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ABSTRACT

We study a theoretical and algorithmic framework for structured prediction in the online learning
setting. The problem of structured prediction, i.e. estimating function where the output space lacks
a vectorial structure, is well studied in the literature of supervised statistical learning. We show that
our algorithm is a generalisation of optimal algorithms from the supervised learning setting, and
achieves the same excess risk upper bound also when data are not i.i.d. Moreover, we consider
a second algorithm designed especially for non-stationary data distributions, including adversarial
data. We bound its stochastic regret in function of the variation of the data distributions.

1 Introduction

Online learning is a subfield of statistical learning in which a learner receives a flow of data generated by an environ-
ment (Cesa-Bianchi and Lugosi, 2006; Orabona, 2023; Hazan, 2023). The learner has to learn from the flow of data,
and adapt to the data which could be non-stationary or adversarial. More formally, at each time step t, the learner
receives a context xt ∈ X from which he makes a prediction ẑt = ft(xt) ∈ Z . His prediction is then compared to
the true label yt ∈ Y , which is observed. The learner than pays an error ∆(ẑt, yt) measured by a known loss function
∆ : Z × Y → R. The goal of the learner is to minimise his regret

RT =

T
∑

t=1

∆(ẑt, yt)−∆(f∗
t (xt), yt) , (1)

where f∗
t (xt) ∈ argminz∈Z∆(z, yt). The inputs xt and labels yt are generated sequentially by the environment and

could be adversarial. This could model the change of behaviour of a customer or an evolution of the environment
such as climate change. Note that in our framework, unlike the standard regret definition in online learning, the
learner’s performance is compared to the best function ft at each round, similar to the approach used in dynamic
regret (Herbster and Warmuth, 1998).

When the output space contains a vectorial structure, statistical learning provides many algorithms with statistical
guarantees. However more and more applications involve an output space which lacks a linear structure, such as trans-
lation (Lacoste-Julien et al., 2006), image segmentation (Forsyth and Ponce, 2002), protein folding (Joachims et al.,
2009), ranking (Duchi et al., 2010). These problems are often referred as structured prediction problems, because the
output space may be represented for instance as a sequence, a graph, or an ordered set. In practice, an ad hoc method
is designed to solved each of these problems and is most of the time based on surrogate methods and empirical risk
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minimisation. If they achieve good results in practice, they however lack generalisation and are not built in order to
have good theoretical guarantees.

We consider the structured prediction framework of Implicit Loss Embedding (ILE) (Ciliberto et al., 2020), in which
the loss is of the form ∆(z, y) = 〈ψ(z), ϕ(y)〉 for some unknown and infinite dimensional feature maps ψ : Z → H
and ϕ : Y → H into an unknown RKHS H (see Definition 1). Such an assumption is satisfied by most losses
for rich enough feature maps and used in the practical applications detailed above. (Ciliberto et al., 2020) study this
framework in a statistical supervised learning setting and provide a general algorithm for general problems including
discrete outputs and manifold regression. Their algorithm comes with statistical guarantees on the excess risk when
data are i.i.d. only.

In the context of prediction of arbitrary sequences, the closer works to ours are (McMahan and Orabona, 2014) and
(Pacchiano et al., 2018). On the one hand, (McMahan and Orabona, 2014) analyses a loss written as an inner product in
a Hilbert space ∆(z, y) = 〈z, ϕ(y)〉. However, they assume that the action space Z is itself a Hilbert space H which
thus has a vectorial structure, contrary to the setting we consider. On the other hand, Pacchiano et al. (2018) also
considers a loss expressed by a kernel with full information and partial feedback, but they do not consider contextual
information xt and require prior knowledge of the kernel feature maps ψ and ϕ, which we do not need.

Contributions Our work is the first to study structured prediction in the framework of prediction of arbitrary se-
quences.

We first introduce a new algorithm, called OSKAAR (Algorithm 1) and inspired by the work of (Ciliberto et al., 2020)
in the statitical framework. Given a RKHS G from X to H associated to a kernel of the feature space k : X ×X → R

and a regularization parameter λ, OSKAAR achieves a regret upper-bound (Theorem 2) of order1:

RT .

√

T
(

deff(λ) + min
g∈G

LT (g)
)

, where LT (g) :=

T
∑

t=1

||g(xt)− ϕ(yt)||2H + λ||g||2G ,

where deff(λ) is the effective dimension (13) that measures the size of the RKHS and LT (g) measures how the RKHS
g is able to interpolate features of the data. In particular, if there is a function g∗ ∈ G that perfectly models the features
(ϕ(yt))t, i.e. g∗(xt) = ϕ(yt) for all t, noting that deff(λ) . T/λ, the above result yields a regret bound of the order
of O(T 3/4). However, such an assumption is strong even for i.i.d. data, and the above bound might be linear in T in
the worst-case. in the worst-case scenario. This is not surprising, as the learner’s performance is compared to the best
possible baseline argminz∈Z∆(z, yt) at each time step, which is generally unattainable.

To weaken the above assumption, we also prove the following expected regret bound for OSKAAR (Theorem 3):

E[RT ] .
√

T
(

deff(λ) + min
g∈G

L̄T (g), where L̄T (g) = E

[ T
∑

t=1

‖g(xt)− E[ϕ(yt)|xt]‖2H
]

+ λ‖g‖2G ,

where the expectation is taken with respect to the possible randomness of the data (xt, yt). In the context of arbitrary
sequences, the two above results exactly match. Yet, the assumption that there exists some g∗ such that g∗(xt) =
E[ϕ(yt)|xt] for all t, is much weaker in general than assuming g∗(xt) = ϕ(yt) since random variation of ϕ(yt) are
not considered. Such an assumption is weak in the i.i.d. statistical framework and standard in the analysis of Kernel
Ridge Regression (Caponnetto and De Vito, 2007; Steinwart and Christmann, 2008). It corresponds to assuming that
the data distribution lies in the RKHS. In particular, we show that our analysis allows to recover (up to a log factor)
the optimal rate of Ciliberto et al. (2020) in the i.i.d. setting, by designing an estimator f̄T that satisfies the excess risk
upper-bound:

Ex,y[∆(f̄T (x), y)−∆(f∗(x), y)] . T−1/4 + T−1/2
√

log(δ−1) w.p. 1− δ.

Our estimator f̄T is constructed via a careful online to batch conversion to face with two challenges: the loss ∆(z, y)
being non-convex in z standard online to batch conversion techniques that use f̄T =

∑T
t=1 ft are not possible here; our

result holds with high-probability which is challenging to obtain with such techniques (van der Hoeven et al., 2023).

The above result still hold under the assumption that g∗(xt) = E[ϕ(yt)|xt] for all t for some g∗, which is weak
for stationary data but strong in our framework of arbitrary sequences. Our third contribution aims at relaxing this
assumption. We design a second algorithm, referred to as SALAMI (Algorithm 2), that achieves under the assumption
that there exists g∗t ∈ G such that g∗t (xt) = E[ϕ(yt)|xt] for all t:

E[RT ] =

{

Õ(V
1/6
G T 5/6) if λ = V

−1/3
G T 1/3

Õ(V
1/4
0 T 3/4) if λ = V

−1/2
0 T 1/2

, (2)

1The symbol . is a rough inequality that neglects contants and logarithmic factors.
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where V0 and VG are two different measures of the non-stationarity of the sequence (g∗t ):

V0 = 1 +

T
∑

t=2

1{g∗t 6= g∗t−1} and VG := ‖g∗1‖G +

T
∑

t=2

‖g∗t − g∗t−1‖G .

Paper outline In the next section, we recall the setting of the problem and the background on the ILE definition.
In Section 3.1, we introduce our first algorithm Online Structured prediction with Kernel Aggregating Algorithm
Regression (OSKAAR) and the algorithm from the batch setting. In section 3.2, we bound the regret of our algorithm.
In Section 4, we recover the convergence rate from the batch setting without stochastic assumption. And in Section
5, we introduce our second algorithm Structured prediction ALgorithm with Aggregating MIxture (SALAMI) for non-
stationary data and bound its stochastic regret. The details of the proofs can be found in appendix. Moreover, in
Appendix C and E we provide bounds in high probability for both the stationary and the non-stationary settings.

2 Problem Setting and Background

We recall the setting and introduce the main notations used throughout the paper. We then discuss the limitations of
the previous works. We denote by X ,Y and Z respectively the input, label and output spaces of the learning problem.
We denote by ∆ : Z × Y → R the loss function, which measures the error between a prediction in Z and a true label
in Y . Having two different spaces Y and Z allows to consider applications where the outputs do not match the labels
such as ranking (Duchi et al., 2010).

Online Learning Framework Our online framework is for-
malised as a game between a learner and an environment, see
Framework 1. At each time step t ≥ 1, the user receives a con-
text xt ∈ X , computes a prediction ẑt = ft(xt) ∈ Z based on
the current context xt and the history (x1, y1, . . . , xt−1, yt−1).
The true label yt ∈ Y is then revealed to the learner, which
incurs a loss ∆(ẑt, yt). In this framework we are in the full
information setting. That is to say that observing the label yt
enables the learner to compute the loss ∆(z, yt) for all z ∈ Z .

Framework 1: Online learning framework
with contextual information
for Each time step t in 1 . . . T do

Get information xt ∈ X
Compute the prediction

ẑt = ft(xt) ∈ Z
Observe the label yt ∈ Y
Get loss ∆(ẑt, yt) ∈ R

Update predictor ft+1

end

The online learning setting allows us to also work with adversarial or non-stationary data, i.e. data that are not i.i.d.
This could model a change of the environment. Throughout the paper we consider a loss ∆ : Z × Y → R that admits
an Implicit Loss Embedding (ILE), see Definition 1, with feature maps ψ, ϕ, and a Hilbert space H.

Definition 1 (ILE (Ciliberto et al., 2020)). A continuous map ∆ : Z × Y → R is said to admit an Implicit Loss
Embedding (ILE) if there exists a separable Hilbert space H and two measurable bounded maps ψ : Z → H and
ϕ : Y → H, such that for any z ∈ Z and y ∈ Y we have

∆(z, y) = 〈ψ(z), ϕ(y)〉H (3)

and ||ϕ(y)||H ≤ 1. Additionally, we define c∆ = supz∈Z ||ψ(z)||H.

In particular we do not assume that the loss is convex or differentiable. The metric to evaluate the performance of a
learning algorithm is the regret defined as

RT =

T
∑

t=1

∆(ẑt, yt)−∆(f∗
t (xt), yt) (4)

where f∗
t (xt) ∈ argminz∈Z∆(z, yt) is used as the baseline. Taking the optimum inside the sum as we do is stronger

than taking the optimum of the sum as is usually done.

Structured Prediction This is the most general setting in supervised learning. We say that a learning problem is
structured if we have one of the following conditions (Vila, 2022):

• The loss is different than the 0-1 loss : ∆(z, y) 6= 1[z 6= y].
• The size of the output space is exponentially larger than the natural dimension of the output elements.

The first condition implies that some pairs of outputs and labels are closer than others. For instance, two sets that differ
by only one element should be closer to each other compared to sets with an empty intersection. The second condition

3
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characterizes a space of sequences, where the cardinality is exponential in the size of the dictionary used to build the
sequences. The following spaces and losses are structured:

• Subsets of JkK := {1, . . . , k} with the negative F1 score ∆(z, y) = −2|z ∩ y|/(|z|+ |y|)
• Ordered elements: Z = Y = (JkK, <) with ∆(z, y) = |z − y|
• Sequences of k elements of a dictionary D with the Hamming distance ∆(z, y) = ‖z − y‖0
• Ranking, Information Retrieval: the goal is to predict an ordered list of documents or web pages from x ∈ X

a query in a search engine. The output space Z is the space of permutations and the label space Y contains
scalar scores representing the relevance of each document for the query (Duchi et al., 2010).

Note that we do not assume to have a vectorial structure in the output or the label space.

