise in algorithmic engineering. This type of programming is appropriate for
algorithm experts who want to develop portable parallel libraries (parallel- arrays, sorting, hashing,
graphs etc.) with predictable performance. But it is too complex for application programming. BSP
library development requires more algorithmic sophistication than classical (sequential) library coding.

In this research we investigate a methodology for parallel computing with similar objectives but
higher-level programming and potentially much higher productivity. It is based on the Mathematics of
Arrays (MoA) algebra of arrays [3, 4] which defines all potential transformations and compilations of
linear-algebra algorithms. Our ultimate goal is to show that the algebraic exploration of equivalent forms
of a given array algorithm is sufficient to produce all necessary information for compiling to scalable and
predictable parallel code: initially vectorization and SMP multi-thread.

The shapes of arrays, and subarrays (blocks) are assumed sufficient to define the parallel operations,
communications and their mapping to the parallel architecture because, despite heterogeneous hardware,
its structures are mostly made of arrays of computation units. A summary of this approach could be
”mapping array operation parts to hardware array parts automatically, based on size-shape information.”
It is viewing both the data and machines as shapes with indices denoting the data flow, location, and
cost that makes this possible and MoA is a theory of shapes and indexing that has had success doing it.
The scalar, it’s shape, the empty vector, denoted by <> or Θ makes this theory unique. It too has an
index and number of components.

In this paper we explore the central notion of predictable high performance for MoA-based code by
an exploration of matrix-multiplication variants producing vectorized and multi-threaded from ”stereo-
typed” C code that is equivalent to MoA declarative expressions: nested for-loops whose bounds are
defined by the arrays/blocks shapes and MoA operators.

We identify a sufficient ”source” language (actually intermediate between array expressions and exe-
cutable code) made of C loops, vectorization flags, and OpenMP directives. For a given initial ”algorithm”
(array expression) we can produce ”variants” by algebraic transforms in MoA and each of them corre-
sponds to a set of C for-loops in the source language. Exploring performance variations then reduces to
exploring the source language programs and input data sizes for executing time. The result is a blueprint
for a meta-compiler that will take declarative code and sufficient hardware information to produces
reliably high performance on any architecture, present or future.

The next section summarize (a) the MoA description and transformation of the matrix multiplication
naive algorithm into variants, using normal form and so-called dimension lifting (b) the target CPU
architectures we experimented with (c) the timing experiments (d) the static information from our
”source” language and its effect on performance (e) our conclusions and perspectives for future work.

2 Array expressions and the algorithm variants

Here we describe the fragment of MoA used to specify source programs for variants of dense matrix
multiplication. The variants are produced from the naive algorithm by so-called dimension lifting which
is a generalized form of row- and column-blocking for matrix algorithms as used for example in the
Bisseling-McColl BSP algorithms [5]. Our current approach is not mechanized but the results support
the development of an automatic MoA-to-C (and reverse) translation, automatic compiler directives
and pragma generation and associated cost-model to predict and guarantee the most efficient execution
within the expressive limits of our compilation and APIs.

The restriction to matrix multiplication (MM) is useful to concentrate on other dimensions of the
problem, but the approach will most certainly generalize to other dense linear algebra operations. MM
is a generalization of matrix-vector product and, can be generalized to include the Kronecker Product
(KP), Hadamard Product (HP), and scalar operations[6] all core for many important algorithms. The
reader is also informed that MoA can also express parallel-prefix like transformations of sparse arrays to
dense representations, opening the door to sparse equivalents of the work described here.
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2.1 Mathematics of Arrays: DNF to ONF to generic design

