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victoria.callet@math.unistra.fr

Abstract. This paper proposes to combine a symbolic representation
of musical structures given by the Discrete Fourier Transform with a
topological analysis using persistent homology. The objects studied are
musical scores represented symbolically by MIDI files. We start by defin-
ing a musical bar as a subset of Z /tZ×Z /pZ, which naturally leads to a
notion of metric on the set of musical bars using their matrices of Fourier
coefficients. This construction yields a point cloud, with which the fil-
tered Vietoris-Rips complex is associated, and consequently a family of
barcodes given by persistent homology. We then propose to support this
new model by extracting barcodes from artificially constructed scores
based on Tonnetze, and then recovering topological features from them.

Keywords: Filtered simplicial complex · Persistent homology · Bar-
codes · Discrete Fourier Transform · Topological Data Analysis · Musical
analysis · Tonnetz.

1 Context, Definitions and Problematic

1.1 Persistent Homology

A finite filtered simplicial complexK = (Ki)Ni=0 is a nested sequence of simplicial
complexes, such as

∅ = K−1 ⊂ K0 ⊆ K1 ⊆ . . . ⊆ KN = K

We call {0, 1, . . . , N} the set of filtration times. For instance, Figure 1 repre-
sents a filtered complex with six filtration times.
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Fig. 1: A filtered simplicial complex K with six times of filtration.

For any filtered complex K and any pair of integers (i, p) ∈ N2, there exists a
natural inclusion map ηi,p : Ki ↪→ Ki+p which induces a homological morphism

ηi,p∗ : H∗(K
i) → H∗(K

i+p)
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Therefore, for each degree d, we get the following sequence of dth-homology
groups:

0 Hd(K
0) Hd(K

1) ...Hd(K
N−1) Hd(K

N ) = Hd(K)
η0,1
d η1,1

d ηN−1,1
d

Each one of the maps ηi,pd sends a d-homological class at time i to the one
containing it at time i+ p of the filtration. If the cycle has become a boundary,
then it sends the class to 0. Thus, the image of each map ηi,p∗ will describe
the homology evolution during the filtration: more precisely, the p-persistent
homology group associated with Ki in degree d is given by

Hi,p
d (K,F2) = Hi,p

d (K) := im ηi,pd : Ki → Ki+p.

From [11], we have the following structure theorem of persistent homology:

Theorem 1. Let K be a finite filtered simplicial complex. In any degree n, we
have the following isomorphism of F2[t]-module:

⊕N

i=0
Hn(K

i) ∼= ⊕N

j=0
tbj · F2[t]

/
(tcj )

This isomorphism naturally leads to the construction of graphics nammed
barcodes, which mesures the lifetime evolution of homology classes in a filtration
and provide a natural visualization of persistent homology.

Definition 1. Let K be a finite filtered complex and d ∈ N be a fixed degree. The
barcode BCd(K) associated with Hd(K) is the graph where the x-axis describes
the time of filtration and each generator of Hd(K) corresponds to a bar whose
start and end are given by Theorem’s equivalence 1:

❃ a class that was born at time ai and never dies is a bar that starts at the
abscissa point ai and never stops

❃ a class that was born at time bj and died at time bj + cj is a bar that starts
and ends at abscissa points bj and bj + cj, respectively.

An illustration of this definition is given in Figure 2, where we have computed
the corresponding barcodes family with filtration from Figure 1.

Fig. 2: The associated barcodes with filtration from Figure 1.
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1.2 Topological Data Analysis

Persistent homology is an algebraic tool that is commonly used in Topological
Data Analysis context. In practice, we have a starting object that we want to
analyze using its hidden topological structure. For this purpose, we transform it
into a point cloud, that is to say into a finite metric set, and from this point
cloud, we build a filtered simplicial complex using the Vietoris-Rips algorithm,
which is presented in Definition 2 below. Once this is done, it is possible to
compute persistent homology and then extract the associated barcodes family.
Therefore, we can use this family as a topological fingerprint to characterize
the starting object. In our case, our starting object is given by a score, symbol-
ically represented by a MIDI file. The general TDA process is summarized in
Figure 3.

Score Point cloud Filtered complex Barcodes Shape recognition

Fig. 3: Topological Data Analysis process.

Definition 2. Let X = {x1, ..., xN} be a point cloud, that means a collection
of points in a metric space, and let ϵ ≥ 0 be a non-negative parameter. The
Vietoris-Rips complex Rϵ(X) is the simplicial complex where :

❃ X is the set of vertices

❃ σ = {x1, ..., xn} is a n-simplex if and only if the vertices it contains are
pairwise close, i.e. if d(xi, xj) ≤ ϵ for all pairs xi, xj of σ.