Standard Approach The classical learning approach, in the supervised learning setting, is Empirical Risk Minimi-
sation (ERM) (Devroye et al., 2013). The expected risk is estimated by the empirical risk, and fn computed as its
minimiser. The underlying idea is that fn should approach f∗ as size of the sample n grows. The estimator fn is
defined as follows

fn = argmin
f∈F

1

n

n
∑

i=1

∆(f(xi), yi) (5)

where F is a class of function and an hyper-parameter of the method. When the loss ∆ is convex and the output space
Z has a vectorial structure ERM becomes an efficient strategy for a large family of spaces F . However this strategy
presents some limitations (Ciliberto et al., 2020):

• Modeling. If we do not assume to have a vectorial structure on the output space Z , it is not clear how to
design a suitable function space F . For instance, given f1, f2 : X → Z , there is no guarantee that f1 + f2
takes values in Z as well.

• Computations. If the function space F is non-linear or the loss in non-convex, solving ERM can be chal-
lenging. Most approaches, such as gradient descent, are based on the regularity of the loss or the optimisation
domain.

Existing results in the batch statistical framework We briefly recall the main results from Ciliberto et al. (2020).
The authors introduced the ILE assumption (see Def. 1) and studied learning problems that satisfy this definition in the
supervised learning setting. The mathematical constructs introduced in this definition, such as the feature maps ψ, ϕ
and the Hilbert space H, are used solely for analysis purposes and algorithm design. Notably, they are not required for
making predictions. An important feature of their work, which we also achieve, is that our online algorithms do not
need prior knowledge of ψ, ϕ and H.

Let (xi, yi)ni=1 be a sample of i.i.d. data. Ciliberto et al. (2020) consider the ERM estimator gn : X → H that learns
the features ϕ(y) as

gn := argmin
g∈G

1

n

n
∑

i=1

‖ϕ(yi)− g(xi)‖2H + λ‖g‖2G (6)

over a known kernel space G. Choosing a kernel space gives us a closed form solution and strong algebraic properties
to analyse the algorithm. Moving the problem to the feature space H, enables us to enjoy the vectorial structure of H.
The authors then define the predictor fn : X → Z as an optimisation problem using gn as follows

fn(x) := argmin
z∈Z

〈ψ(z), gn(x)〉H = argmin
z∈Z

n
∑

i=1

αi(x)∆(z, yi) , (7)

where αi are coefficients obtained by resorting to the representer theorem. Let E and R be the expected risk of
fn : X → Z and gn : X → H respectively and f∗ and g∗ be their respective minimizers. Ciliberto et al. (2020)
show that the excess risk of fn is controlled by the one of gn enabling them to carry out their analysis. The following
comparison inequality and convergence rate are derived:

E(f)− E(f∗) .
√

R(g)−R(g∗) ≤ O
(

n−1/4 log
(

δ−1
)

)

w.p. 1− δ

where . does not take into account multiplicative constants independent of n and δ.

Limitations of previous works This work is limited to the batch statistical framework with i.i.d. data. However
some applications involve a flow of data; or data generated by non-stationary distributions including adversarial data.
Our work is the first to study structured prediction in the setting of arbitrary sequences.

4



A PREPRINT - JUNE 17, 2024

3 A General Algorithm for Online Structured Prediction

In this section we introduce our algorithm OSKAAR (Online Structured prediction with Kernel Aggregating Algorithm
Regression) and bound its regret.

3.1 Introducing our Algorithm: OSKAAR

To simplify notations, we may denote ϕ(yt) by ϕt ∈ H. We recall that the feature map ϕ : Y → H is constant over
time, the index t in this notation denotes only the variation of yt over time.

Algorithm 1: OSKAAR – Online Structured prediction with Kernel Aggregating Algorithm Regression

Input: λ > 0, kernel k : X × X → R

for Each time step t in 1 . . . T do
Get information xt ∈ X
Update βt(x) = (Kt + λI)−1vt(x) where Kt and vt are defined after Eq. (10)
ẑt = argminz∈Z〈ψ(z), ĝt(xt)〉H = argminz∈Z

∑t−1
s=1 β

t
s(xt)∆(z, ys)

Observe ground truth yt ∈ Y
Get loss ∆(ẑt, yt) ∈ R

end

We introduce our first algorithm, see Algorithm 1, which is inspired by the learning procedure of Ciliberto et al. (2020).
However, we use a variant of Kernel Ridge Regression that has a different regularisation which is crucial in the context
of arbitrary data, Kernel Aggregating Algorithm Regression (KAAR), see Gammerman et al. (2012); Jézéquel et al.
(2019). At each time step t ∈ JT K, we compute ĝt : X → H as follows

ĝt := argmin
g∈G

t−1
∑

s=1

‖g(xs)− ϕs‖2H + λ‖g‖2G + ‖g(xt)‖2H , (8)

where G is a vRKHS with feature map φ such that supx∈X‖φ(x)‖ ≤ κ <∞, see Appendix A for more details. And
ft is defined as an optimisation problem with respect to ĝt as in the batch setting

ft(x) := argmin
z∈Z

〈ψ(z), ĝt(x)〉H = argmin
z∈Z

t−1
∑

s=1

βt
s(x)∆(z, ys) , (9)

where the coefficients βt
s come from the representer theorem, and are defined as follows

βt(x) = (Kt + λI)−1vt(x) (10)

with Kt ∈ R
t×t the Gram matrix defined by (Kt)i,j = k(xi, xj), and vt(x) ∈ R

t defined by (vt(x))s = k(x, xs).
Thus, at each time step t, the prediction is computed by

ẑt := ft(xt) = argmin
z∈Z

t−1
∑

s=1

βt
s(xt)∆(z, ys). (11)

Hence, we note that, as in the supervised learning setting, the mathematical objects ψ, ϕ,H introduced in the definition
of ILE are not needed to make a prediction. We only need the knowledge of the different labels ys in order to compute
∆(., ys).

3.2 Regret Bound of OSKAAR

We start our analysis by proving a comparison inequality, see Lemma 1. It extends any bound on the empirical risk
of (ĝt)t to a bound on the regret of (ft)t. We can therefore carry out the analysis on (ĝt)t for which we have a closed
form solution and lies in a space with algebraic assumptions.

Lemma 1 (Online Comparison Inequality). Let (ft)t and (ĝt)t be defined as in (9) and (8) respectively. Then we have

RT ≤ 2c∆
√
T

√

√

√

√

T
∑

t=1

||ϕt − ĝt(xt)||2H . (12)

5
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Compared to Ciliberto et al. (2020), our online comparison inequality does not provide an upper bound with respect
to a global minimiser g∗. The baseline is not reflected in the right hand side of this inequality. Finding a comparison
inequality which controls the regret with respect to a baseline in the same class of functions than our estimators is
left for future works. However, this result still shifts the problem into the feature space which possesses a lot more
algebraic properties. It allows us to derive the regret bound of Theorem 2. The regret bound is expressed with respect
to the effective dimension deff(λ) (Rudi et al., 2016; Zadorozhnyi et al., 2021) defined by

deff(λ) := Tr(K(K + λI)−1) ∀λ > 0 (13)

where K ∈ R
T×T is the Gram matrix at time T . The effective dimension measures the complexity of the underlying

RKHS based on a given data sample. It is a decreasing function of the scale parameter λ and deff(λ) → 0 when
λ → ∞. And when λ → 0 it converges to the rank of K . Moreover it is always upper bounded by deff(λ) ≤ κ2T/λ.
We obtain the following regret bound.

Theorem 2 (Regret Bound of OSKAAR). Let (ft)t be defined as in (9). Then for all λ > 0 and T ≥ 1 we have

RT ≤ 2c∆
√
T

√

log

(

e+
eκ2T

λ

)

deff(λ) + min
g∈G

LT (g) (14)

where Lt(g) :=
∑t

s=1 ||ϕs − g(xs)||2H + λ||g||2G for every g ∈ G.

The proof of this statement is postponed to Appendix A. In the worst case scenario, if ϕt is a Rademacher variable,
ming∈G LT (g) is linear in T yields a linear regret bound. This is due to the fact that we are comparing our model
to the best possible z ∈ Z at each time step, which is much too rich and linear regret is unavoidable in the worst
case. On the other hand, if there is a function g∗ ∈ G that perfectly models the features (ϕt)t, i.e. g∗(xt) = ϕt for all
t, by taking λ =

√
T/‖g∗‖G and bounding the effective dimension by deff(λ) ≤ κ2T/λ, we obtain RT ≤ Õ

(

T 3/4
)

.
However, the assumption

∑T
t=1‖g∗(xt)− ϕt‖2H = 0 is too strong for adversarial data and even for i.i.d. data with

white noise. These considerations motivate the study of the expected regret in the next section and the cumulative risk
in Appendix C.

Computation time At each time step t, we need to compute the vector βt(xt) ∈ R
t. Thus the per round complexity

is of O(t2). If the kernel satisfies the capacity condition deff(λ) ≤ (T/λ)β for β ∈ [0, 1] (see Appendix D.1), using
a method based on Nyström approximation (Jézéquel et al., 2019), it is possible to recover the same regret with a
computational complexity of O(deff(λ)

4/(1−λ)).

4 Stochastic Regret Bounds

In this section, we generalize the results from the supervised learning setting in Ciliberto et al. (2020). We achieve
the same convergence rate as in the batch statistical framework, although our results hold without stochastic assump-
tions. We are now interested in bounding the expected regret E[RT ], where the expectation is taken over the possible
randomness of the data (x1, y1, . . . , xT , yT ). Note that the data are still generated sequentially and can be adapted to
the player, in particular they can be adversarial and follow Dirac distributions. Note that the data are still generated
sequentially and can adapt to the player, meaning they can be adversarial and follow Dirac distributions. Taking the
expectation helps to avoid the noise inherent in the data and enables us to obtain results closer to Ciliberto et al. (2020)
by replacing ϕt with to E[ϕt|xt] in our result. We study the same algorithm (OSKAAR) as in the previous section, see
Algorithm 1. We obtain the following regret bound and its corollary proved in Appendix B.

Theorem 3 (Expected Regret Bound). Let (ft)t be defined as in (9). Then, for any g∗ ∈ G, λ > 0 and T ≥ 1, we have

E[RT ] ≤ 2c∆
√
T

√

√

√

√deff(λ) log
(

e+ eκ2T
λ

)

+ λ‖g∗‖2G + E

[

T
∑

t=1

‖g∗(xt)− E[ϕt|xt]‖2H

]

. (15)

Corollary 4 (Expected Regret Bound). With the same assumptions than Theorem 3, with λ =
√
T . Assume that there

exists g∗ ∈ G such that E
[
∑T

t=1‖g∗(xt)− E[ϕt|xt]‖2H
]

= 0. Then, we have

E[RT ] ≤ 2c∆T
3/4

√

κ2 log
(

e+ eκ2
√
T
)

+ ‖g∗‖2G = O
(

T 3/4
√

logT
)

. (16)

Our assumption on g∗ is similar to the one done to obtain the convergence rate in Ciliberto et al. (2020). It is a common
assumption in Kernel Ridge Regression theory (Caponnetto and De Vito, 2007; Steinwart and Christmann, 2008). We

6
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are assuming that there exists a function g∗ ∈ G, such that for all t ∈ JT K we have g∗(xt) = E[ϕt|xt]. That it to say,
g∗ interpolates the expectations of the data. Up to the log factor, we retrieve the same bound in the online setting as
in the supervised setting, and without assuming that the data are i.i.d. Specifically, we make no assumption on the xt,
generalizing existing results that assume i.i.d. inputs.

High probability regret bound In Theorem 3 and Corollary 4, we bound the expectation of the regret. The expec-
tation is taken over the whole data, including the whole history at each time step. Moreover a bound in expectation
does not necessarily imply a bound in high probability. It is however possible to obtain a bound in high probability on
the cumulative risk, defined as

T
∑

t=1

Eyt [∆(ft(xt), yt)−∆(f∗
t (xt), yt)] , (17)

where at each round the expectation is taken with respect to the randomness of the next output yt only and not with
all past data x1, y1, . . . , xt−1, yt−1, xt. Computing such bounds requires more recent mathematical tools such as
van der Hoeven et al. (2023). In Appendix C, we prove a regret bound in high probability using a slightly different
estimator.