The C source programs, presented herein, come from the algebraic formulation of the MoA MM, that
was then hand-derived (Ψ-Reduced) to a DNF (Denotational Normal), semantic form, that is defined
in terms of cartesian coordinates. This proces allows us to systematically, and in the future automati-
cally, produce corresponding C code for vector-parallel execution. Every full-length cartesian coordinate
i⃗ ≡< i0, ..., in−1 > where n ≡ (δξ), the dimensionality(δ) of an arbitrary array(ξ), and has a 1-1 cor-
respondence to its layout in memory given shapes of data and architecture. By ”layout in memory” we
mean the general concept of mapping and distributing data, in this case an array’s elements, onto the
target hardware architecture which is assumed to be itself a multi-dimensional array of memory vectors.
The base level of that architecture topology is a single processing unit, for example one CPU core, onto
which a 1-dimensional array or vector is mapped. When C code is generated for processing that vector,
the result is a for-loop traversing a (flat) C array. The next level in the hierarchy of architecture is a
CPU, viewed as a vector of cores, onto which a two-dimensional array is mapped: the first dimension
representing a core that will process a line assigned to it in the shared memory. So,

∀ i⃗ s.t. 0 ≤∗ < i0, ..., in−1 > <∗ (ρξ)

i⃗ψξ ≡ (rav ξ)[γrow (⃗i; ρξ)]

To the left of ≡ we are in the domain of the Psi Calculus. When a full cartesian coordinacte i⃗ is used as the
left argument to the ψ function it denotes how to obtain an arbitrary scalar using cartesian coordinates.
This cartesian coordinate is ”full” because it’s length is the same size as the dimensionality of the array
ξ. The ψ function is at the heart of the Psi Calculus. The bracket notation to the right of ≡ denotes
the transformation of a cartesian coordinate in the Psi Calculus, to where it is located in the computer.
rav denotes the flatening of an array such that the offset would mean an offset from the address of the
begining of the array mentioned. Here, we begin to relate abstract coordinates to their layout in memory.
γ denotes a family of mapping functions: row, column, sparse, etc. The bracket notation with ”for all”
maps directly to the ”for” statement in C. We note that C is used as an interface to HDLs[7]. For example
For example MoA GEMM was easily implemented on FPGAs using the C programs generated from the
ONF directly using Verilog HDL.

2.2 MoA Matrix Multiplication: MoAGeMM

The general matrix-matrix multiplication (GEMM) in MoA is a special case of the inner product for 2-D
arrays (matrices). Define A as an m× n matrix, B as n× p, and C as m× p. Let the following notation
denote the 2-d Matrix Multiplication.

C = A •B (1)

In MoA notation, the shapes are:

ρA = ⟨m, n⟩ ρB = ⟨n, p⟩ ρC = ⟨m, p⟩ (2)

Next, define the valid indices of the matrices:

∀ i, j, k ∋
{

0 ≤ i < m 0 ≤ j < p 0 ≤ k < n (3)

C = A •B is defined by the MoA psi expression, given the shapes above.

< i > ψC ≡ +red( < i, k > ψ A× (< k > ψB)) (4)

When reduced to it’s DNF, γrow is applied thus producing the MoA Operational Normal Form (ONF)
for GEMM and is given by the following ”generic” program.

C[(i× p) + j] :=

n−1∑
k=0

A[(i× n) + k] ×B[(k × p) + j] (5)
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Equation (5) is the generic code for a sequential program in MoA. In each of the ith rows of the resultant
array C, each scalar-vector operation involving the column index j is independent of each other. The
ith row of C is contiguously filled in by the summation of scalar-vector multiplications involving each
matrix element at the ith row and kth column of A (the scalar) with each kth row of B (the vector)
obtained by accessing the arguments contiguously. A row-wise sum reduction is then applied over the k
index to yield the final answer as the ith row in C. The design is parallel at every step, see Figure 1.

• parallel row operations
• each n parallel row operation is doing m parallel scalar vector multiplies
• all n operations can be summed in log n steps (ideally).
• everything is accessed contiguously

(
0 1 2

)
•

3 3 3
4 4 4
5 5 5



Cm×p

=

Am×n

×

Bn×p

Σ

Fig. 1: Visualizing MoAGEMM

2.3 ONF to Generic Sequential Design to Psi Generic Parallel Design

Equation 5 represents the beginning of a predictive general design for the implementation of the MoA
MM. What makes this algorithm different from all other MM designs, is that the MoA design always
accesses arrays contiguously and when MoA is used to formulate an algorithm, it can be derived, and
optimized mechanically.