Figure 4 shows the classical construction of a Vietoris-Rips complex starting
from a given point cloud X and a parameter ϵ. The filtration is obtained by
changing the parameter ϵ. In other words, this process consists of adding n-
simplices to the point cloud as a certain parameter increases. The smaller the
parameter is, the more separated the points are, while conversely, the larger
the parameter is, the more trivial and topologically equivalent to a single point
the resulting complex is. The point is therefore to analyze the complex for the
”right” parameter, i.e. when the topological features are correctly represented.
This construction method is presented in the article [6] by R. Ghrist.
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Fig. 4: The Vietoris-Rips method.
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1.3 General Problematic

The essential question that remains incomplete in the TDA process is how to
extract a point cloud from a musical score. There are many arbitrary choices
to be made, and we already tried to answer this question in [4] by considering
that a musical score is given by the set of its musical bars. Then, each bar was a
subset of R3, so the metric was given by the Hausdorff distance. In this paper,
we propose to keep the representation of a musical score by the set of its musical
bars, but we consider the metric given by the two-dimensional Discrete Fourier
Transform. In fact, we start by making expicit the transition from a musical bar
to a subset of Z /tZ×Z /pZ and then define the notion of DFT-distance on the
set of musical bars. This construction allows us to obtain a filtered complex from
a MIDI file, and then to extract a barcodes family using persistent homology. The
second part focuses on the question of musical analysis using this new topological
signature. In this paper, our main motivation is to support the use of the DFT
in the context of persistent homology and TDA, so we propose an experiment on
different famous musical structures from which we expect to capture topological
features. More precisely, the point cloud will be extracted from sets of chords
based on two-dimensional Tonnetze.

2 Persistent Homology Using Discrete Fourier Transform

Associating a filtered complex with a piece of music requires extracting a point
cloud, i.e. a collection of points in a metric space. As mentioned in the previous
paragraphs, the points are given by the musical bars of a score, and we propose
here to use the two-dimensional Discrete Fourier Transform as the metric.

2.1 A Model Based on the Two-Dimensional DFT

The DFT is a mathematical tool introduced into the context of music analysis
by D. Lewin in 1959, and used mainly for modeling simple musical sequences,
such as scales or collections of rhythms (see the work of E. Amiot and J. Yust,
for instance [1] and [9]).

In this paper, we are primarily interested in modeling a musical sequence us-
ing the DFT: if M = (m1, . . . ,mN ) is a musical sequence in Z /nZ (for instance
a sequence of pitch-classes or rhythmic data), then it can be associated with a
list of n Fourier coefficients

(
FM(0), . . . ,FM(n − 1)

)
using the corresponding

characteristic map. For instance, the pitch-classes set from Figure 5 is given by
P = {9, 4, 5, 2} ∈ Z /12Z, and its characteristic map is given by

1P : {9, 4, 5, 2} 7→ (0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0).

In the same way, using the quaver note as the unit of time, T = {0, 1, 3, 5}
becomes the set of onsets, and the associated characteristics map is given by

1T : {0, 1, 3, 5} 7→ (1, 1, 0, 1, 0, 1, 0, 0)
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Fig. 5: A musical bar where the x-axis and y-axis represent time and pitches,
respectively.

Now we can compute the Discrete Fourier Transform (DFT) of M (P or
T ), which is simply given by the DFT of its characteristic map 1M : Z /nZ →
{0, 1} with the usual definition, that is:

FM = 1̂M : Z /nZ −→ C

x 7−→
∑

k∈M
exp

(−2iπkx
n

)
Therefore, each musical structure can be associated with a family of Fourier
coefficients that are given by the n-tuple of the DFT values on Z /nZ:(

FM(0),FM(1), . . . ,FM(n− 1)
)

The DFT can be applied to any abelian group, so the previous definition can
naturally be generalized ot the two-dimensional case. More precisely, instead of
considering onsets and pitch-classes separately, we combine both representations
and thus see T and P as a subset of Z /8Z×Z /12Z, and we will call it amusical
bar, denoted by B. For instance, the description of the musical bar from Figure
5 is given by:

B = (T ,P) = {(0, 9), (1, 4), (3, 5), (5, 2)} ⊂ Z /8Z×Z /12Z

In general, if t is a unit of time and p is an ambitus, both fixed, we say
that a musical bar B with n elements is a subset of Z/tZ× Z/pZ given by

B = {(t1, p1), . . . , (tn, pn)}

where an element (tj , pj) of B is called a note which is characterized by its onset
tj modulo t and its pitch-class pj modulo p. Therefore, a musical score S is
the non-ordered set of its N distinct musical bars modulo (t, p):

S = {B1,B2, . . . ,BN} with Bi ⊂ Z/tZ× Z/pZ and Bi ̸= Bj if i ̸= j

Thus, we get a description of any musical bar of a given score using a matrix
of Fourier coefficients.



6 V. Callet

Definition 3. Let B be a musical bar in Z /tZ×Z /pZ.

1. The associated characteristic map 1B : Z /tZ×Z /pZ is given by:

1B : (x, y) 7→
{
1 if (x, y) ∈ B
0 otherwise.

2. The associated DFT is the DFT of the characteristic map 1B:

FB = 1̂B : Z /tZ×Z /pZ −→ C

(x, y) 7−→
∑

(k,l)∈B
exp

(−2iπkx
t

)
exp

(
−2iπly

p

)
3. The associated Fourier coefficients are given by the matrix M̂B ∈ Mt×p(C):

M̂B =
(
FB(x, y)

)
(x,y)∈Z /tZ×Z /pZ

2.2 From the DFT to a Point Coud

We denote by Bt,p the set of all the musical bars in Z/tZ× Z/pZ . Now, using
Definition 3, we can define a metric to compare musical bars together, which
we will use to extract a point cloud from a musical score. We call it the DFT-
distance.