High probability excess risk bound In Appendix C.1, we demonstrate that, when data are i.i.d., our previous results
enable the design of a batch estimator f̄T from the online predictors, yielding the following bound on the excess risk.
With probability 1− δ

Ex,y[∆(f̄T (x), y)−∆(f∗(x), y)] ≤ O
(

T−1/4
√

log(T ) + T−1/2
√

log(δ−1)
)

.

A standard online to batch conversion would have aggregated the predictors (ft)t by setting f̄t =
∑T

t=1 ft. However,
this is not possible here because the output space Z is not convex. To design f̄T , we thus aggregate the feature
estimators (ĝt)t into a unique function ḡT , which is used to construct f̄T . This construction requires recent technical
tools (van der Hoeven et al., 2023). To sum up, our algorithm generalizes the supervised learning setting, achieving
the same convergence rate up to a log factor. Moreover, our algorithm can learn from a stream of data, allowing
sequential updates as data arrive step by step, instead of relying on a batch of data available from the start.

5 Non-Stationary Online Structured Prediction

In this section, we introduce SALAMI (Structured prediction ALgorithm with Aggregating MIxture), see Algorithm 2,
an algorithm designed to handle non-stationary data distributions, including adversarial data. The non-stationarity we
consider is on x 7→ E[ϕt|x] rather than on the baseline (f∗

t )t, which is already non-stationary throughout the paper.
We compare the feature predictors (ĝt)t to a non-stationary baseline (g∗t )t ∈ GT . This approach allows us to address
data with a changing distribution over time, including adversarial data. Note that we handle general data distributions,
including Dirac distributions. As the data distributions change, earlier data may become outdated. Therefore, we need
to modify our previous predictor, which considers all past data equally. We treat predictors with different starting
times as experts and use an expert selection algorithm to create a mixture of them. See Algorithm 2 for details.

In the previous section, we assume the existence of some fixed function g∗ ∈ G such that g∗(xt) = E[ϕt|xt] for all t,
which is weak when x 7→ E[ϕt|x] is stationary. However it is not satisfied when the data distribution is non-stationary
or even arbitrary. In this section, we assume that for each time step t ∈ JT K, there exists a function g∗t ∈ G such that
g∗t (xt) = E[ϕt|xt]. This is a very weak assumption, as we can choose a different function g∗t for each time step.

5.1 Regret Bound

In order to bound the regret, we define two quantities that measure the non-stationarity of the sequence (g∗t ): the
continuous variation VG and the discrete variation V0 defined as follows

VG := ‖g∗1‖G +
T
∑

t=2

‖g∗t − g∗t−1‖G and V0 := 1 +
T
∑

t=2

1[g∗t 6= g∗t−1]. (18)

We obtain the following regret bound.
Theorem 5 (Expected Regret in a Non-Stationary Environment). Assume that there exists (g∗t ) a sequence in G such
that E

[
∑T

t=1‖g∗t (xt)− E[ϕt|xt]‖2H
]

= 0. Then, Algorithm 2 run with λ > 0 and η = 1/2(κ sup‖g‖G + 1)2 satisfies

E[RT ] =

{

Õ(V
1/6
G T 5/6) if λ = V

−1/3
G T 1/3

Õ(V
1/4
0 T 3/4) if λ = V

−1/2
0 T 1/2

. (19)
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In Appendix D, we prove this statement and precise the constants and log terms in the bounds. Therefore our method
obtains a sublinear regret with variations VG , V0 up to T . As expected, we obtain a loss of performance when facing
non-stationary data distributions compared to the stationary case in Theorem 4. With discrete distribution changes, the
rate Õ(T 3/4) is unchanged compared to the stationary setting as soon as the number of changes remains constant.

Calibration of λ A limitation of Theorem 5 is the required knowledge of V0 or VG to tune the learning rate λ > 0.
First, note that setting λ = Ω(T 1/3) always yield a regret of order Õ(T 5/6), but at the cost of a worse dependence on
the variation VG . Second, our algorithm can be easily adapted to calibrate λ automatically, by combining experts ĝ(λ)s:t
(see Eq. 21 and the algorithm details in the next section), indexed by both the starting time s and an hyperparameter λ,
with λ chosen from a logarithmic finite grid.

Refined regret bounds under the capacity condition A standard assumption when learning on RKHS is the capac-
ity condition that assumes the existence of some β ∈ [0, 1] and Q > 0 for which deff(λ) ≤ Q(T/λ)β for all λ > 0.
This assumption is weak since it is always verified for β = 1 but smaller values of β yield improved computational
complexity for the algorithm (see for instance Jézéquel et al. (2019)) and improved regret guarantees. We further
discuss this assumption and provide a refined regret bound in Appendix D.1. In the particular case of the Gaussian
kernel, the effective dimension statisfies deff(λ) ≤ (log (T/λ))

d (Altschuler et al., 2019), where d is the dimension of
the input space X . In this case, our result leads to the regret bound

E[RT ] = Õ
(

T 3/4V
1/4
G (λ+ 1)1/4

)

, (20)

which improves the generic rate of Theorem 5 from Õ(T 5/6) to Õ(T 3/4). In this case, the extension to non-stationarity
comes at no cost in the regret rate as soon as VG does not grow with time. More details are provided in Appendix D.1.

5.2 Algorithm Design

We detail below our algorithm SALAMI. Let (g∗t ) be the unknown sequence satisfying the assumption of Theorem 5.
We start from the observation that if one could identify breaking times (ti)1≤i≤T at which the sequence g∗t changes,
one could restart OSKAAR (Algorithm 1) at each ti, considering that g∗t is fixed from ti to ti+1 − 1. The high-level
idea of SALAMI is to learn these restart times through a meta-aggregation procedure that combines estimators ĝs:t of
the sequence g∗t , indexed by s = 1, . . . , t, each assuming that (g∗t ) is fixed from s to t; defined by following the KAAR
estimator starting in s

ĝs:t := argmin
g∈G

t−1
∑

τ=s

‖ϕτ − g(xτ )‖2H + λ‖g‖2G + ‖g(xt)‖2H. (21)

For each t ∈ JT K, the feature predictor ĝt of SALAMI is then defined as a convex combination of ĝs:t for 1 ≤ s ≤ t.
Formally, SALAMI learns a probability vector pt ∈ ∆T and defines

ĝt =

T
∑

s=1

pt(s)ĝs:t. (22)

The next part of the algorithm is how to choose the weights pt(s). To do so, this is done by using the exponentially
weighted average forecaster (EWA) wt ∈ ∆T , which needs a small adaptation to deal with the fact that ĝs:t only
produces predictions for t ≥ s. Following the idea of Gaillard et al. (2014) for sleeping experts, this can be done by
defining the auxiliary losses

ℓ̃t(s) =

{

ℓt(ĝs:t) if s ≤ t

ℓt(ĝt) if s > t
where ℓt(g) := ‖ϕt − g(xt)‖2H.

That is by assigning the loss of the algorithm itself ℓt(ĝt) to all expert that are inactive. The weights pt(s) are then
defined as: p1(1) = 1 and for t > 1:

pt(s) =
wt(s)

∑t
k=1 wt(k)

where wt(k) ∝ exp

(

−η
t−1
∑

s=1

ℓ̃s(k)

)

(23)

for some learning rate η > 0. Finally, SALAMI defines the predictor f̂t : X → Z as:

f̂t(x) := argmin
z∈Z

〈ψ(z), ĝt(x)〉H. (24)
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Computational complexity Note that in its current form, SALAMI needs to consider an increasing number of ex-
perts ĝs:t over time, which increases the per-round space and time complexities of OSKAAR by a factor of O(t). How-
ever, this problem can be addressed by using more sophisticated intervals than [s, t] as done in Zhang et al. (2017);
György et al. (2012); Daniely et al. (2015), which reduces the overhead in complexities to a factor ofO(log t). Extend-
ing our work to such intervals is straightforward, but we have chosen to restrict ourselves to intervals [s, t] to simplify
the understanding of the algorithm.

Algorithm 2: SALAMI – Structured prediction ALgorithm with Aggregating MIxture

Input: λ > 0, exp-concavity constant η of (ℓt)t, kernel k : X × X → R

for Each time step t in 1 . . . T do
Get information xt ∈ X
for Each expert s in 1 . . . t do

Compute ĝs:t := argming∈G
∑t−1

τ=s‖ϕτ − g(xτ )‖2H + λ‖g‖2G + ‖g(xt)‖2H
end
for Each expert s in 1 . . . T do

Compute EWA wt(s) ∝ wt−1(s) exp(−ηℓ̃t(s)) where ℓ̃t(s) =

{

ℓt(ĝs:t) if s ≤ t

ℓt(ĝt) if s > t
Compute pt(s) ∝

{

wt(s) if s ≤ t

0 if s > tend
Compute the aggregate predictor ĝt =

∑T
s=1 pt(s)ĝs:t

Compute the prediction ẑt = f̂t(xt) = argminz∈Z〈ψ(z), ĝt(xt)〉H
Observe ground truth yt ∈ Y
Get loss ∆(ẑt, yt) ∈ R

end
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APPENDIX

A Proof of Theorem 2: Regret Bound of OSKAAR

We first introduce some additional notations on kernels. Let k : X×X → R be a positive semidefinite kernel, and F =

span{k(x, .)|x ∈ X} its associated RKHS. We denote by φ : X → F the feature map φ(x) = k(x, .). We assume φ
to be bounded by ‖φ(x)‖F ≤ κ <∞. For more details on RKHS see Aronszajn (1950); Berlinet and Thomas-Agnan
(2011). We may now introduce the following operators:

• St : F → R
t, s.t. f ∈ F 7→ (〈φ(xs), f〉)ts=1

• S∗
t : Rt → F , s.t. v = (vi)

t
i=1 7→∑t

s=1 viφ(xi)
• Ct = S∗

t St : F → F
• We have that Ct =

∑t
s=1 φ(xs)⊗ φ(xs)

• Kt = StS
∗
t is the empirical kernel matrix

• Aλ = A+ λI for any symmetric linear operator A, where I is the identity and λ ∈ R

For the space of function G : X → H we choose an vector-valued RKHS G = H ⊗ F (Micchelli and Pontil, 2004;
Alvarez et al., 2012), which is a direct generalisation of scalar-valued RKHS.

We define Lt for t ∈ JT K in a more general setting and rewrite it using Hilbertian operators

Lt(g, g
∗
t ) =

t
∑

s=1

‖g∗s − g(xs)‖2H + λ‖g‖2G = ‖Ht‖2 − 2g∗S∗
tHt + 〈g, Ct,λg〉

where Ht is the vector (g∗1 , . . . , g
∗
t ) ∈ Ht. And we denote by Lt(g) the application Lt(g, ϕ(Yt)), where ϕ(Yt) is the

vector (ϕ1, . . . , ϕt) ∈ Ht. We define the following functions

gt+1 = argmin
g∈G

Lt(g) = C−1
t,λS

∗
t ϕ(Yt) , (25)

ĝt+1 = argmin
g∈G

Lt(g) + ‖g(xt+1)‖2H = C−1
t+1,λS

∗
t ϕ(Yt) . (26)

ĝt+1 is directly used in the definition of the algorithm, while gt+1 is only used in the proof of its regret.

We recall and prove the results from in Section 3.2.

Lemma 1 (Online Comparison Inequality). Let (ft)t and (ĝt)t be defined as in (9) and (8) respectively. Then we have

RT ≤ 2c∆
√
T

√

√

√

√

T
∑

t=1

||ϕt − ĝt(xt)||2H . (12)

Proof. We add and subtract two terms.

RT =

T
∑

t=1

∆(ft(xt), yt)−∆(f∗
t (xt), yt)

=

T
∑

t=1

〈ψ(ft(xt)), ϕt〉 − 〈ψ(ft(xt)), ĝt(xt)〉

+〈ψ(ft(xt)), ĝt(xt)〉 − 〈ψ(f∗
t (xt)), ĝt(xt)〉

+〈ψ(f∗
t (xt)), ĝt(xt)〉 − 〈ψ(f∗

t (xt)), ϕt〉

≤
T
∑

t=1

〈ψ(ft(xt)), ϕt〉 − 〈ψ(ft(xt)), ĝt(xt)〉

+〈ψ(f∗
t (xt)), ĝt(xt)〉 − 〈ψ(f∗

t (xt)), ϕt〉

=

T
∑

t=1

〈ψ(ft(xt))− ψ(f∗
t (xt)), ϕt − ĝt(xt)〉

11
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where the inequality comes from the definition of ft. We now apply successively Cauchy-Schwartz and Jensen’s
inequalities to conclude the proof.

