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Abstract—Dual (DMR) and Triple Modular Redundancy
(TMR), often with some form of diversity, are used in safety-
critical systems to realize those functionalities at the highest
integrity level providing fault detection and/or tolerance capa-
bilities. Redundant executions are intended to provide bit-level
identical results and, upon any mismatch, an error is assumed
and recovery actions taken as needed.

In this paper, we note that many emerging AI-based func-
tionalities are intrinsically stochastic (e.g., camera-based object
detection), and hence, their correctness must be judged se-
mantically, with room for variations across correct outcomes
(e.g., confidence must be above a given threshold). Building
on this observation, we propose strategies to create DMR and
TMR implementations of AI-based functionalities that bring not
only fault tolerance against random hardware faults, but also
against AI model inaccuracies. Those strategies, which can be
realized with software-only means and ported to virtually any
computing platform, build on input data modifications affecting
the inference computations, but not the expected semantic output
(e.g., introducing some limited random noise in the input data).

Index Terms—Diversity, Redundancy, Safety, DNN, AI

I. INTRODUCTION

Artificial Intelligence (AI) is increasingly used in safety-
critical systems as an enabler for autonomous operation. For
instance, camera-based object detection implemented with
Deep Neural Networks (DNN) is used across a wide variety of
applications and domains such as autonomous driving cars [1],
rendezvous and docking operations in space [2], and in-cabin
pilot monitoring in avionics [3] among others.

AI has been used so far mostly in fail-safe systems [4],
where AI software has been generally relieved from inher-
iting safety requirements by incorporating appropriate non-
AI monitors. However, autonomous operation, often related
to fail-operational systems, does not generally allow keeping
AI software without safety requirements. In fact, since AI
software is in charge of high-integrity operations, such as
steering and braking in automotive, or docking in space,
integrity requirements can easily be the highest ones (e.g.,
DAL-A in avionics, ASIL-D in automotive). Therefore, it is
common that the corresponding safety guidelines impose the
use of diverse redundancy as a mandatory safety measure.

So far, diverse redundancy has been built with bit-level
correctness in mind. For instance, lockstep processors use 2
or 3 identical cores running the same software with just some
time staggering so that their internal state differs at any point
in time and, upon a fault affecting all of them simultaneously,
the errors generated (if any) are expected to differ and, at
least, be detected. In this case, any discrepancy in the results
is regarded as an error even if it is semantically innocuous for
a specific application, since it is hard to tell whether it is or
not a priori. However, in the context of AI software, such as
DNNs, many applications do not require bit-level correctness
and, instead, perform stochastic processes where bit-level

different outcomes can be regarded as semantically identical.
For instance, two object detectors identifying the same object
class as the most likely one, with confidence values above
a detection threshold, and with highly overlapping bounding
boxes, can be regarded as providing identical outputs even if
confidence values and bounding boxes differ.

This paper exploits this observation, i.e., redundant AI
software may afford bit-level differences across semantically
identical outcomes, to realize diverse redundancy in more
efficient ways. In particular, we consider solutions where
diverse redundancy can be used not only to deal with random
hardware faults, but also to mitigate inaccuracies brought
by AI models themselves (e.g., false positives and false
negatives). Moreover, we do so containing system design
and operation costs by preserving the original AI model.
Otherwise, the cost of designing, training, and verifying two
models could be prohibitive, as well as the cost of fetching
twice the amount of AI model parameters, which may be in the
order of several GBs in the case of some DNNs for camera-
based object detection [5].

Our solution builds upon applying semantically-neutral
transformations to the input data of the AI model (e.g.,
images for camera-based object detection) that alter inference
computations so that random hardware faults are mitigated due
to physical redundancy, but also small AI model inaccuracies
can be mitigated due to input data diversity. In particular, we
realize our transformations in the input images used by the You
Only Look Once (YOLO) [6] object detector and show that
a variety of image transformations yield comparable results
to the original case, and they can be combined with different
schemes to form a TMR system.

The rest of the paper is organized as follows. Section II
provides some background and related work on diverse redun-
dancy. Section III presents our proposal. Section IV evaluates
it. Finally, Section V concludes this work.