The concept of dimension-lifting is defined by partitioning one or more dimensions into two. That
is, given any shape s⃗, s.t. τ s⃗ = δξ. The number of components in dimension i, i.e. si is partitioned into
np parts, thus defining new shapes si →< np, si/np > or < si/np, np >. This means that every loop
in the ONF can be partitioned into one or more loops to match components of the architecture chosen.
Begin by partitioning the rows loop of A into a two parts: one loop that indexes the processors and the
other loop defines how many rows are done sequentially within that processor. The next step is to map
these loops to OpenMP menmonics that support the theoretical partitioning in a general way. Also it is
essential that the mnemonics chosen provide performance scalability across architectures. Once that is
done, the columns loop of B and C are partitioned into two loops, one that defines the vector register
length, and the other, how many components of the columns must be loaded into the vector register.
The C programs in Table 7 depicts the sequential program and the sequential program lifted over rows.
The C programs in figure 8 depict lifting over columns as well as cache-blocked code.2

In order to mechanize and generalize mappings, the decision to use high-level mnemonics, e.g.
OpenMP, was made. Identifying the simplest, most general and reliable ones was our challenge here.

2.3.1 Generalizing, Lifting and Adapting to Hardware: The Theory

The previous section discussed partitioning one shape component of an array into two to associate a
chunk of sequential sections to a number of processors or registers. The rows of A were mapped to np
processors and the columns of B and C were mapped to vector registers of length rsize. Consequently,
the C code can be viewed as an MoA indexed expression. What differentiates the two expressions is that
the implementation now knows how to index the hardware used, thus providing cost functions.

What we’ve done so far is to lift two shape components: first over the rows of A and C then over the
columns of B and C.

2C interfaces with VHDL and Verilog. Thus, they are also possible as targets, making MoA an ideal interface to hardware design,
costs, and verification.
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A •B = C → A′ •B′ = C′

such that
ρ(A •B = C) → ρ(A′ •B′ = C′)

ρA → ρA
′
ρB → ρB

′
ρC → ρC

′

< m, n >→< np, m/np, n > < n, p >→< n, p/rsize, rsize >

< m, p >→< np, m/np, p/rsize, rsize >

Thus, at any instant of time we know where every index is. Notice that n was not partitioned. Thus,
< m, n, p >, defines the loop bounds that define the ONF that became a generic program written in C.
Lifting and compressing dimensions is done easily with γ′ and γ. Let np denote the number of partitions,
e.g. processors, the divisor that gives the first coordinate, Let s denote the shape component to be lifted
to < s⃗0s⃗1 > where s⃗0 = np and s⃗1 = s/np assuming s/np mod np ≡ 0

3 The target systems and source codes: algorithm variants

Having mathematically designed the high-level algorithm variants, we now had to take the MoA ONF to
C programs, add OpenMP pragmas and use compiler flags to communicate with the compiler. Identifying
pragmas and C flags that consistently worked across compilers and machines was a challenge. Although
there were numerous flags, and OpenMP directives, most turned out to be merely ”suggestions”, hence,
not useful as a general methodology.

Experiments were run using a single node of two machines provided by Sony Brook University’s
Ookami computer center: 1. Fujitsu’s A64FX that we call simply ”Ookami” and 2. Intel’s Skylake that we
call ”Intel”. We used three compilers: gcc on both machines, and fcc and icc on the A64FX and Skylake
respectively. Table 1 describes the machine attributes. The A64FX was targeted due to it’s success as
the highest performing supercomputer. The Intel Skylake was targeted to build upon successes with
previous experiments using cache blocked code[8, 9]. Ookami had multiple compilers. We initially chose
the fastest based on initial tests of sequential code, e.g. fcc. We later chose gcc to compare results on
two machines using the same compiler. The icc compiler was Intel’s compiler and was chosen to compare
with Fujitsu’s fcc. A natural hypothesis was that the native (fcc, icc) compilers were written by the
architecture’s experts and should outperform gcc.