RT ≤
T
∑

t=1

||ψ(ft(xt))− ψ(f∗
t (xt))||H · ||ϕt − ĝt(xt)||H

≤ 2c∆

T
∑

t=1

||ϕt − ĝt(xt)||H

≤ 2c∆
√
T

√

√

√

√

T
∑

t=1

||ϕt − ĝt(xt)||2H

We bound the regret of the KAAR estimator. We generalise the proof of Jézéquel et al. (2019) to vRKHS.

Lemma 6 (General Regret KAAR Estimator). Let (ht)
T
t=1 be bounded vectors in H such that ‖ht‖H ≤ B < ∞ for

all t ∈ JT K. Let HT ∈ HT be the vector (h1, . . . , hT ). Let λ > 0, and let us define the KAAR predictors as follow

ĝt = argmin
g∈G

t−1
∑

s=1

‖hs − g(xs)‖2H + λ‖g‖2G + ‖g(xt)‖2H.

Then we have
T
∑

t=1

‖ht − ĝt(xt)‖2H ≤ B2 log

(

e+
eκ2T

λ

)

deff(λ) + min
g∈G

LT (g,HT ). (27)

Proof. We follow and adapt the proof of Theorem 9 from Jézéquel et al. (2019) to vector RKHS without Nyström
approximation. We start by adding telescopic terms.

T
∑

t=1

‖ht − ĝt(xt)‖2H

=

T
∑

t=1

‖ht − ĝt(xt)‖2H − LT (gT+1, HT ) + LT (gT+1, HT )

=

T
∑

t=1

[

‖ht − ĝt(xt)‖2H + Lt−1(gt, Ht−1)− Lt(gt+1, Ht)
]

+ LT (gT+1, HT ) .

Let Z(t) = ‖ht − ĝt(xt)‖2H + Lt−1(gt, Ht−1)− Lt(gt+1, Ht), and let us study its terms separately.

Note that 〈gt+1, Ct,λgt+1〉 = H∗
t StC

−1
t,λCt,λgt+1 = H∗

t Stgt+1.

Therefore Lt(gt+1, Ht) = ‖Ht‖2 − 〈gt+1, Ct,λgt+1〉.
Let us focus now on ‖ht − ĝt(xt)‖2 = ‖ht‖2 − 2〈ht, ĝt(xt)〉+ 〈ĝt(xt), ĝt(xt)〉. Note that

〈ht, ĝt(xt)〉 = ĝ∗t φ(xt)ht
= ĝ∗t (S

∗
tHt − S∗

t−1Ht−1)

= ĝ∗t (Ct,λgt+1 − Ct−1,λgt)

= 〈ĝt, Ct,λgt+1 − Ct−1,λgt〉

and
〈ĝt(xt), ĝt(xt)〉 = 〈ĝt, φ(xt)〈φ(xt), ĝt〉〉 = 〈ĝt, [φ(xt)⊗ φ(xt)]ĝt〉 = 〈ĝt, (Ct,λ − Ct−1,λ)ĝt〉 .

Therefore we obtain

‖ht − ĝt(xt)‖2 = ‖ht‖2 − 2〈ĝt, Ct,λgt+1 − Ct−1,λgt〉+ 〈ĝt, (Ct,λ − Ct−1,λ)ĝt〉 .

12
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Thus by putting everything together, we get

Z(t) = −2〈ĝt, Ct,λgt+1 − Ct−1,λgt〉+ 〈ĝt, (Ct,λ − Ct−1,λ)ĝt〉 − 〈gt, Ct−1,λgt〉+ 〈gt+1, Ct,λgt+1〉
= 〈ĝt − gt+1, Ct,λ(ĝt − gt+1)〉 − 〈ĝt − gt, Ct−1,λ(ĝt − gt)〉
≤ 〈ĝt − gt+1, Ct,λ(ĝt − gt+1)〉 .

Now note that we can factorise

ĝt − gt+1 = C−1
t,λS

∗
t−1Ht−1 − C−1

t,λS
∗
tHt = −C−1

t,λφ(xt)ht .

We thus bound Z(t) by

Z(t) ≤ 〈φ(xt)ht, C−1
t,λφ(xt)ht〉 = ‖ht‖2〈φ(xt), C−1

t,λφ(xt)〉 ≤ B2〈φ(xt), C−1
t,λφ(xt)〉 .

Finally, we proved that

T
∑

t=1

‖ht − g(xt)‖2H ≤ B2
T
∑

t=1

〈φ(xt), C−1
t,λφ(xt)〉+ LT (gT+1, HT ) .

We conclude the proof by using Propositions 1 and 2 of Jézéquel et al. (2019).

We now prove our main result from Section 3.2.

Theorem 2 (Regret Bound of OSKAAR). Let (ft)t be defined as in (9). Then for all λ > 0 and T ≥ 1 we have

RT ≤ 2c∆
√
T

√

log

(

e+
eκ2T

λ

)

deff(λ) + min
g∈G

LT (g) (14)

where Lt(g) :=
∑t

s=1 ||ϕs − g(xs)||2H + λ||g||2G for every g ∈ G.

Proof. We apply the two previous lemmas and obtain

RT =
T
∑

t=1

∆(ft(xt), yt)−∆(f∗
t (xt), yt)

(Lem. 1)
≤ 2c∆

√
T

√

√

√

√

T
∑

t=1

||ϕ(yt)− ĝt(xt)||2H

(Lem. 6)
≤ 2c∆

√
T

√

log

(

e+
eκ2T

λ

)

deff(λ) + min
g∈G

LT (g)

where B = 1 ≥ supy∈Y‖ϕ(y)‖H.

B Proofs of Theorem 3 and Corollary 4: Stochastic Regret Bounds in Expectation

In this section, we prove the results from Section 4. We will denote by Ft−1 the filter (x1, y1, . . . , xt). We start by
introducing the following comparison inequality. It is an equivalent to Lemma 1 for the expected regret. It allows to
control the expected regret with respect to E[ϕt|xt].
Lemma 7 (Comparison Inequality in Expectation). For any sequence of measurable functions (ĝt : X → H)t. For
all t ∈ JT K, let ft : X → Z be defined by ft(x) = argminz∈Z〈ψ(z), ĝt(x)〉H. Then we have

E[RT ] ≤ 2c∆
√
T

√

√

√

√

T
∑

t=1

E[‖ĝt(xt)− E[ϕt|xt]‖2H] . (28)

Proof. We follow the proof from Lemma 1 and get

E[∆(ft(xt), yt)−∆(f∗
t (xt), yt)] ≤ E[〈ψ(ft(xt))− ψ(f∗

t (xt)), ĝt(xt)− ϕt〉] .

13
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Remember that ϕt := ϕ(yt) depends on yt. Now note that

E[〈ψ(ft(xt))− ψ(f∗
t (xt)),E[ϕt|xt]− ϕt〉] = 〈ψ(ft(xt))− ψ(f∗

t (xt)),E[E[ϕt|xt]− ϕt]〉
= 〈ψ(ft(xt))− ψ(f∗

t (xt)),E[Eyt [E[ϕt|xt]− ϕt|Ft−1]]〉 = 0

since we condition on xt in the expectation. Thus

E[∆(ft(xt), yt)−∆(f∗
t (xt), yt)] ≤ E[〈ψ(ft(xt))− ψ(f∗

t (xt)), ĝt(xt)− E[ϕt|xt]〉] .
We now apply successively Cauchy-Schwartz inequality and Jensen’s inequality as in the proof of Lemma 1 and obtain

E[∆(ft(xt), yt)−∆(f∗
t (xt), yt)] ≤ 2c∆

√
T

√

√

√

√

T
∑

t=1

E[‖ĝt(xt)− E[ϕt|xt]‖2H] . (29)

It concludes the proof.

We now recall and prove the expectation of the regret bound.
Theorem 3 (Expected Regret Bound). Let (ft)t be defined as in (9). Then, for any g∗ ∈ G, λ > 0 and T ≥ 1, we have

E[RT ] ≤ 2c∆
√
T

√

√

√

√deff(λ) log
(

e+ eκ2T
λ

)

+ λ‖g∗‖2G + E

[

T
∑

t=1

‖g∗(xt)− E[ϕt|xt]‖2H

]

. (15)

Proof. We apply Lemma 7, then add and subtract a term to get

E[∆(ft(xt), yt)−∆(f∗
t (xt), yt)]

≤ 2c∆
√
T

√

√

√

√

T
∑

t=1

E[‖ĝt(xt)− E[ϕt|xt]‖2H]

= 2c∆
√
T

√

√

√

√

T
∑

t=1

E[‖ĝt(xt)− E[ϕt|xt]‖2H − ‖g∗(xt)− E[ϕt|xt]‖2H + ‖g∗(xt)− E[ϕt|xt]‖2H] .

We bound the difference between the first two terms.
T
∑

t=1

E[‖ĝt(xt)− E[ϕt|xt]‖2H − ‖g∗(xt)− E[ϕt|xt]‖2H]

=

T
∑

t=1

E[Eyt [‖ĝt(xt)− E[ϕt|xt]‖2H − ‖g∗(xt)− E[ϕt|xt]‖2H|Ft−1]]

Now note that

Eyt [‖ĝt(xt)− ϕt‖2|Ft−1] = Eyt [‖ĝt(xt)− E[ϕt|xt]‖2 + ‖ϕt − E[ϕt|xt]‖2|Ft−1]

−2Eyt [〈E[ϕt|xt]− ϕt,E[ϕt|xt]− ĝt(xt)〉|Ft−1]

= Eyt [‖ĝt(xt)− E[ϕt|xt]‖2 + ‖ϕt − E[ϕt|xt]‖2|Ft−1]

since we condition on xt. The same equality holds for g∗. Therefore we obtain
T
∑

t=1

E[‖ĝt(xt)− E[ϕt|xt]‖2H − ‖g∗(xt)− E[ϕt|xt]‖2H]

=

T
∑

t=1

E[‖ĝt(xt)− ϕt‖2H − ‖g∗(xt)− ϕt‖2H]

= E

[

T
∑

t=1

‖ĝt(xt)− ϕt‖2H − ‖g∗(xt)− ϕt‖2H

]

≤ E

[

deff(λ) log
(

e+ eκ2T
λ

)

+ λ‖g∗‖2G
]

= deff(λ) log
(

e+ eκ2T
λ

)

+ λ‖g∗‖2G
where the inequality comes from Theorem 6. It concludes the proof.

14
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Corollary 4 (Expected Regret Bound). With the same assumptions than Theorem 3, with λ =
√
T . Assume that there

exists g∗ ∈ G such that E
[
∑T

t=1‖g∗(xt)− E[ϕt|xt]‖2H
]

= 0. Then, we have

E[RT ] ≤ 2c∆T
3/4

√

κ2 log
(

e+ eκ2
√
T
)

+ ‖g∗‖2G = O
(

T 3/4
√

logT
)

. (16)

Proof. We bound the effective dimension by deff(λ) ≤ κ2T
λ and obtain

E [RT ] ≤ 2c∆
√
T

√

κ2T
λ log

(

e + eκ2T
λ

)

+ λ‖g∗‖2G .

By choosing λ =
√
T , we get

E [RT ] ≤ 2c∆T
3/4

√

κ2 log
(

e+ eκ2
√
T
)

+ ‖g∗‖2G .

C Stochastic Regret Bounds in High Probability

In this section we aim to retrieve the results from the supervised learning framework (Ciliberto et al., 2020) in the
online learning setting. For all time step t, we define the filter Ft−1 = (x1, y1, . . . , xt−1, yt−1, xt), and we denote by
Et[.] the expectation Eyt [.|Ft−1]. We are now interested in bounding the cumulative risk (Wintenberger, 2024)

T
∑

t=1

Et[∆(ft(xt), yt)−∆(f∗
t (xt), yt)] . (30)

Taking the expectation in yt will avoid considering the noise of the random variables (yt)t and allow us to obtain closer
results from Ciliberto et al. (2020) by bounding with respect to E[ϕt|xt] instead of ϕt.