II. BACKGROUND AND RELATED WORK

High-integrity systems and components require the use of
some form of redundancy for, at least, error detection, and
possibly correction. Data storage and communication often
build on some form of error correction codes. For instance,
single error correction double error detection (SECDED) codes
for data storage are a popular solution for large memories,
and can also be used to protect end-to-end communications
by forwarding those codes along with the data.

However, combinatorial logic, and computing components
in general, often need to resort to full redundancy. Dual (DMR)
and Triple Modular Redundancy (TMR) are effective solutions
for error detection and correction respectively if faults affect
one of the redundant components only. However, some types
of faults, such as those affecting clock signals and power



networks, can lead to simultaneous errors in all redundant
components. Hence, some form of diversity is wanted across
redundant instances to avoid scenarios where errors are iden-
tical and cannot be detected by comparing outputs.

The usual solution to realize DMR and TMR with diversity
in CPUs consists of operating redundant cores with some
time staggering so that, despite redundant cores are identical
and execute identical software, their state at any time instant
differs, and the simultaneous impact of a fault is expected to
cause different errors – if any. The most popular case of such
scheme is known as Dual Core LockStep (DCLS for short),
and realized in some commercial microcontrollers, such as
the Infineon AURIX processor family [7]. Similar schemes
have been devised for GPUs [8], as well as software-only
alternatives for cores [9]. However, all those solutions build
upon bit-level accuracy so, while they could be applied directly
for DNNs (either in CPU, GPU, or ad-hoc accelerators), they
cannot be used to mitigate DNN model inaccuracies.

Some solutions exploit semantic redundancy for data vary-
ing little over time (e.g., camera-based object detection at
high frames per second rates) [10], [11]. However, differently
to our proposal, those solutions only provide error detection
capabilities and can only be applied to problems with some
(high) degree of timing redundancy. Our approach, instead,
provides intrinsic error correction capabilities and poses no
requirements on the timing relations across input data.

In our previous work [12], we presented TRUST, a scheme
combining temporal redundancy, such as the previous works,
as well as spatial redundancy to provide a DCLS-like solution,
but with the secondary accelerator operating with lower-
precision arithmetic to reduce complexity and power. While
TRUST provides error correction capabilities, such as ITLS,
it does not increase the model accuracy, and is still bound to
problems where temporal redundancy exists. Moreover, ITLS
could be realized with software support only, as opposed to
TRUST.

Ensemble methods have previously been adopted to enhance
the accuracy of DNNs [13], [14]. However, those works
introduce substantial memory and computational overheads
since weights change across models. To address this challenge,
Gao et al. [15] introduced an ensemble approach that combines
the outputs of three or four lower-complexity models (e.g., an
ensemble of ResNet22, ResNet32, and ResNet44) to replace
the original model (e.g., ResNet110). In their study, Gao et
al. compare their ensemble technique with a Triple Modular
Redundancy (TMR) method, and show that it incurs smaller
overheads. However, their ensemble approach requires three
different models with different weights, while we rely on the
use of a single model. Therefore, their approach increases the
cost of designing, training, and verifying several models which
may be prohibitive. Furthermore, their evaluation focuses
on object classification, which is an easier task than object
detection.

Jon’s et al. recent work [16] bears the closest resemblance
to ours. Authors propose the use of image transformations
to detect – but not correct – anomalous situations that could
cause a potential faulty situation in an autonomous system. In
particular, authors use a DNN to calculate the steering angle
of a robot while driving between two lines, which is a much
simpler task than the object detection task considered in our
work. Their approach consists in executing the DNN with
the original image and then performing a follow-up execution

with a very slightly modified image, such that the steering
angles calculated for both images are expected to be identical,
i.e. within a calculated uncertainty threshold. However, in our
work, we allow a higher degree of modification to be able
to increase the overall system robustness through detecting a
larger number of objects between the different components of
the TMR system. We attempted to apply such approach to our
problem, but the results were not promising, since the output
of a DNN for object detection is composed of millions of
values, and we found that the calculated uncertainty threshold,
with the image modifications used in our work, is too large in
fault-free cases, such that it cannot detect faulty operations.