The A64FX processor was developed by Riken and Fujitsu for the Japanese path to exascale comput-
ing. Called Fugaku, it is currently the fastest computer in the world, and the first such computer outside
of Japan. By focusing on crucial architectural details, the ARM-based, multi-core, 512-bit SIMD-vector
processor with ultrahigh-bandwidth memory promises to retain familiar and successful programming
models while achieving very high performance for a wide range of applications. It supports a wide range of
data types and enables both HPC and big data applications. Skylake, is Intel’s codename for its sixth gen-
eration Core microprocessor family. Skylake is a microarchitecture redesign using 14 nm manufacturing
process technology .

All compilers used have numerous flags to choose from. We chose the flags that we believed would
perform similar optimizations with the idea of scaling our designs with similar performance attributes
automatically. We started with the C programs mentioned above. From them the only OpenMP pragma
that was useful was the ”parallel for”. Although each loop could have been parallelized, multiple ”parallel
for” loops had no effect on performance. We also discovered that other optimizations, ideally done by
the compiler had to be done by hand, e.g. eliminating common sub expressions, pre-fetching and loop
unrolling, parameters that need further investigation to be fully automated. The programs listed in
Figures 9, 10, 11, 12 illustrate this. We also used a blocked design that showed high performance in
previous experiments on an Intel machine[8, 9]. This blocked design was based on cache-blocking and
performance was consistent on the Intel Skylake but not on the Fujitsu A64FX.

4 The timing experiments

Building upon ideas of shapes and optimizing memory processor layouts[10], blocks in experiments fit
the L1 Cache (64KiB/core), or 48 by 48 doubles. With two levels of memory we were able to predict
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Table 1: Machines Used

Characteristics Intel Skylake Fujitsu A64FX
Architecture x86 64 Arm.2−A+SVE
CPUs (cores) 36 48
Threads/CPU 1 1
CPU MHz 1764.320MHz 2000MHz
L1 cache 32KB 64KB

speedups using vector registers and multiple processors. We targeted one node with 4 Core Memory
Groups(CMGs), each with 12 threads per core (48 threads in total).

One aspect of experiments was to use flags that were basically the same across platforms. Another set
of experiments could identify what flags to extend given the plethora of flags available on each compiler.
We use, typically, fast or O3 to vectorize, a flag to identify which architecutre, a flag to identify OpenMP.
The only ones we used were prefetch and unroll. There would be a set of experiments to identify what
the best prefetch size should be and the amount of loops to unroll. There are obviously related to the
data and instruction cache sizes.

All of the experiments described in this paper target a single Node, which on the Ookami architecture
has four Core Memory Groups (CMGs), with up to 48 CPUs per Node, 12 per CMG. Some of our
current timing experiments target a mono-thread CPU and measure the efficiency of code vectorization.
Others use multi-threaded execution to measure the efficiency of openMP parallelization combined with
vectorization. Experiments were run using automated scripts to compile and run for varying sizes of
input square matrices. The executables were then submitted via a batch mechanism (slurm) to obtain
csv files used in our plots and analysis.

Plots in Figures 16b,16a illustrate the performance on both machines using the gcc and icc compilers
on the cache blocked code. Figures 18b and 18a are closeups of these experiments. Futher experiments
were not run due to licensing issues. The only experiments that were consistent with results obtained
previously [8, 9], were the ones run on Intel’s Skylake. The previous experiments were not run on large
matrices. This time, we noticed, that as matrix sizes increased performance degraded as can be seen
in Figure 16a and 18a. The plots in Figures 17a and 17b denote the experiments with rows sent to
processors, i.e. dimension lifted over the first loop. Figure 13 depicts parallel performance using the fcc
compiler on 2-48 processors.