We use the proof of Theorem 1 of van der Hoeven et al. (2023), which allows to bound the cumulative risk in the feature
space with high probability using a regret bound for an exp-concave loss. Moreover, van der Hoeven et al. (2023)
enables us to aggregate our predictors into a unique function f̄T and bound its cumulative risk in high probability,
which is a setting similar to the supervised learning study. In order to apply this theorem, we need to modify our
feature predictor ĝt : X → H and define it using a shifted version of the losses

ĝt = argmin
g∈G

t−1
∑

s=1

‖ 1
2g(xs) +

1
2 ĝs(xs)− ϕs‖2H + λ‖g‖2G + 1

4‖g(xt)‖
2
H . (31)

The predictor ft : X → Z is then defined as follows

ft(x) = argmin
z∈Z

〈ψ(z), ĝt(x)〉H = argmin
z∈Z

t−1
∑

s=1

βs(x)∆(z, ys) . (32)

As previously, we do not require the knowledge of ψ, ϕ and H to make a prediction.

We first introduce a comparison inequality. It is an equivalent to Lemma 1 for the cumulative risk.

Lemma 8 (Comparison Inequality for Cumulative Risk). For any sequence of measurable functions (ĝt : X → H)t.
For all t ∈ JT K, let ft : X → Z be defined by ft(x) = argminz∈Z〈ψ(z), ĝt(x)〉H. Then we have

T
∑

t=1

Et[∆(ft(xt), yt)−∆(f∗
t (xt), yt)] ≤ 2c∆

√
T

√

√

√

√

T
∑

t=1

Et[‖ĝt(xt)− E[ϕt|xt]‖2H] .
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Proof. We recall the notation ϕt = ϕ(yt), which therefore depends on yt in the expectation. We start by adding and
subtracting two terms

Et[∆(ft(xt), yt)−∆(f∗
t (xt), yt)]

= Et[〈ψ(ft(xt)), ϕt〉 − 〈ψ(f∗
t (xt)), ϕt〉]

= Et[〈ψ(ft(xt)), ϕt〉 − 〈ψ(ft(xt)), ĝt(xt)〉
+〈ψ(ft(xt)), ĝt(xt)〉 − 〈ψ(f∗

t (xt)), ĝt(xt)〉
+〈ψ(f∗

t (xt)), ĝt(xt)〉 − 〈ψ(f∗
t (xt)), ϕt〉]

≤ Et[〈ψ(ft(xt)), ϕt〉 − 〈ψ(ft(xt)), ĝt(xt)〉
+〈ψ(f∗

t (xt)), ĝt(xt)〉 − 〈ψ(f∗
t (xt)), ϕt〉]

= Et[〈ψ(ft(xt))− ψ(f∗
t (xt)), ĝt(xt)− ϕt〉]

where the inequality comes by definition of ft. Now note that

Et[〈ψ(ft(xt))− ψ(f∗
t (xt)),E[ϕt|xt]− ϕt〉] = 〈ψ(ft(xt))− ψ(f∗

t (xt)),Et[E[ϕt|xt]− ϕt]〉 = 0

since we condition on xt in Et. Thus

Et[〈ψ(ft(xt))− ψ(f∗
t (xt)), ĝt(xt)− ϕt〉]

= Et[〈ψ(ft(xt))− ψ(f∗
t (xt)), ĝt(xt)− E[ϕt|xt]〉]

+Et[〈ψ(ft(xt))− ψ(f∗
t (xt)),E[ϕt|xt]− ϕt〉]

= Et[〈ψ(ft(xt))− ψ(f∗
t (xt)), ĝt(xt)− E[ϕt|xt]〉] .

We now apply successively Cauchy-Schwartz inequality and Jensen’s inequality.
T
∑

t=1

Et[〈ψ(ft(xt))− ψ(f∗
t (xt)), ĝt(xt)− E[ϕt|xt]〉] ≤ 2c∆

T
∑

t=1

Et[‖ĝt(xt)− E[ϕt|xt]‖H]

≤ 2c∆
√
T

√

√

√

√

T
∑

t=1

Et[‖ĝt(xt)− E[ϕt|xt]‖2H]

Let η = 1/2(κ sup‖g‖G+1)2 be an exp-concavity constant of the loss ℓt(g) = ‖g(xt)−ϕt‖2H. Letm = 2(κ sup‖g‖G+
1)2 be such that ℓ(g)− ℓ(g′) ≤ m for all g, g′ ∈ G. We define

γ = 4max( 1η ,m) (33)

as in the Theorem 1 of van der Hoeven et al. (2023).

We bound the cumulative risk of our algorithm, see Theorem 9. Compared to our previous result Theorem 2, we obtain
a bound in high probability. We now use g∗ ∈ G to model (E[ϕt|xt])t instead of (ϕt)t. This difference allows us not
to consider the noise of the random variables xt 7→ ϕt. It also allows us to be closer to the framework of Ciliberto et al.
(2020) that compares a model g ∈ G with the optimum and conditional expectation x 7→

∫

Y ϕ(y)dρ(y|x).
Theorem 9 (Average Cumulative Risk). Let (ft)t be defined as in (32). Let δ ∈ (0, 1] and γ = 8(κ sup‖g‖G + 1)2.

With λ =
√
T and assuming that there exists a function h ∈ G such that for all t ∈ JT K, h(xt) = E[ϕt|xt] , we have

with probability 1− δ

1

T

T
∑

t=1

Et[∆(ft(xt), yt)−∆(f∗
t (xt), yt)]

≤ 2c∆T
−1/4

√

B2κ2

8 log
(

e+ eκ2
√
T

4

)

+ 2‖g∗‖2 + 2c∆T
−1/2

√

2γ log(δ−1)

= O
(

T−1/4
√

log(T ) + T−1/2
√

log(δ−1)
)

.

The assumption we do on h is the same that the one that is done on g∗ to obtain the convergence rate in
Ciliberto et al. (2020), and is a common assumption for Kernel Ridge Regression (Caponnetto and De Vito, 2007;
Steinwart and Christmann, 2008). Up to the log factor, we retrieve the same bound in the online learning setting and
without assuming that the data are i.i.d. Therefore our result is more general than the original result in the batch
statistical framework, however we are using T different functions to predict the outputs. In Theorem 10, we provide a
similar result with a single estimator obtained by aggregation.
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Proof. Step 1: Controlling the regret of (ft) by the regret of (ĝt). Applying Lemma 8, we obtain
T
∑

t=1

Et[∆(ft(xt), yt)−∆(f∗
t (xt), yt)]

≤ 2c∆
√
T

√

√

√

√

T
∑

t=1

Et[‖ĝt(xt)− E[ϕt|xt]‖2H]

= 2c∆
√
T

√

√

√

√

T
∑

t=1

Et[‖ĝt(xt)− E[ϕt|xt]‖2H − ‖g∗(xt)− E[ϕt|xt]‖2H + ‖g∗(xt)− E[ϕt|xt]‖2H] .

Now note that
Et[‖ĝt(xt)− ϕt‖2] = Et[‖ĝt(xt)− E[ϕt|xt]‖2 + ‖ϕt − E[ϕt|xt]‖2]

−2Et[〈E[ϕt|xt]− ϕt,E[ϕt|xt]− ĝt(xt)〉]
= Et[‖ĝt(xt)− E[ϕt|xt]‖2 + ‖ϕt − E[ϕt|xt]‖2]

since we condition on xt in Et. The same equality holds for g∗(xt). Thus
T
∑

t=1

Et[‖ĝt(xt)− E[ϕt|xt]‖2 − ‖g∗(xt)− E[ϕt|xt]‖2]

=

T
∑

t=1

Et[‖ĝt(xt)− ϕt‖2 − ‖g∗(xt)− ϕt‖2] .

Step 2: Bounding the regret of the shifted KAAR estimator. We note that

ĝt = argmin
g∈G

t−1
∑

s=1

‖ 1
2g(xs) +

1
2 ĝs(xs)− ϕs‖2H + λ‖g‖2G + 1

4‖g(xt)‖
2
H

= argmin
g∈G

1
4

t−1
∑

s=1

‖g(xs) + ĝs(xs)− 2ϕs‖2H + λ‖g‖2G + 1
4‖g(xt)‖

2
H

= argmin
g∈G

t−1
∑

s=1

‖g(xs) + ĝs(xs)− 2ϕs‖2H + 4λ‖g‖2G + ‖g(xt)‖2H .

Thus the function ĝt aims to estimate 2ϕs− ĝs(xs) with a regularisation parameter 4λ. We apply Lemma 6 and bound
2ϕs − ĝs(xs) for all s ∈ JT K,

‖2ϕs − ĝs(xs)‖H ≤ 2‖ϕs‖+ ‖ĝs(xs)‖ ≤ 2 + ‖φ(xs)‖ sup
g∈G

‖g‖G ≤ 2 + κ sup
g∈G

‖g‖G =: B .

We get
T
∑

t=1

‖2ĝt(xt)− 2ϕt‖2H ≤ B2 log
(

e+ eκ2T
4λ

)

deff(4λ) + min
g∈G

[

T
∑

t=1

‖g(xt) + ĝt(xt)− 2ϕt‖2H + 4λ‖g‖2G

]

.

We divide by 4 on both sides and obtain
T
∑

t=1

‖ĝt(xt)− ϕt‖2H ≤ B2

4 log
(

e+ eκ2T
4λ

)

deff(4λ) + min
g∈G

L̃T (g) . (34)

Step 3: Applying van der Hoeven et al. (2023) to bound in high probability. We apply Theorem 1 of
van der Hoeven et al. (2023) to obtain with probability 1− δ,

T
∑

t=1

Et[∆(ft(xt), yt)−∆(f∗
t (xt), yt)]

≤ 2c∆
√
T

(

B2

2 deff(4λ) log
(

e+ eκ2T
4λ

)

+ 2γ log(δ−1) + 2λ‖g∗‖2 +
T
∑

t=1

‖g∗(xt)− E[ϕt|xt]‖2
)1/2

(35)
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where γ is defined in Eq. (33) and B = 2 + κ supg∈G‖g‖G . We bound the effective dimension by deff(λ) ≤ κ2T
λ and

obtain

T
∑

t=1

Et[∆(ft(xt), yt)−∆(f∗
t (xt), yt)] ≤ 2c∆

√
T
(

B2κ2T
8λ log

(

e + eκ2T
4λ

)

+ 2γ log(δ−1) + 2λ‖g∗‖2
)1/2

.

By choosing λ =
√
T we get

T
∑

t=1

Et[∆(ft(xt), yt)−∆(f∗
t (xt), yt)]

≤ 2c∆
√
T
(

B2κ2
√
T

8 log
(

e+ eκ2
√
T

4

)

+ 2γ log(δ−1) + 2
√
T‖g∗‖2

)1/2

.

C.1 Aggregating into a Unique Predictor

In this section, we build a unique predictor and we consider that the data (xt, yt)t are i.i.d., in order to be as close
as possible from the supervised learning framework. As the output space Z does not have a vectorial structure, we
cannot aggregate the (ft)t. Indeed, let f, f ′ : X → Z , there is no guarantee that f + f ′ takes values in Z as well.
Therefore we build a unique predictor f̄T from the T already computed feature predictors (ĝt)t. We build an aggregate
ḡT : X → H defined as the average of the ĝt,

ḡT = 1
T

T
∑

t=1

ĝt (36)

and define the predictor f̄T : X → Z with respect to ḡT as follows

f̄T (x) = argmin
z∈Z

〈ψ(z), ḡT (x)〉H . (37)

We bound the excess risk of the predictor f̄T .