III. SOFTWARE-ONLY SEMANTIC DIVERSE REDUNDANCY

Our approach builds on realizing a redundant scheme for
the inference with a given AI model by altering the inputs
across redundant instances in a way that outputs are expected
to remain identical semantically speaking, and merging them
conveniently, as illustrated in Figure 1. Note that to achieve
maximum performance, a hardware solution comprising three
parallel physical compute units must be made available. How-
ever, if developing a hardware solution is not an option, our
solution could be implemented solely through software means.
This can be achieved by executing the three input images in
parallel on a single GPU, following the work from S. Alcaide
et al. [17] which demonstrates how to implement a software-
only TMR scheme using a single GPU.

For the sake of easing the explanation, we focus on a
TMR scheme applied on the popular You Only Look Once
v4 (YOLOv4) [6] object detection software for images, which
is used in a plethora of applications, including commercial
automotive systems, such as Apollo [18]. In particular, the
task at hand is object detection, where, for each object present
within an image, the model has to classify it (i.e., determine
the class of the object, such as, a vehicle or a person), and
determine its position and size by creating a bounding box
(i.e., a rectangle surrounding the object).

A. Efficient Diverse Redundancy

As shown in some recent work, DNNs such as the one
in YOLOv4 may require fetching some GBs of weights to
process each image [5], whereas images occupy up to few
MBs. Hence, memory bandwidth is often saturated to fetch
the DNN weights. Based on this fact, our redundancy scheme
aims at preserving the same DNN model for all redundant
inference processes with the aim of enabling appropriate
execution approaches that allow sharing weights fetched across
the redundant processes.

Therefore, if weights are fixed, the simplest way to intro-
duce diversity with software-only means consists of altering
the input data. Our goal is applying modifications to the input
data so that it differs across the redundant processes, but they
are semantically equivalent so that inference should lead to
the same object detections. In particular, we have considered
some of the image transformations provided by the CLoDSA
open library [19], which would map to F (x), G(x) and H(x)
in the figure:

• Applying histogram equalization (EQ).
• Image sharpening (SH).
• Dropout (DR) by setting some pixels to zero.
• Applying Gamma correction (GC).
• Blurring the image applying a Gaussian filter (GB).



Fig. 1: Overview of our proposed TMR diverse redundancy
scheme.

• Applying Gaussian noise (GN).
• Blurring the image applying the median filter (MB).
• Adding salt and pepper pixels (SP).
• Raising pixel values by a set amount (RV).
• Shifting the image some pixels to the right (RS).
• Shifting the image some pixels to the left (LS).
• Shifting the image some pixels to the top (TS).
• Shifting the image some pixels to the bottom (BS).
• Rotating the image clockwise at a certain angle (CR).
• Rotating the image anticlockwise at a certain angle (AR).
• Horizontally flipping the image (HF).
• Vertically flipping the image (VF).
To realize the TMR scheme, we select three different

choices between the image transformations above and the
original image, and perform inference for the three of them
using the identical YOLOv4 DNN model. With this, we obtain
three potentially different object detection outputs that need
being combined properly.

B. Combining Predictions

Rather than attempting to identify wrong predictions – if
any – across the diverse and redundant predictions, we merge
those predictions with the aim of making correct predictions
supersede erroneous ones (see Figure 1). We build on the
fact that predictions, even if correct, may not be identical
at bit level. Hence, we opt for combining predictions whose
detection class matches (e.g., a pedestrian is detected), and
whose bounding box overlaps enough (e.g., bounding boxes
have an intersection over union higher than 50%). However, it
remains open how to set the final bounding box and confidence
for the detection. Regarding the bounding box, note that model
A can provide a bounding box overlapping above the threshold
with the one from model B and the one from model C, but the
ones from models B and C may overlap below the threshold.
In this case, we still regard detections as the same detection
and attempt to combine them.

Confidence. To set the confidence of the detection, we
explore different schemes as follows:

• Voting: a detection is regarded as true if 2 out of 3 DNN
models provide a confidence level above the detection
threshold (e.g., using the default confidence threshold of
50% to determine that a detection should be correct).

• Averaging: a detection is regarded as true if the average
of the confidence values for the three models is above
the detection threshold.

• Maximum: a detection is regarded as true if at least one
model indicates a confidence level above the detection
threshold.

Bounding box. To set the bounding box of the detection,
we perform it as follows:

• Voting: we retain the bounding box of the detection with
the highest confidence among those being combined.