5 Exploration of pre-execution decisions

We ran several thousands of similar experiments on the two available multicore architectures (that we call
”Fujitsu” and ”Intel” for short) measuring correct 3 execution speeds for increasing matrix sizes, aiming
for the best possible Flop rates and parallel efficiency. That is a common parallel computing practice.

Despite testing a single general algorithm (matrix multiplication) our experiments are part of a
methodology that is meant to be generalizable to any MoA-derived matrix code. Morevoer, we have used
up to 3 variants of the algorithm, variants whose C source code can easily be generated from different
but equivalent array expressions.

We validate a systematic approach to produce the best possible set of static parameters for our general
algorithm. We explored and ”solved” for the best choice of the following static parameters: algorithm
variant (choices of source code loops), compiler flags, compiler directives, and OpenMP
pragmas. Apart from the execution parameters, we also explored the usual ”size” parameters: input
matrix size and number of cores. Our current experiments only cover vectorization and multi-thread
(multi-core) parallelization but will extend to multinode, GPU and other architecture levels, using static
parameters that are specific to MPI, CUDA etc, and of course size parameters like the number of nodes
or kernels etc.

The preliminary conclusions about execution times for each choice of static parameters are:

• Execution times approximately follow a cubic-time curve as algorithm complexity predicts
• Irregularities in the shape of the timing curves are:

– localized around specific matrix sizes

3All matrix-multiplication results were checked to be numerically correct, which may not be the case for certain OpenMP runs
that raise race condition warnings.
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– dependent on the choice of algorithm variant
– appear on both architectures, but
– more frequent and larger on the Intel experiments that are faster
– appear related to cache sizes and blocking sizes

Our execution time prediction is currently limited to interpolation with small error percentages, but fails
to predict the irregularities (e.g. specific treatment of cache effects in c.f. work of Pawlowski et al. [11]).

We systematically ran such experiments for every combination of the execution parameters. Then
we summarized every experiment (curve) into its average and maximum execution speed (Flop count
from the matrix multiplication algorithm divided by runtime) in GFlops/s. Then searched the space
of static parameters separately on each architecture 4. The preliminary conclusions about the effect of
static parameters on average/maximum speed are:

• speed is monotonic along the dimension of almost every static parameter: one compiler is 95% of the
time faster than the other one, vectorization is almost always faster than non-vectorized run, etc.

• it was possible to use a naive steepest descent along axes (static parameters) to find the fastest choice
• once the fastest choice of static parameters was found, it was put to parallel speedup analysis which

measured scalability, comm-sync overheads etc.

On the Fujitsu A64FX node we ran 19 experiments, each one comprising from 9 to 100 runs of different
matrix sizes. One experiment covers a 4-dimensional value of static parameters and the experiment set
exhausts our search space. Because our experiments are exhaustive, we could select a favorable order on
the four static parameters. An open problem remains to solve before converting our methodology into a
(pre-)compilation method: how to select a good order on the static parameters to test, while minimizing
the number of experiments. For each static parameter in sequence we proceeded as follows: (a) partition
experiments by the values of that parameter and for each value obtain the average (or averages) execution
speed for that subset of all experiments; (b) then observe that one of the values of that parameter has
systematically equal or better performance than all others (this defines what we called ”good order” and
could always be found) and (c) dismiss all experiments with the other values of the given parameter (d)
then repeat for the next parameter on the remaining subset of experiments etc (figure 3).

This procedure amounts to a steepest descent for execution time in the space of static parameters, with
the simplification of moving along a ”Manhattan topology”. Once the best vector of static parameters
has been selected, we measured its parallel performance: runtime vs number of cores, parallel acceleration
(monocore runtime / runtime) and parallel efficiency (acceleration / number of cores). Those values are
displayed in the 3 graphs of figure 3. The lower graph of the last graphic is the remainder for 100of
efficiency, that is the percent of acceleration that is lost to communication and synchronization.