Theorem 10 (Excess Risk). Let f∗ : X → Z be a measurable function and γ = 8(κ sup‖g‖G + 1)2, with λ =
√
T

and assuming there is a function g∗ ∈ G such that ExEy[‖g∗(x) − E[ϕ(y)|x]‖2|x] = 0. Let f̄T be defined as in (37)
and let δ ∈ (0, 1]. With probability 1− δ, we have

Ex,y[∆(f̄T (x), y)−∆(f∗(x), y)]

≤ 2c∆T
−1/4

√

B2κ2

8 log
(

e+ eκ2
√
T

4

)

+ 2‖g∗‖2 + 2c∆T
−1/2

√

2γ log(δ−1)

= O
(

T−1/4
√

log(T ) + T−1/2
√

log(δ−1)
)

.

Proof. We follow the proof of Lemma 8, with the difference that at the end we apply Jensen’s inequality with respect
to the expectation to obtain a comparison inequality

Ex,y[∆(f̄T (x), y) −∆(f∗(x), y)]

≤ Ex,y[〈ψ(f̄T (x)) − ψ(f∗(x)), ḡT (x)− ϕ(y)〉]
= ExEy[〈ψ(f̄T (x))− ψ(f∗(x)), ḡT (x)− E[ϕ(y)|x]〉|x]
+ ExEy[〈ψ(f̄T (x))− ψ(f∗(x)),E[ϕ(y)|x] − ϕ(y)〉|x]
= ExEy[〈ψ(f̄T (x))− ψ(f∗(x)), ḡT (x)− E[ϕ(y)|x]〉|x]
≤ 2c∆ExEy[‖ḡT (x)− E[ϕ(y)|x]‖|x]

≤ 2c∆

√

ExEy[‖ḡT (x)− E[ϕ(y)|x]‖2|x] .

18



A PREPRINT - JUNE 17, 2024

We now apply Theorem 1 from van der Hoeven et al. (2023) using Step 2 of the proof of Theorem 9.

Ex,y[∆(f̄T (x), y)−∆(f∗(x), y)]

= 2c∆
(

ExEy [‖ḡT (x) − E[ϕ(y)|x]‖2 − ‖g∗(x)− E[ϕ(y)|x]‖2 + ‖g∗(x) − E[ϕ(y)|x]‖2|x]
)1/2

= 2c∆
(

ExEy [‖ḡT (x) − ϕ(y)‖2 − ‖g∗(x)− ϕ(y)‖2 + ‖g∗(x) − E[ϕ(y)|x]‖2|x]
)1/2

= 2c∆
(

Ex,y[‖ḡT (x) − ϕ(y)‖2 − ‖g∗(x)− ϕ(y)‖2] + ExEy [‖g∗(x)− E[ϕ(y)|x]‖2|x]
)1/2

≤ 2c∆





B2

2 deff(4λ) log

(

e+
eκ2T
4λ

)

+2λ‖g∗‖2
G+2γ log(δ−1)

T + ExEy [‖g∗(x)− E[ϕ(y)|x]‖2|x]





1/2

= 2c∆





B2

2 deff(4λ) log
(

e+ eκ2T
4λ

)

+ 2λ‖g∗‖2G + 2γ log(δ−1)

T





1/2

where B = 2 + κ supg∈G‖g‖G. Upper-bounding the effective dimension by deff(4λ) ≤ κ2T
4λ and choosing λ =

√
T

gives the desired result.

D Proof of Theorem 5: Dealing with Non-Stationary Data in Expectation

We define m ∈ N such that 1 = t1 ≤ t2 ≤ · · · ≤ tm+1 = T + 1 and such that

ti+1−1
∑

t=ti+1

‖g∗t − g∗t−1‖G ≤ VG
m

for all i ∈ J1,mK. (38)

That is to say that the variation of (g∗t )t is small between ti and ti+1 − 1. Note that the sum
∑m

i=1

∑ti+1−1
t=ti+1‖g∗t − g∗t−1‖G does not take into account the norms of ‖g∗ti − g∗ti−1‖G for i ∈ J2,mK. As in Raj et al.

(2020), we define an approximation (g∗ti:ti+1
)mi=1 ∈ Gm of (g∗t )t with only m changes through the T time steps that

occur between ti and ti+1. It is an hypothetical forecaster with m restart times. Formally we define

ḡti:ti+1
:= argmin

g∈G

ti+1−1
∑

t=ti

‖g − g∗t ‖2G =
1

ti+1 − ti

ti+1−1
∑

t=ti

g∗t (39)

and by ḡt we denote ḡti:ti+1
for all t ∈ Jti, ti+1 − 1K.

We bound the dynamic regret of the KAAR estimator, see Proposition 11. It is expressed with respect to the time
dependent effective dimension deff(λ, s− r) defined as

deff(λ, s− r) := Tr(Ks−r,s−r(Ks−r,s−r + λI)−1) ∀λ > 0, (40)

where Ks−r,s−r ∈ R
(s−r−1)×(s−r−1) is defined by (Ks−r,s−r)ij = k(xr+i−1, xr+j−1).

Proposition 11 (Dynamic Regret of KAAR). Let (ĝt)t be defined as in (22) and let (g∗t )t ∈ GT . Let m ∈ N be defined
as in (38). Let η = 1/2(κ sup‖g‖G + 1)2. Then we have

T
∑

t=1

‖ĝt(xt)− ϕt‖2H − ‖g∗t (xt)− ϕt‖2H

≤ m log T
η + log

(

e+ eκ2T
λ

)

m
∑

i=1

deff(λ, ti+1 − ti) + λm max
t∈JT K

‖g∗t ‖2G + 4κVGT
m =: RT (λ,m) .
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Proof. Step 1: We add two intermediary terms. We introduce two new terms in the sum and bound the differences
separately.

T
∑

t=1

‖ĝt(xt)− ϕt‖2H − ‖g∗t (xt)−ϕt‖2H =

m
∑

i=1

ti+1−1
∑

t=ti

‖ĝt(xt)− ϕt‖2H − ‖g∗t (xt)− ϕt‖2H

=

m
∑

i=1

ti+1−1
∑

t=ti

‖ĝt(xt)− ϕt‖2H − ‖ĝti:t(xt)− ϕt‖2H (41)

+‖ĝti:t(xt)− ϕt‖2H − ‖ḡti:ti+1
(xt)− ϕt‖2H

+‖ḡti:ti+1
(xt)− ϕt‖2H − ‖g∗t (xt)− ϕt‖2H

Step 2: Bounding the first difference. For all k∗ ∈ JT K and all s2 ∈ JT K, we prove that

s2
∑

t=1

(

ℓt

(

K
∑

k=1

pt(k)ĝk:t

)

− ℓt(ĝk∗:t)

)

1[k∗ ≤ t] ≤ logK

η
. (42)

The proof is based on the proof of EWA applied to ℓ̃t. Let Wt be the normalisation constant of wt.

Ws2+1 =
K
∑

k=1

exp

(

−η
s2
∑

s=1

ℓ̃s(k)

)

=
K
∑

k=1

exp

(

−η
s2−1
∑

s=1

ℓ̃s(k)

)

exp(−ηℓ̃s2(k))

=Ws2

K
∑

k=1

ws2(k) exp(−ηℓ̃s2(k))

≤Ws2 exp

(

−ηℓs2

(

K
∑

k=1

ws2(k)g̃k:s2

))

where the inequality comes from Jensen’s inequality and η-exp-concavity of ℓs2 , and where we define

g̃k:t =

{

ĝk:t if k ≤ t

ĝt if k > t
.

Now note that

K
∑

k=1

ws2(k)g̃k:s2 =
∑

k≤s2

ws2(k)ĝk:s2 +
∑

k>s2

ws2(k)ĝs2

=





∑

k≤s2

ws2 (k)





∑

k≤s2

ps2(k)ĝk:s2 +
∑

k>s2

ws2 (k)ĝs2

= ĝs2





∑

k≤s2

ws2(k) +
∑

k>s2

ws2(k)





= ĝs2 .

Thus by induction we obtain

Ws2+1 ≤W1 exp

(

−η
s2
∑

s=1

ℓs(ĝs)

)

≤ K exp

(

−η
s2
∑

s=1

ℓs(ĝs)

)
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where the right inequality is obtained by choosing to initialise w1 as the uniform probability over the K experts. We
now compute a lower bound of Ws2+1,

Ws2+1 =

K
∑

k=1

exp

(

−η
s2
∑

s=1

ℓ̃s(k)

)

≥ exp

(

−η
s2
∑

s=1

ℓ̃s(k
∗)

)

= exp

(

−η
s2
∑

s=1

ℓs(ĝk∗:s)1[k
∗ ≤ s] + ℓs(ĝs)1[k

∗ > s]

)

.

By taking the log we obtain the desired result.

Step 3: Bounding the second difference. We have that

ti+1−1
∑

t=ti

‖ĝti:t(xt)− ϕt‖2H − ‖ḡti:ti+1
(xt)− ϕt‖2H

≤ deff(λ, ti+1 − ti) log
(

e+ eκ2(ti+1−ti)
λ

)

+ λ‖ḡti:ti+1
‖2G.

This is a generalisation of Theorem 6 with a late starting point.

Step 4: Bounding the third difference. We bound the third term of the sum using the following derivation.

‖ḡti:ti+1
(xt)− ϕt‖2H − ‖g∗t (xt)− ϕt‖2H

= −
∥

∥g∗t (xt)− ḡti:ti+1
(xt)

∥

∥

2

H + 2
〈

ϕt − ḡti:ti+1
(xt), g

∗
t (xt)− ḡti:ti+1

(xt)
〉

H
≤ 2

∥

∥ϕt − ḡti:ti+1
(xt)

∥

∥

H
∥

∥g∗t (xt)− ḡti:ti+1
(xt)

∥

∥

H
≤ 4κ

∥

∥g∗t − ḡti:ti+1

∥

∥

G

We bound the norm by

‖g∗t − ḡti:ti+1
‖G =

∥

∥

∥

∥

∥

g∗t − 1
ti+1−ti

ti+1−1
∑

s=ti

ḡs

∥

∥

∥

∥

∥

G

=

∥

∥

∥

∥

∥

1
ti+1−ti

ti+1−1
∑

s=ti

g∗t − ḡs

∥

∥

∥

∥

∥

G

≤ 1
ti+1−ti

ti+1−1
∑

s=ti

‖g∗t − ḡs‖G

≤ max
s∈Jti,ti+1−1K

‖g∗t − ḡs‖G

where the first inequality comes from Jensen’s inequality. We now separate the max in two terms at time step t, and
use a telescopic sum.

max
s∈Jti,ti+1−1K

‖g∗t − ḡs‖G ≤ max
s∈Jti,t−1K

‖g∗t − ḡs‖G + max
s∈Jt+1,ti+1−1K

‖g∗t − ḡs‖G

= max
s∈Jti,t−1K

∥

∥

∥

∥

∥

t
∑

r=s+1

g∗r − ḡr−1

∥

∥

∥

∥

∥

+ max
s∈Jt+1,ti+1−1K

∥

∥

∥

∥

∥

s
∑

r=t+1

g∗r − ḡr−1

∥

∥

∥

∥

∥

≤ max
s∈Jti,t−1K

t
∑

r=s+1

‖g∗r − ḡr−1‖+ max
s∈Jt+1,ti+1−1K

s
∑

r=t+1

‖g∗r − ḡr−1‖

=

ti+1−1
∑

r=ti+1

‖g∗r − ḡr−1‖

≤ VG/m
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We may now sum to obtain

4κ

T
∑

t=1

‖g∗t − ḡt‖G = 4κ

m
∑

i=1

ti+1−1
∑

t=ti

‖g∗t − ḡti:ti+1
‖G

≤ 4κ

m
∑

i=1

ti+1−1
∑

t=ti

VG/m

= 4κVG/m
m
∑

i=1

ti+1 − ti

= 4κVGT/m.

Step 5: Putting everything together. We obtain

T
∑

t=1

‖ĝt(xt)− ϕt‖2H − ‖g∗t (xt)− ϕt‖2H

≤ m log T
η + log

(

e+ eκ2T
λ

)

m
∑

i=1

deff(λ, ti+1 − ti) + λ

m
∑

i=1

‖ḡti:ti+1
‖2 + 4κVGT

m .