• Averaging: the bounding boxes of the 3 DNN models are
averaged to obtain a final bounding box.

• Maximum: note that in this case, there may be over-
lapping bounding boxes that represent the same object.
Therefore, a Non-Maximum Suppression (NMS) post-
processing is applied to filter out repetitions. The NMS
consists in filtering out the detections that represent the
same object by comparing the bounding boxes of the
detections of the same class, and if the bounding boxes
have sufficient overlap (i.e., Intersection Over Union
> 0.5), the bounding box with the highest confidence
is kept, and the other overlapping bounding boxes are
discarded.

Note that other approaches to determine the resulting bound-
ing box are possible, such as selecting the largest bounding
box among those being combined instead of considering the
confidence level. However, using a bounding box not provided
by any of the DNNs explicitly brings additional uncertainty.
Hence, we stick to using a method that selects one of the
relevant bounding boxes.

C. Application to Safety-Relevant Systems

Deploying safety-relevant systems based on AI, with AI
software inhering safety requirements, is still an open chal-
lenge [4]. Some relevant standards have seen the light very
recently, such as ISO 5469 and ISO 21448 (aka SOTIF), but
their practical application is not yet solved. Moreover, they do
not provide specific guidance to tailor diverse redundancy. For
instance, it is unclear how many levels and degrees of diverse
redundancy are needed to make risk residual and system
accuracy high enough. In our view, as part of the system
architecture, diverse redundancy must exist at different levels,
e.g., with multiple sensors, and with redundant and diverse
processing for the data of each sensor. Our proposal aims at
providing an efficient realization for the latter, hence enabling
system designers with appropriate solutions to architect their
AI-based safety-critical systems.

IV. EVALUATION

In this section, we introduce the evaluation setup (YOLO
implementation, dataset, evaluation metrics, and fault injection
framework), we discuss the results obtained with each image
transformation when executing a single model, and we discuss
the results obtained with our scheme, considering the different
image transformations and results merging schemes in fault-
free and faulty scenarios.

A. Setup

We use a 32-bit floating point Tensorflow Keras implemen-
tation of YOLOv4 [20] with the publicly available pre-trained
YOLOv4 parameters with the training subset of the Common
Objects in Context (COCO) dataset [21]. We evaluate our
proposal using the default 608x608 (image width x image
height) network size of YOLOv4 and a reduced version using
a 320x320 network size which roughly gives a 2x inference
speed up at the cost of a slight accuracy drop [22], hence
showing the effectiveness of our scheme regardless of the cho-
sen network size. We evaluate our proposal with COCO [21],



using the validation subset, and keeping only those images
that contain objects such as vehicles and pedestrians, which
delves 870 images for evaluation.

However, the COCO dataset is not specific to AD, hence
we have also evaluated our scheme with the KITTI dataset,
designed specifically for AD applications. We have also con-
sidered using other AD datasets such as Udacity [23], Berkeley
DeepDrive [24], and Waymo [25], but KITTI was the only one
delivering relevant results for the pretrained YOLOv4 model
due to using a comparable object labelling policies to the
COCO dataset used for training. The KITTI dataset contains
7481 images captured from onboard vehicle cameras, and also
includes three temporally preceding frames of each image, but
captured at a very low FPS, which makes detections across
images highly independent. Hence, we resorted to evaluating
each image independently. The main limitation when using
the KITTI dataset with the pretrained YOLOv4 model is that
some classes (e.g., bus) are not labelled, and some classes (e.g.,
person, and motorbike) have significantly different labelling
policies to those of COCO. Therefore, we have restricted our
evaluation with the KITTI dataset to those classes with fewer
discrepancies to obtain accurate results (i.e., car, van, and truck
object classes). Another difference w.r.t. the COCO dataset is
that the KITTI dataset includes some regions of the image
– mostly background regions – that have not been labelled.
Therefore, predictions made within these unlabelled zones are
ignored during the evaluation process.