For the Fujitsu architecture, the absolute speeds measured ranged from 0.3 to 5.6 GFlops/s/core
which is still far from the published peak rates above from 50 GFlops/s/core. We have found no simple
explanation for this if only that the peak rates are either theoretical (with no guarantee of correct
numerical results in the presence of dependencies) or published from hand-written assembly code values.
Nevertheless the (relative) parallel accelerations are impressive and (relatively) better than those observed
on the Intel architecture: 95% effiency when using 12 cores and still 80% efficiency when using 48 cores,
twice as many as the Intel architecture.

For the Intel architecture, the absolute speeds measured ranged from 0.3 to 7.8 GFlops/s/core and
often 2 to 3 times faster than similar experiments on the Fujitsu architecture. But the reader is reminded
that cross-archictecture comparisons are very delicate.

Our parameter selection process was applied to our large (333) set of experiments on the Intel archi-
tecture. An ordering was chosen on the four static parameters selected and then successive tests allowed
us to conclude that one value was systematically no worse than the other for that parameter. The final
selection favored the native icc compiler, while gcc has beaten Fujitsu’s native fcc compiler for our other
experiments.

The (relative) Intel parallel accelerations are good but not as high as the ones for Fujitsu, moreover
only 24 cores were available instead of 48: 75% efficiency when using 24 cores, and as the graph in
figure 6 shows, there are unexplained irregularities in the parallel efficiency curve. Part of the reason for
those could be the finer time scale at which they are measured, often 2-3 times faster than the Fujitsu

4comparing similar static parameters across architectures is to us an open problem because the compilers vary and the effects
of parameters on different hardware appears unpredictable. In other words, we treat hardware as a black box.
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experiments. But since all values come from averages of averages, we postulate that they exhibit some
of the architecture’s quantitative feature. Such irregularities are usually visible in a single experiment’s
timing curve as the array size varies.

The experiments and parameter analyses were designed as a proof of concept for an pre-compilation
methodology that can automate the tuning and porting of parallel C codes that were themselves generated
automatically from an array algebra expression.

The measures presented here also help compare the two architecture nodes that were tested: better
average Flops rate for the Intel node but more nodes and more scalability for the Fujitsu node. But that
is not our main concern. We have begun to demonstrate that a mixture of performance testing, and
small-scale optimization can lead to mostly predictable, scalable and automatic execution of declarative
array expressions.

6 Conclusions and future work

A goal of MoA research is to identify common algorithms, e.g. matrix multiplication (MM), Kro-
necker product (KP), and Hadamar product (HP), then mechanically produce scalable, high-performance
parallel algorithms using high-level constructs, e.g. OpenMP, MPI, OpenACC and CUDA.

In this set of experiments we’ve shown how to use dimension lifting to break up 2 and 3 loops using
OpenMP thus producing 2 or 3 variants of the same matrix multiplication algorithm. Regarding multicore
execution, what we’ve discovered is that although OpenMP has numerous ways to provide parallelization,
these are just suggestions (e.g. using Static or Collapse pragmas) may or may not improve performance.
Consequently, using them is not scalable (at this time) except the only reliable pragma that has been
found: parallel for. It produces reliable improvements across two different architectures, the A64FX
and Intel Skylake. For example, OpenMP collapse caused race conditions producing incorrect results.
This unreliable behaviour is similar to unstructured use of MPI where non-deterministic behaviour can
be produced by hand-written programs.

In the dimension of scalability, we were also able to determine that more processing elements did
not improve the performance for 5164 by 5164 matrices and reached a maximum at 24 threads on both
machines. It is like that as the data size increased that more threads were beneficial. That was validated
by one of our experiments where we tried over 20000 by 20000. Execution times and queue time limits
kept us from running these large size experiments, thus limiting them to 5164 by 5164. The most relevant
question here would be to determine the maximum matrix size where performance begins to degrade on
A64FX or Skylake.