We conclude by noting that

∥

∥ḡti:ti+1

∥

∥

2

G =

∥

∥

∥

∥

∥

1
ti+1−ti

ti+1−1
∑

t=ti

g∗t

∥

∥

∥

∥

∥

2

G

≤ 1
ti+1−ti

ti+1−1
∑

t=ti

‖g∗t ‖2G ≤ max
t∈Jti,ti+1−1K

‖g∗t ‖2G

where the first inequality is by Jensen’s inequality.

We recall and prove our main result from Section 5.

Theorem 5 (Expected Regret in a Non-Stationary Environment). Assume that there exists (g∗t ) a sequence in G such
that E

[
∑T

t=1‖g∗t (xt)− E[ϕt|xt]‖2H
]

= 0. Then, Algorithm 2 run with λ > 0 and η = 1/2(κ sup‖g‖G + 1)2 satisfies

E[RT ] =

{

Õ(V
1/6
G T 5/6) if λ = V

−1/3
G T 1/3

Õ(V
1/4
0 T 3/4) if λ = V

−1/2
0 T 1/2

. (19)

Precisely if λ = V
−1/3
G T 1/3, we have

E[RT ] ≤ 2c∆
√
T







⌈

V
2/3
G

T 1/3κ−2/3
⌉

log T

η + 4κ5/3V
1/3
G T 2/3

+ (V
2/3
G T 4/3κ−2/3 + T )1/2

(

κ2 log
(

e+ eκ2(V
2/3
G T 4/3κ−2/3 + T )1/2

)

+ max
t∈JT K

‖g∗t ‖2G
)







1/2

,

and if λ = V
−1/2
0 T 1/2, we have

E[RT ] ≤ 2c∆
√
T

√

V0 logT

η
+ log

(

e+ eκ2
√

TV0

)

κ2
√

TV0 +
√

TV0 max
i∈JV0K

‖ḡti:ti+1
‖2G .

Proof. Step 1: Controlling the regret of (ft)t by the regret of (ĝt)t. From Lemma 7, we have

E

[

T
∑

t=1

∆(ft(xt), yt)−∆(f∗
t (xt), yt)

]

≤ 2c∆
√
T

√

√

√

√

T
∑

t=1

E[‖ĝt(xt)− E[ϕt|xt]‖2H] .
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We add and subtract a term and then follow the proof of Theorem 3,

E

[

T
∑

t=1

∆(ft(xt), yt)−∆(f∗
t (xt), yt)

]

≤ 2c∆
√
T

√

√

√

√

T
∑

t=1

E[‖ĝt(xt)− E[ϕt|xt]‖2H − ‖g∗t (xt)− E[ϕt|xt]‖2H + ‖g∗t (xt)− E[ϕt|xt]‖2H] .

We now apply Proposition 11 to obtain

E[RT ] ≤ 2c∆
√
T

√

√

√

√RT (λ,m) + E

[

T
∑

t=1

‖g∗t (xt)− E[ϕt|xt]‖2H

]

(43)

where RT (λ,m) is as in Proposition 11 and is defined as

RT (λ,m) = m log T
η + log

(

e+ eκ2T
λ

)

m
∑

i=1

deff(λ, ti+1 − ti) + λm max
t∈JT K

‖g∗t ‖2G + 4κVGT
m .

Case 1: Continuous variations. We bound the effective dimension by deff(λ, ti+1 − ti) ≤ κ2(ti+1−ti)
λ . Thus we can

bound the sum by
∑m

i=1 deff(λ, ti+1 − ti) ≤ κ2T/λ and obtain

RT (λ,m) ≤ m log T
η + log

(

e+ eκ2T
λ

)

κ2T
λ + λm max

t∈JT K
‖g∗t ‖2G + 4κVGT

m .

We choose λ =
√

T/m and get

RT (λ,m) ≤ m log T
η + log(e+ eκ2

√
Tm)κ2

√
Tm+

√
Tm max

t∈JT K
‖g∗t ‖2G + 4κVGT

m .

We choose m =
⌈

V
2/3
G T 1/3κ−2/3

⌉

and get

RT (λ,m) ≤
⌈

V
2/3
G

T 1/3κ−2/3
⌉

log T

η + 4κ5/3V
1/3
G T 2/3

+ (V
2/3
G T 4/3κ−2/3 + T )1/2

(

κ2 log(e + eκ2(V
2/3
G T 4/3κ−2/3 + T )1/2) + max

t∈JT K
‖g∗t ‖2G

)

.

We conclude by noting that VG = ‖g∗1‖G +
∑T

t=2‖g∗t − g∗t−1‖G ≤ (2T − 1) sup‖g‖G.

Case 2: Discrete variations. In the case of discrete distributions data variations there is no more need to approximate
the data distributions (g∗t )t by the hypothetical forecasters (ḡti:ti+1

)i. Thus the third term of the sum in Eq. (41) is not
necessary. And we can replace RT (λ,m) by R0

T (λ, V0) defined as

R0
T (λ, V0) :=

V0 logT

η
+ log

(

e+ eκ2T
λ

)

V0
∑

i=1

deff(λ, ti+1 − ti) + λ

V0
∑

i=1

‖ḡti:ti+1
‖2G .

We bound the effective dimension by deff(λ, ti+1−ti) ≤ κ2(ti+1−ti)
λ . Thus we obtain

∑V0

i=1 deff(λ, ti+1−ti) ≤ κ2T/λ
and

R0
T (λ, V0) ≤

V0 logT

η
+ log

(

e+ eκ2T
λ

)

κ2T
λ + λV0 max

i∈JV0K
‖ḡti:ti+1

‖2G . (44)

By choosing λ =
√

T/V0, we get

R0
T (λ, V0) ≤

V0 log T

η
+ log

(

e+ eκ2
√

TV0

)

κ2
√

TV0 +
√

TV0 max
i∈JV0K

‖ḡti:ti+1
‖2G . (45)

Finally we bound the expected regret by

E[RT ] ≤ 2c∆
√
T

√

V0 logT

η
+ log

(

e+ eκ2
√

TV0

)

κ2
√

TV0 +
√

TV0 max
i∈JV0K

‖ḡti:ti+1
‖2G .

We now note that V0 ≤ T to conclude the proof.
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D.1 Refined Regret Bounds

Capacity Condition There exists β ∈ [0, 1] and Q > 0 for which

deff(λ) ≤ Q

(

T

λ

)β

, ∀λ > 0. (46)

When the kernel is bounded the condition above is always satisfied for β = 1. Indeed we can always bound the
effective dimension by deff(λ) ≤ κ2T

λ . Moreover if the eigenvalues of the covariance operator C decay polynomially
σi(C) ≤ cj−µ, for c > 0, µ > 1 and j ∈ N, then the capacity condition is satisfied with Q = c and β = −1/µ. Using
this bound we may derive a refined bound of the expectation of the dynamic regret.

Assuming that the capacity condition holds, and that there exists (g∗t ) a sequence in G such that

E

[

∑T
t=1‖g∗t (xt)− E[ϕt|xt]‖2H

]

= 0. Then choosing λ = T
β

β+1m
−β
β+1 and m =

⌈

V

β+1
β+2
G T

1
β+2κ

−(β+1)
β+2

⌉

leads

to the following bound on the expected regret

E[RT ] = Õ

(

V

1
2(β+2)
G T

2β+3
2(β+2)

)

. (47)

Indeed using the capacity condition, we bound the effective dimension by deff(λ, ti+1 − ti) ≤ Q
(

ti+1−ti
λ

)β

. Using

Jensen’s inequality, we then derive
m
∑

i=1

deff(λ, ti+1 − ti) ≤ Q

m
∑

i=1

(

ti+1 − ti
λ

)β

= Qm

m
∑

i=1

1

m

(

ti+1 − ti
λ

)β

≤ Qm

(

m
∑

i=1

ti+1 − ti
λm

)β

= Qm1−β

(

T

λ

)β

.

We obtain
RT (λ,m) ≤ m log T

η + log
(

e+ eκ2T
λ

)

Qm1−β
(

T
λ

)β
+ λm max

t∈JT K
‖g∗t ‖2G + 4κVGT

m .

We choose λ = T
β

β+1m
−β
β+1 , and obtain

RT (λ,m) ≤ m log T
η +m

1
β+1T

β
β+1

(

Q log

(

e+ eκ2m
β

β+1T
1

β+1

)

+ max
t∈JT K

‖g∗t ‖2G
)

+ 4κVGT
m .

We choose m =
⌈

V

β+1
β+2
G T

1
β+2κ

−(β+1)
β+2

⌉

and obtain

RT (λ,m) ≤

⌈

V

β+1
β+2

G
T

1
β+2 κ

−(β+1)
β+2

⌉

log T

η + 4κ
2β+3
β+2 V

1
β+2
G T

β+1
β+2

+
(

V
1

β+2
G T

β+1
β+2κ

−1
β+2 + T

β
β+1

)

(

Q log
(

e+ eκ
2β+3
β+2 V

β
β+2
G T

2
β+2 + eT

1
β+1

)

+ max
t∈JT K

‖g∗t ‖2G

)

.

We note that the variation VG = ‖g∗1‖G +
∑T

t=2‖g∗t − g∗t−1‖G = O(T ) to conclude.

Gaussian kernel Moreover, in the case of the Gaussian kernel we can bound the effective dimension by
deff(λ) ≤

(

log
(

T
λ

))d
(Altschuler et al., 2019) where d is the dimension of the input space X , to obtain a smaller

regret. By choosing m =
√

VGT/(λ+ 1), we obtain

E[RT ] = Õ
(

T 3/4V
1/4
G (λ+ 1)1/4

)

. (48)

In this particular case, if we choose a constant λ, we retrieve the power T 3/4 from the stationary case.
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E Dealing with Non-Stationary Data in High Probability

In this section we deal with non-stationary data distributions as in Section 5, however we bound the cumulative risk
in high probability instead of bounding the expected regret. As in Appendix C, we define the feature predictor on a
shifted version of the losses in order to apply Theorem 1 of van der Hoeven et al. (2023), see Algorithm 3. We define
the loss ℓt as

ℓt(g) =
∥

∥ϕs − 1
2 ĝt(xt)− 1

2g(xt)
∥

∥

2

H . (49)

We recall the definition of the filter Ft−1 = (x1, y1, . . . , xt−1, yt−1, xt) and the notation Et[.] that stands for
Eyt [.|Ft−1].

Algorithm 3: SALAMI – Structured prediction ALgorithm with Aggregating MIxture – for the high probability
setting

Input: λ > 0, exp-concavity constant η of (ℓt)t, kernel k : X × X → R

for Each time step t in 1 . . . T do
Get information xt ∈ X
for Each expert s in 1 . . . t do

Compute ĝs:t = argming∈G
∑t−1

s=s1

∥

∥ϕs − 1
2 ĝs(xs)− 1

2g(xs)
∥

∥

2

H + λ‖g‖2G + 1
4‖g(xt)‖2H

end
for Each expert s in 1 . . . T do

Compute the auxiliary loss ℓ̃t(s) =

{

ℓt(ĝs:t) if s ≤ t

ℓt(ĝt) if s > t

Compute the probability using EWA wt(s) ∝ wt−1(s) exp(−ηℓ̃t(s))

Compute the probability pt(s) ∝
{

wt(s) if s ≤ t

0 if s > t

end

Compute the aggregate predictor ĝt =
∑T

s=1 pt(s)ĝs:t
Compute the prediction ẑt = f̂t(xt) = argminz∈Z〈ψ(z), ĝt(xt)〉H
Observe ground truth yt ∈ Y
Get loss ∆(ẑt, yt) ∈ R

end

The only difference with Appendix D is the definition of the experts. We shift the losses by 1
2 ĝs(xs),

ĝs1:t := argmin
g∈G

t−1
∑

s=s1

∥

∥ϕs − 1
2 ĝs(xs)− 1

2g(xs)
∥

∥

2

H + λ‖g‖2G + 1
4‖g(xt)‖

2
H (50)

where ĝs are the aggregate functions defined as in Appendix D, see Algorithm 3. The predictor f̂t and the prediction
ẑt are computed as an optimisation problem in function of ĝt(xt)

ẑt = f̂t(xt) = argmin
z∈Z

〈ψ(z), ĝt(xt)〉H. (51)

Analysis We now analyse the regret of this algorithm.