As evaluation metrics, we use the Accuracy (ACC) and
Mean Average Precision (mAP). To obtain those, first we
have to compute the Intersection over Union (IoU), i.e., the
fraction of the intersection of the bounding boxes w.r.t. the
union of those bounding boxes. In particular, we do so for the
final objects detected by our proposal and the groundtruths.
Since the detection process is stochastic and subject to some
variation, whether an object is regarded as detected or not is
done with a threshold, which in our case is 0.5, as set in other
works [26]. This leads to true positives (TP) if the IoU is
above the threshold, false positives (FP) if the IoU is below
the threshold for a predicted object, and false negatives (FN)
if the IoU of a groundtruth is below the threshold.

The accuracy (ACC) is obtained as follows:

ACC =
TP

TP + FP + FN
(1)

The mAP is a more complex metric that is often the reference
for object detection evaluation. The mAP leverages the TP, FP,
and FN counts across the existing object classes to obtain an
accuracy assessment for each object class, and then averages
the individual accuracies to obtain an overall accuracy assess-
ment. Given the complexity to introduce the details of this
metric, and due to space constraints, we refer the interested
reader to other publications for detailed explanations of this
metric [27].

Regarding our fault injection campaign, we focus on random
hardware faults impacting the computation (i.e., transient
faults). We have injected transient faults in the result generated
by multiplication or addition operations of the convolutional
layers, as these layers account for over 99.5% of the total
number of operations to process an image. Furthermore,
random faults have only been considered to affect the sign
or exponent of the floating-point number representation (i.e.,
9 highest order bits), since random bit flips in the mantissa

TABLE I: Results of each Image Transformation analysed
independently with the COCO dataset (320x320 network size).

TABLE II: Results of each Image Transformation analysed
independently with the KITTI dataset (320x320 network size).

are mostly masked and do not lead to semantic changes in the
outputs of the model [28], [29].

Tensorflow Keras poses difficulties to inject faults in the
intermediate results of a layer, since layers operate as black
boxes. To overcome this limitation, we have implemented
a custom convolutional layer (same functionality but less
efficient implementation). We choose an operation (addition
or multiplication) randomly across all those operations in all
convolutional layers. To inject a fault in a specific result of a
specific layer, we execute the Keras model until the previous
layer, replace the target layer with our custom one, inject the
fault as needed (flipping a random bit in the sign or exponent),
and resume the execution of the Keras implementation from
the following layer onwards passing the result of our custom
layer as needed.

B. Results of Independent Configurations

Tables I, II, III, and IV show the TP, FP, and FN counts, as
well as the ACC and mAP for each image transformation with



TABLE III: Results of each Image Transformation analysed
independently with the COCO dataset (608x608 network size).

TABLE IV: Results of each Image Transformation analysed
independently with the KITTI dataset (608x608 network size).

the COCO and KITTI datasets using 320x320 and 608x608
network sizes.

First, note that the VF image transformation produces very
low ACC and mAP results for all the datasets and network
sizes evaluated, since the pretrained model has not been
trained with vertically flipped objects. However, we keep this
transformation for completeness.

In the case of COCO with 320x320 network size, the Base-
line configuration provides the highest ACC and mAP, but with
a network size of 608x608 there are 4 image transformations
(TS, RV, HF, LS) providing up to 0.25% higher mAP than
the baseline. For KITTI and 320x320 network size, there are
8 image transformations providing up to 2.2% higher mAP
than the baseline, and with a 608x608 network size there are
3 image transformations (EQ, GC, BS) providing up to 0.73%
higher mAP than the baseline.

Note that the pretrained YOLO model used COCO’s training
subset. Hence, the baseline model was expected to obtain
high accuracy when evaluating similar images (e.g., COCO

Fig. 2: Sorted mAP for all TMR F(x), G(X), and H(x) per-
mutations for all merging algorithms using COCO (320x320
network size).

Fig. 3: Sorted mAP for all TMR F(x), G(X), and H(x) per-
mutations for all merging algorithms using KITTI (320x320
network size).

Fig. 4: Sorted mAP for all TMR F(x), G(X), and H(x) per-
mutations for all merging algorithms using COCO (608x608
network size).

validation subset), but for different datasets, such as KITTI, it
was indeed expected that some image transformations could
surpass the accuracy of the baseline model.