Finally, programming tools will be designed to automate the already systematic generation of C
source code from MoA array expressions. Dimension lifting is just one of the rich set of transformations
to be experimented with. Given a simple-minded definition of algorithm from MoA primitives (array
constructors, transformers like transposes and dim-lifting, reductions like dot products) it is possible to
explore a whole set of equivalent algorithm variants, each one entering the optimization process that we
described above so as to produce the best possible execution time for the target architecture. For example
an open question is to discover a sequence of MoA transformations from naive MM to a Stassen-like
block-recursive algorithm, or prove that the algebra is not expressive enough.

The next steps in this research should determine whether our designs scale to multiple nodes using
MPI, to explore their behaviour on very large multicore nodes (such as the 8 CPU Intel Cooper lake, 224
cores, 6To RAM ”SMP” node available at CRIANN in Normandy) and finally design a GPU and then
hybrid adaptation of our approach which is currently restricted to vectorization + multicore paralleliza-
tion. Another open problem is: how close do we get from ’optimal’ performance for a given architecture?
This is unknown at this point because it involves first of all defining what optimal speed is, possi-
bly an architecture- and source-code dependent maximal speed beyond which race conditions make the
numerical results unsafe.
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Fig. 2: Static parameters selection: Fujitsu architecture

Fig. 3: Parallel execution time, speedup and efficiency (speedup/cores): Fujitsu architecture
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Fig. 4: Static parameters selection: Intel architecture

Fig. 5: Parallel execution time and speedup vs cores: Intel architecture

Fig. 6: Parallel efficiency (speedup/cores): Intel architecture
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Fig. 7: Original MoA MM without then with dimension lifted over rows
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Fig. 8: MoA MM dimension lifted over columns, without & with blocking
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#include <stdio.h>
#include <sys/time.h>

 void mm_rows_pragmaomp(double * restrict C,
              double * restrict A,
              double * restrict B,
   int m, int n, int p, int np)
{
    int i,j,k,sigma;
//#pragme omp parallel for shred (A,B,C)
     for (unsigned k=0;k<np;k++) {
       const unsigned int t1 = (m/np)*k;
         for (unsigned ip=0;ip<(m/np);ip++){
             const unsigned int t2 = ip+t1;
             const unsigned int t3 = t2*p;
             const unsigned int t6 = t2*n;
             for (unsigned sigma=0; sigma<n; sigma++){
                 const unsigned int t4 = t6+sigma;
                 const unsigned int t5 = sigma * p;
//#pragma prefetch
//#pragma ivdep
//#pragma unroll (8) //cacheline(skylake=64) = 64 size/double
//#pragma unroll (32) //cacheline(a64fx=256) = 256/double
                 for (unsigned j=0;j<p;j++) {
                   const unsigned int a_index = t4;
                   const unsigned int b_index = t5+j;
                   const unsigned int c_index = j+t3;
       C[c_index]=C[c_index]+A[a_index]*B[b_index];
                 }}}}}

Fig. 9: mm rows with common sub expressions removed

#include <stdio.h>
#include <sys/time.h>

 void mm_rows_pragmaomp(double * restrict C,
              double * restrict A,
              double * restrict B,
   int m, int n, int p, int np)
{
#pragma omp parallel for shared (A,B,C)
     for (unsigned k=0;k<np;k++) {
       const unsigned int t1 = (m/np)*k;
         for (unsigned ip=0;ip<(m/np);ip++){
             const unsigned int t2 = ip+t1;
             const unsigned int t3 = t2*p;
             const unsigned int t6 = t2*n;
             for (unsigned sigma=0; sigma<n; sigma++){
                 const unsigned int t4 = t6+sigma;
                 const unsigned int t5 = sigma * p;
//#pragma prefetch
//#pragma ivdep
//#pragma unroll (8) //cacheline(skylake=64) = 64 size/double
//#pragma unroll (32) //cacheline(a64fx=256) = 256/double
                 for (unsigned j=0;j<p;j++) {
                   const unsigned int a_index = t4;
                   const unsigned int b_index = t5+j;
                   const unsigned int c_index = j+t3;
       C[c_index]=C[c_index]+A[a_index]*B[b_index];
                 }}}}}