We introduce the following technical lemma, which bounds the cumulative risk of the feature predictors by the regret
in high probability using Theorem 1 of van der Hoeven et al. (2023).

Lemma 12 (Dynamic Cumulative Risk of the Feature Predictors). Let (ĝt)t be defined as in Algorithm 3, m ∈ N be
defined as in (38), any sequence (g∗t )t ∈ GT and δ ∈ (0, 1]. Let RT (λ,m) be defined as follows

T
∑

t=1

‖ĝt(xt)− ϕt‖2H −
∥

∥

1
2g

∗
t (xt) +

1
2 ĝt(xt)− ϕt

∥

∥

2

H ≤ RT (λ,m). (52)

Let γ be defined as in Eq. (33). Then with probability 1− δ

T
∑

t=1

Et[‖ĝt(xt)− ϕt‖2H − ‖g∗t (xt)− ϕt‖2H] ≤ 2RT (λ,m) + 2γ log(δ−1). (53)
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Proof. Let us recall the notations of van der Hoeven et al. (2023) in order to apply the Theorem 1 of their paper. Let
ℓ̃t denote the shifted loss as in van der Hoeven et al. (2023)

ℓ̃t(g) = ℓt
(

1
2g +

1
2 ĝt
)

=
∥

∥

1
2g(xt) +

1
2 ĝt(xt)− ϕt

∥

∥

2

H . (54)

We defined RT (λ,m) such that

T
∑

t=1

ℓ̃t(ĝt(xt))− ℓ̃t(g
∗
t ) ≤ RT (λ,m)

with the only assumption on (g∗t )t that they are functions in the space G. Using the convexity of ℓ̃, we use Jensen
inequality

ℓ̃ (Eg∼Qt [g]) ≤ Eg∼Qt [ℓ̃(g)],

where (Qt)t are some distributions over G, and by convexity of the space G we have that Eg∼Qt [g] ∈ G. We derive
the following inequality

T
∑

t=1

ℓ̃t(ĝt)− Eg∼Qt [ℓ̃t(g)] ≤
T
∑

t=1

ℓ̃t(ĝt)− ℓ̃ (Eg∼Qt [g]) ≤ RT (λ,m).

We now remark that the proof of the Theorem 1 of van der Hoeven et al. (2023) can be applied with a non-stationary
baseline (Qt)t instead of Q. This concludes the proof.

We use this lemma and a comparison inequality to bound the cumulative risk of the predictors.

Theorem 13 (Expected Regret in a Non-Stationary Environment). Assume that there exists (g∗t ) a sequence in
G such that E

[
∑T

t=1‖g∗t (xt)− E[ϕt|xt]‖2H
]

= 0. Let δ ∈ (0, 1]. Then, Algorithm 3 run with λ > 0 and
η = 1/2(κ sup‖g‖G + 1)2 satisfies with probability 1− δ

E[RT ] =







Õ
(

V
1/6
G T 5/6 + T 1/2

√

log(δ−1)
)

if λ = V
−1/3
G T 1/3

Õ
(

V
1/4
0 T 3/4 + T 1/2

√

log(δ−1)
)

if λ = V
−1/2
0 T 1/2

. (55)

Precisely, let γ let be defined as in Eq. (33), if λ = V
−1/3
G T 1/3 we have

T
∑

t=1

Et[∆(f̂t(xt), yt)−∆(f∗
t (xt), yt)]

≤ 2c∆
√
2T















⌈

V
2/3
G

T 1/3κ−2/3
⌉

log T

η + (1 + κ sup‖g‖G)κ5/3V 1/3
G T 2/3

+ (V
2/3
G T 4/3κ−2/3 + T )1/2 κ2B2

16 log
(

e+ eκ2

4 (V
2/3
G T 4/3κ−2/3 + T )1/2

)

+ (V
2/3
G T 4/3κ−2/3 + T )1/2 max

t∈JT K
‖g∗t ‖2G + γ log(δ−1)















1/2

,

and if λ = V
−1/2
0 T 1/2 we have

T
∑

t=1

Et[∆(f̂t(xt), yt)−∆(f∗
t (xt), yt)]

≤ 2c∆
√
2T
(

V0 log T
η + B2κ2

√
TV0

16 log
(

e + eκ2
√
TV0

4

)

+
√

TV0max
i

‖ḡti:ti+1
‖2 + γ log(δ−1)

)1/2

.
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Proof. Step 1: Controlling the regret of (ft)t by the regret of (ĝt)t. From Lemma 8, we have

T
∑

t=1

Et[∆(f̂t(xt), yt)−∆(f∗
t (xt), yt)]

≤ 2c∆
√
T

√

√

√

√

T
∑

t=1

Et[‖ĝt(xt)− E[ϕt|xt]‖2H]

= 2c∆
√
T

√

√

√

√

T
∑

t=1

Et[‖ĝt(xt)− E[ϕt|xt]‖2H − ‖g∗t (xt)− E[ϕt|xt]‖2H + ‖g∗t (xt)− E[ϕt|xt]‖2H]

= 2c∆
√
T

√

√

√

√

T
∑

t=1

Et[‖ĝt(xt)− ϕt‖2H − ‖g∗t (xt)− ϕt‖2H] + Et[‖g∗t (xt)− E[ϕt|xt]‖2H].

We may now apply Lemma 12 to obtain

T
∑

t=1

Et[∆(f̂t(xt), yt)−∆(f∗
t (xt), yt)]

≤ 2c∆
√
T

√

√

√

√2RT (λ,m) + 2γ log(δ−1) +

T
∑

t=1

‖g∗t (xt)− E[ϕt|xt]‖2H (56)

where RT (λ,m) is defined as

RT (λ,m) = m log T
η + B2

4 log
(

e+ eκ2T
4λ

)

m
∑

i=1

deff(4λ, ti+1 − ti) + λm max
t∈JT K

‖g∗t ‖2G + (1+κ sup‖g‖G)κVGT
m

and comes from Proposition 11 for shifted losses.

Case 1: Continuous variations. We bound the effective dimension by deff(4λ, ti+1 − ti) ≤ κ2(ti+1−ti)
4λ . Thus we can

bound the sum by
∑m

i=1 deff(4λ, ti+1 − ti) ≤ κ2T/4λ and obtain

RT (λ,m) ≤ m log T
η + B2

4 log
(

e+ eκ2T
4λ

)

κ2T
4λ + λm max

t∈JT K
‖g∗t ‖2G + (1+κ sup‖g‖G)κVGT

m .

We choose λ =
√

T/m and get

RT (λ,m) ≤ m log T
η + B2

4 log
(

e+ eκ2
√
Tm

4

)

κ2
√
Tm
4 +

√
Tm max

t∈JT K
‖g∗t ‖2G + (1+κ sup‖g‖G)κVGT

m .

We choose m =
⌈

V
2/3
G T 1/3κ−2/3

⌉

and get

RT (λ,m) ≤
⌈

V
2/3
G

T 1/3κ−2/3
⌉

log T

η + (1 + κ sup‖g‖G)κ5/3V 1/3
G T 2/3

+ (V
2/3
G T 4/3κ−2/3 + T )1/2

(

κ2B2

16 log
(

e+ eκ2

4 (V
2/3
G T 4/3κ−2/3 + T )1/2

)

+ max
t∈JT K

‖g∗t ‖2G
)

.

We conclude by noting that VG ≤ (2T − 1) sup‖g‖G.

Case 2: Discrete variations. In the case of discrete distributions data variations there is no more need to approximate
the data distributions (g∗t )t by the hypothetical forecasters (ḡti:ti+1

)i. Thus the third term of the sum in Eq. (41) is not
necessary. And we can replace RT (λ,m) by R0

T (λ, V0) defined as

R0
T (λ, V0) :=

V0 logT

η
+ B2

4 log
(

e+ eκ2T
4λ

)

V0
∑

i=1

deff(4λ, ti+1 − ti) + λ

V0
∑

i=1

‖ḡti:ti+1
‖2G .
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We bound the effective dimension by deff(4λ, ti+1−ti) ≤ κ2(ti+1−ti)
4λ . Thus we bound the sum by

∑V0

i=1 deff(4λ, ti+1−
ti) ≤ κ2T/4λ and obtain

R0
T (λ, V0) ≤ V0 log T

η + B2κ2T
16λ log

(

e+ eκ2T
4λ

)

+ λV0 max
i∈JV0K

‖ḡti:ti+1
‖2G . (57)

By choosing λ =
√

T/V0, we get

R0
T (λ, V0) ≤ V0 log T

η + B2κ2
√
TV0

16 log
(

e + eκ2
√
TV0

4

)

+
√

TV0 max
i∈JV0K

‖ḡti:ti+1
‖2G . (58)

We then bound the cumulative risk using Step 1.

T
∑

t=1

Et[∆(f̂t(xt), yt)−∆(f∗
t (xt), yt)]

≤ 2c∆
√
2T

√

V0 log T
η + B2κ2

√
TV0

16 log
(

e+ eκ2
√
TV0

4

)

+
√

TV0 max
i∈JV0K

‖ḡti:ti+1
‖2G + γ log(δ−1)

We now note that V0 ≤ T to conclude the proof.

E.1 Refined Regret Bounds

In this section we assume that the capacity condition holds and we derive refined bounds of the cumulative risk.
For more details about the capacity condition see Appendix D.1. Assuming that there exists (g∗t ) a sequence in

G such that E
[

∑T
t=1‖g∗t (xt)− E[ϕt|xt]‖2H

]

= 0. Let δ ∈ (0, 1]. Then choosing λ = T
β

β+1m
−β
β+1 and m =

⌈

V

β+1
β+2
G T

1
β+2κ

−(β+1)
β+2

⌉

leads to the following bound on the expected regret with probability 1− δ

T
∑

t=1

Et[∆(f̂t(xt), yt)−∆(f∗
t (xt), yt)] = Õ

(

V

1
2(β+2)
G T

2β+3
2(β+2) + T 1/2

√

log(δ−1)

)

. (59)

Indeed using the capacity condition, we bound the effective dimension by deff(4λ, ti+1 − ti) ≤ Q
(

ti+1−ti
4λ

)β

. Using

Jensen’s inequality, we then derive

m
∑

i=1

deff(4λ, ti+1 − ti) ≤ Q

m
∑

i=1

(

ti+1 − ti
4λ

)β

= Qm
m
∑

i=1

1

m

(

ti+1 − ti
4λ

)β

≤ Qm

(

m
∑

i=1

ti+1 − ti
4λm

)β

= Qm1−β

(

T

4λ

)β

.

We obtain

RT (λ,m) ≤ m log T
η + QB2

4 m1−β
(

T
4λ

)β
log
(

e+ eκ2T
4λ

)

+ λm max
t∈JT K

‖g∗t ‖2G + (1+κ sup‖g‖G)κVGT
m .

We choose λ = T
β

β+1m
−β
β+1 , and obtain

RT (λ,m) ≤ m log T
η + (1+κ sup‖g‖G)κVGT

m +m
1

β+1T
β

β+1

(

QB24−β

4 log

(

e+ eκ2

4 m
β

β+1T
1

β+1

)

+ max
t∈JT K

‖g∗t ‖2G
)

.
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We choose m =
⌈

V

β+1
β+2
G T

1
β+2κ

−(β+1)
β+2

⌉

to obtain

RT (λ,m) ≤

⌈

V

β+1
β+2

G
T

1
β+2 κ

−(β+1)
β+2

⌉

log T

η + (1 + κ sup‖g‖G)κ
2β+3
β+2 V

1
β+2
G T

β+1
β+2

+
(

V
1

β+2
G T

β+1
β+2κ

−1
β+2 + T

β
β+1

)(

QB24−β

4 log
(

e+ e
κ

2β+3
β+2 V

β
β+2

G
T

2
β+2+T

1
β+1

4

)

+ max
t∈JT K

‖g∗t ‖2G
)

.

We conclude by noting that VG = ‖g∗1‖G +
∑T

t=2‖g∗t − g∗t−1‖G ≤ (2T − 1) sup‖g‖G.
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