C. Results of the Merging Algorithms

We have obtained the TP, FP, and FN counts, as well as the
ACC and mAP values for all TMR configurations and merging
algorithms, namely Voting, Averaging and Maximum. Since
the number of combinations is too large to allow reporting
data for all those configurations (817 per merging algorithm),
we show the mAP for all configurations in Figures 2, 3, 4,



Fig. 5: Sorted mAP for all TMR F(x), G(X), and H(x) per-
mutations for all merging algorithms using KITTI (608x608
network size).

TABLE V: TMR results for the top-5 configurations of each
merging algorithm using COCO (320x320 network size).

and 5, and the detailed results for the top-5 (in terms of mAP)
for each algorithm in Tables V, VI, VII, and VIII.

Results in the figure are sorted independently for each
merging algorithm, meaning that the nth best configuration
for one algorithm may differ for the other algorithms despite
being aligned w.r.t. the X-axis. Hence, the X-axis is not
labelled. However, showing the data this way allows us to get
several conclusions: (1) Maximum provides consistently the
best results in terms of mAP across all merging algorithms;
(2) Averaging is consistently worse, in terms of mAP, than the
baseline when using the COCO dataset, but it is slightly better
than the baseline in very few cases when evaluating the KITTI
dataset; (3) Voting is slightly better than the baseline in some
cases; and (4) all merging algorithms provide a smooth degra-
dation of the mAP across image transformation combinations,
hence meaning that, while some transformations may delve
better results than others, there is not a strong dependence
on very few combinations, so the approach provides robust

TABLE VI: TMR results for the top-5 configurations of each
merging algorithm using KITTI (320x320 network size).

TABLE VII: TMR results for the top-5 configurations of each
merging algorithm using COCO (608x608 network size).

results.
Results in the tables offer a different angle to our analysis.

For the COCO 320x320 configurations, in the case of Voting,
we note that the bottom shift (BS), left shift (LS), and raise
value (RV) transformations, as well as the baseline (BL), are
the most popular ones since they appear in 4, 3, 3, and 3 of
the top-5 TMR combinations respectively, and only Gamma
correction (GC) appears once. In the case of Averaging, the
best combination, despite not providing diversity, consists of



TABLE VIII: TMR results for the top-5 configurations of each
merging algorithm using KITTI (608x608 network size).

using 3 times the BL. RV, GC, and Gaussian Noise (GN) are
also quite frequent, and appear 3 times each one. Finally, in the
case of Maximum merging, we observe that slightly shifting
the original image in one direction is a frequent choice since
10 out of the 15 choices correspond to top, bottom, left or right
shift. Hflip (HF) is also a frequent choice with 4 appearances,
and Equalization (EQ) appears once.

For the COCO 608x608 configurations, in the case of
Voting, we note that slightly shifting the original image in one
direction is a frequent choice since 9 out of the 15 choices
correspond to top, bottom, left or right shift, HF appears 3
times, RV appears twice, and GC appears once. In the case
of Averaging, the best combination, despite not providing
diversity, consists of using 3 times the BL. RV and GC appear
three times, HF appears twice, and GN appears once. Finally,
in the case of Maximum merging, we observe that slightly
shifting the original image in one direction is a frequent choice
since 11 out of the 15 choices correspond to top, bottom, left
or right shift. HF is the second most frequent choice with 4
appearances.

For the KITTI 320x320 configurations, in the case of
Voting, EQ and GC appear 5 times, shifting transformations
appear 3 times, and HF appears once. In the case of Averaging
the best configuration is no longer the baseline. EQ appears 5
times, GC appears 4 times, GB appears twice, and RV, HF, and
BL appear once. Finally, in the case of Maximum merging,
shifting appears 8 times, EQ 5 times, and GB appears twice.

For the KITTI 608x608 configurations, in the case of
Voting, EQ and shifting appear 5 times each, GC appears 4
times, and HF appears once. In the case of Averaging, EQ
appears 5 times, HF and GC appear 3 times, RV and BL appear
twice. In the case of Averaging, EQ appears 5 times, and HF
and GC appear 3 times. Finally, in the case of Maximum
merging, shifting appears 7 times, EQ appears 5 times, and
HF appears 3 times.