Fig. 10: mm rows, common sub expr. removed with OMP
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void mm_block(double * restrict C,
         const double * restrict A,
         const double * restrict B,
         int m, int n, int p, int mb, int nb, int pb)
{
// #pragma omp parallel for shared(A, B, C)
    for (unsigned int ip = 0; ip < (m / mb); ip++) {

        for (unsigned int sigmap = 0; sigmap < (n / nb); sigmap++) {

            for (unsigned int jp = 0; jp < (p / pb); jp++) {
                const unsigned int t0 = jp * pb;

                for (unsigned int k = 0; k < mb; k++) {
                    const unsigned int t1 = ip + ((m / mb) * k);
                    const unsigned int t3 = t1 * p;
                    const unsigned int t4 = t1 * n;;

                    for (unsigned int l = 0; l < nb; l++) {
                        const unsigned int t2 = sigmap + ((n / nb) * l);
                        const unsigned int t5 = t2 * p;
                        //#pragma prefetch
                        //#pragma ivdep
                        //#pragma unroll (8) //cacheline(skylake=64) = 

64/double=8
                        //#pragma unroll (32) //cacheline(a64fx=256) = 

256/double=8
                        for (unsigned int kp = 0; kp < pb; kp++) {
                            const unsigned int a_index = t4 + t2;
                            const unsigned int b_index = t5 + t0 + kp;
                            const unsigned int c_index = t0 + kp + t3;

                            C[c_index] += A[a_index] * B[b_index];
                        }
                    }
                }
            }
        }
    }
}

Fig. 11: mm block common sub expr. removed

void mm_block(double * restrict C,
         const double * restrict A,
         const double * restrict B,
         int m, int n, int p, int mb, int nb, int pb)
{
 #pragma omp parallel for shared(A, B, C)
    for (unsigned int ip = 0; ip < (m / mb); ip++) {

        for (unsigned int sigmap = 0; sigmap < (n / nb); sigmap++) {

            for (unsigned int jp = 0; jp < (p / pb); jp++) {
                const unsigned int t0 = jp * pb;

                for (unsigned int k = 0; k < mb; k++) {
                    const unsigned int t1 = ip + ((m / mb) * k);
                    const unsigned int t3 = t1 * p;
                    const unsigned int t4 = t1 * n;;

                    for (unsigned int l = 0; l < nb; l++) {
                        const unsigned int t2 = sigmap + ((n / nb) * l);
                        const unsigned int t5 = t2 * p;
                        //#pragma prefetch
                        //#pragma ivdep
                        //#pragma unroll (8) //cacheline(skylake=64) = 

64/double=8
                        //#pragma unroll (32) //cacheline(a64fx=256) = 

256/double=8
                        for (unsigned int kp = 0; kp < pb; kp++) {
                            const unsigned int a_index = t4 + t2;
                            const unsigned int b_index = t5 + t0 + kp;
                            const unsigned int c_index = t0 + kp + t3;

                            C[c_index] += A[a_index] * B[b_index];
                        }
                    }
                }
            }
        }
    }
}

Fig. 12: mm block common sub expr. removed, OMP
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Fig. 13: Scalable OpenMP for 2-48 cores

Fig. 14: Collapse(5) versus Static: Static executes sequentially

Fig. 15: Collase(5) versus Two Pragmas using Row Partitioning: Close Up

16



(a) Blocked MM with icc compiler (b) Blocked MM with gcc

Fig. 16: Blocked Performance

(a) Rows MM with icc

(b) Rows MM with gcc
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(a) Blocked MM with icc compiler:closeup (b) Blocked MM with gcc:closeup

Fig. 18: Blocked Performance:closeup

(a) Rows MM with icc:closeup

(b) Rows MM with gcc:closeup
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Fig. 20: Optimized MoA Blocked on 1, 24, and 48 processors.

Fig. 21: Optimized MoA Blocked on 1, 24, and 48 processors: Close Up
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