In summary, for the KITTI dataset, EQ is a particularly good
option since it appears in all the TOP-5 configurations for all
merging algorithms. The shifting image transformations works
particularly well for both COCO and KITTI datasets when
using a Voting or Maximum merging algorithm. The BL works
particularly well for the COCO dataset when performing an
Average merging, and the HF and GC are also noteworthy
configurations for the KITTI dataset with an Average merging.

For the COCO dataset with both 320x320 and 608x608
network sizes, we note that Voting may increase a bit TPs
and decrease a bit FPs. Hence, despite not providing the
best mAP values, it provides an interesting tradeoff since it
outperforms the baseline in all fronts. Averaging, instead, tends
to decrease TPs while failing to decrease FPs sufficiently,
and it is systematically worse than the baseline case. Finally,
Maximum tends to increase TPs and FPs, which is expected
since any object being detected by at least one of the three
redundant inferences is regarded as a detection, and hence, a
TP or a FP. Still, the combined effect clearly increases ACC
and mAP values w.r.t. the baseline. Overall, looking at the
results from the COCO dataset, if we care only about mAP
or ACC, Maximum is clearly the best choice. If, instead, FPs
are particularly problematic, Voting is the best solution.

For the KITTI dataset with both 320x320 and 608x608
network sizes, looking at the mAP values, Voting is clearly
superior than Averaging for all configurations. However, look-
ing at the ACC values, these approaches have closer results.
Finally, Maximum tends to increase TPs and FPs, but the
combined effect provides the highest mAP values. However,
the ACC of the Maximum merging algorithm is slightly
lower than the baseline for the KITTI dataset with a 608x608
network size. We ascribe this effect to the fact that the KITTI
dataset does not properly label all background objects, which
are mostly small. When increasing the network size, the model
can detect more smaller objects, hence we observe a FP
increase. We validated this observation in a subset of images
by means of visual inspection, yet could not properly label the
full dataset manually to fully fix this issue.

Overall, if we care only about mAP, Maximum merging is
clearly the best choice for all the datasets analysed. If, instead,
FPs are particularly problematic, Voting is the best solution.

D. Results of Fault Injection Configurations

We have selected the top-mAP and top-ACC configurations
for each merging algorithm, network size, and dataset, and
analysed the impact of random fault injections on this subset of
configurations. In the case of a single configuration providing
both the top-mAP and top-ACC, this configuration with both
the top-mAP and top-ACC, and the second highest mAP
configuration have been selected instead.

First, we analyse the individual image transformations used
in any of the top-mAP and top-ACC combinations indicated
above. Tables IX, X, XI, and XII, present the fault-free results
as well as the results after fault injection for those image
transformations for the COCO 320x320, KITTI 320x320,
COCO 608x608, and KITTI 608x608 setups, respectively. The
tables provide the FP, FN, and TP count, as well as the ACC
and mAP. Since some combinations (e.g., COCO 320x320
Averaging) use an ensemble of up to three baselines, we
perform 3 different fault injections in such baseline, which
we refer to as BL 1 AF, BL 2 AF, and BL 3 AF. For the



TABLE IX: Results of the Fault Injection of the individual
image transformations part of the combinations with the best
mAP and ACC for the COCO dataset (320x320 network size).

TABLE X: Results of the Fault Injection of the individual
image transformations part of the combinations with the best
mAP and ACC for the KITTI dataset (320x320 network size).

remaining cases we report the fault-free (e.g., LS) and fault-
injected cases (e.g., LS AF).

We observe that, in general, fault-injected configurations
have lower TP counts, and except in COCO 320x320, also
lower FP counts. ACC and mAP drop similarly for all configu-
rations, with a 2.90% and 3.56% drop on average, respectively.

Tables XIII, XIV, XV, and XVI show the results of our
proposal in the non-faulty TMR case, as well as in two
faulty TMR cases; (i) with independents faults where for a
given image only one of the three configurations is affected
by a fault, and (ii) with faults in the same image for all
three configurations. In the fault-free scenarios, which would
correspond to virtually 100% of the time given that faults occur

TABLE XI: Results of the Fault Injection of the individual
image transformations part of the combinations with the best
mAP and ACC for the COCO dataset (608x608 network size).

TABLE XII: Results of the Fault Injection of the individual
image transformations part of the combinations with the best
mAP and ACC for the KITTI dataset (608x608 network size).

seldom, we obtain the following conclusion: (1) Voting and
Maximum merging algorithms provide higher mAP and ACC
than the Baseline, except for the HF, EQ, LS configuration
for the KITTI dataset with a 608x608 network size, where
we observe a slight ACC drop w.r.t. the baseline (for reasons
previously discussed in Section IV-C), (2) Averaging only
produces better results than the baseline with the KITTI dataset
since the model was trained with the COCO training subset.
Therefore, it is expected that some image transformations
could surpass the accuracy of the baseline when using other
datasets.

When faults occur independently, we obtain the follow-
ing conclusions: (1) Voting provides higher mAP and ACC
than the Baseline with both datasets and both network sizes



TABLE XIII: TMR results for the best mAP and ACC config-
urations of each merging algorithm using the COCO dataset
(320x320 network size).

TABLE XIV: TMR results for the best mAP and ACC
configurations of each merging algorithm using the KITTI
dataset (320x320 network size).

analysed. (2) Maximum provides higher mAP and ACC than
the Baseline for the COCO dataset with both network sizes,
and for the KITTI dataset with a 320x320 network size.
However, for the KITTI dataset with a 608x608 network size,
we observe that the HF, EQ, LS (indep. faults) configuration
provides higher mAP but lower ACC (for reasons previously
discussed in Section IV-C), and the GB, CR, AR (indep. faults)

TABLE XV: TMR results for the best mAP and ACC config-
urations of each merging algorithm using the COCO dataset
(608x608 network size).

TABLE XVI: TMR results for the best mAP and ACC
configurations of each merging algorithm using the KITTI
dataset (608x608 network size).

configuration provides higher ACC but lower mAP, since this
configuration provides the highest ACC in fault-free cases, but
does not deliver as high mAP as the top-mAP configuration.
(3) Averaging produces worse results than the baseline with
all configurations.

When faults occur in the same image for all three con-
figurations, we obtain the following conclusions: (1) for the



COCO dataset, all merging algorithms provide lower accuracy
than the baseline, (2) Voting produces the closest accuracy
to the baseline, both in terms of ACC and mAP, (3) for the
KITTI dataset, both Voting and Maximum have at least one
configuration producing higher accuracy (either both ACC and
mAP or only one of the metrics) than the baseline.

Overall, we can conclude the following (1) Averaging is
consistently worse than Voting and Maximum in all cases,
(2) Maximum produces the highest ACC and mAP results
in the fault-free scenarios, as well as when faults occur
independently, except for the KITTI dataset with a 608x608
network size, where the ACC of Voting is slightly higher,
(3) Voting produces the highest mAP results with the COCO
dataset when faults occur simultaneously, but regarding the
ACC, two configurations produce higher ACC with Voting,
while the other two produce higher ACC with Maximum.
(4) When faults occur simultaneously for the KITTI dataset,
Maximum provides higher ACC and mAP than Voting with a
320x320 network size, but Voting provides higher ACC with
a 608x608 network size.

Overall, we can conclude that the Maximum merging
algorithm produces the best mAP results, but it provides
significantly higher FPs than Voting. Therefore, if FPs are a
major concern, Voting is the best solution overall, while if
the objective is to obtain the maximum mAP, the Maximum
algorithm is the best solution since the fault-free scenario
equals to virtually 100% of time, and typically faults will not
affect all redundant components at the same time.

V. CONCLUSIONS

AI software is increasingly used in safety-critical systems
for functionalities where such software inherits safety require-
ments. Whenever those requirements relate to the highest
integrity levels, AI software must be realized with diverse
redundancy, such as, for instance, TMR. Existing solutions
based on lockstep processors provide such diverse redundancy
with bit-level error detection and correction. In this paper,
we note that abundant AI functionalities do not need bit-
level correctness and, instead, semantic correctness suffices
due to the stochastic nature of the AI-based functionalities
implemented. We leverage this observation to present a diverse
redundancy scheme for AI models based on applying minor
transformations to the input data with the aim of creating
diverse, yet semantically identical, predictions, which we use
to mitigate, apart from hardware random errors, also AI model
errors.

As future work, we plan to extend our work evaluating
the different image transformations and merging algorithms
in DMR scenarios, which are particularly relevant for some
domains, such as automotive.
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