Definition 4. Let B and B′ be two elements of Bt,p. The DFT-distance be-
tween B and B′ is given by the 1-norm between their respective Fourier coeffi-
cients matrices:

dDFT(B,B′) =∥ M̂B − M̂B′ ∥1=
t∑

x=1

p∑
y=1

|FB(x, y)−FB′(x, y)|

We denote by (Bt,p, dDFT) the metric space of all the musical bars of Z/tZ× Z/pZ
equipped with the DFT-distance.

We can now turn any musical piece into a point cloud, i.e. a subset of a
metric set. More precisely, if SP = {B1, . . . ,BN} is a musical score representing
a musical piece P, then SP is a subset of the metric space (Bt,p,dDFT) and thus
becomes a point cloud constructed in the following way:

❃ each point is a musical bar Bi

❃ the distance between Bi and Bj is given by the DFT-distance.

Remark 1. In the following, we will apply a normalization on the distances com-
puted with the DFT-distance in order to have all the barcodes on the same
scale: in fact, our goal is to obtain barcodes that we can compare with each
other, and we are more interested in the distance ratios than in the distance
values themselves Therefore, by taking a percentage of the maximum distance
for a given score, we consider the set of times of filtration to be {0, 1, . . . , 100}.
Furthermore, we will say that we are looking at the filtration with a scaling
parameter of ϵ%, with ϵ ∈ {0, 1, . . . , 100}.
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2.3 An Illustration of the Model

As an illustration of these definitions, let us consider the score S from Figure 6
which is an excerpt from the music piece One Summer’s Day, composed by Joe
Hisaishi in 2001 for the movie Spirited Away.

G 4
4

�< � ��� � � � � � � ��� � � �
ÉÉ

� �� (� � � �
ÉÉ

2� � � ��� 			

Fig. 6: The score S extracted from One Summer’s Day written by Joe Hisaishi.

The above score is divided into five distinct musical bars: S = {B1, . . . ,B5}.
Furthermore, the shortest note here is a quaver one, so the time unit is t = 8,
and the ambitus can be taken as p = 24, with C4 = 0 = C6, C5 = 12 and
B5 = 23. With these observations, each musical bar Bi of the score S is a subset
of Z /8Z×Z /24Z. We extract the corresponding point cloud, as shown in Figure
7.

B1 = {(6, 9), (7, 11)}

B2 = {(0, 12), (1, 12), (2, 14), (3, 12), (4, 11), (6, 4), (7, 7)}

B3 = {(0, 9), (1, 9), (2, 7), (3, 5), (4, 7), (7, 7)}

B4 = {(0, 7), (1, 5), (2, 5), (3, 3), (4, 5), (6, 0), (7, 5)}

B5 = {(0, 2), (0, 7), (0, 11)}

B1 B2 B3 B4 B5

B1 0 86 81 82 63

B2 0 91 100 91

B3 0 95 87

B4 0 82

B5 0

Fig. 7: The point cloud associated with the score from Figure 6. The points are
the musical bars in Z /8Z×Z /24Z (left) and the corresponding distance ratios
are computed from the DFT-distance (right).

From this point cloud we can easily apply the Vietoris-Rips method, and the
resulting filtration is presented in Figure 8 (only the graphs are drawn).
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Fig. 8: The filtered simplicial complex associated with One Summer’s Day.
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For each scaling parameter ϵ ∈ {0, 1, . . . , 100}, the corresponding pairs of
musical bars form edges. Therefore, we can look at the evolution of homology
and then compute the associated barcodes family, as shown in Figure 9. Here and
throughout this paper, we will focus only on barcodes in degree 0 and degree
1: indeed, the intuition of a musical interpretation goes along with these low
dimensions, as for example we think of a cycle in dimension 1 as a musical loop.
Of course, higher dimensions could be interpreted in future work. We can also
note that there is no element of homology in degree 1, which is not so surprising
considering the number of musical bars in the score.

Fig. 9: The barcodes family associated with One Summer’s Day.

3 Experiment on Artificial Scores

The goal now is to understand in depth how the DFT works as a metric, and
in particular to answer the question of whether this new metric makes musical
sense. To do this and in order to support this new model, we will try it on some
artificially created musical scores: more precisely, we will construct a musical
score consisting of very simple musical bars containing only one 3-chord from a
given family of chords, such as the major and minor chords (Euler’s Tonnetz).

3.1 A Point Cloud from the Set of Minor and Major Chords

Let us consider the score based on the twenty-four major and minor chords,
that means a score with twenty-four musical bars, each one containing a 3-
chord, as shown in Figure 10. The point cloud thus contains twenty-four points,
and can be identified with Euler’s Tonnetz T [3, 4, 5] of minor and major chords.
A representation of this Tonnetz as a simplicial complex is given in Figure 11,
and we refer to [5] for a formalized definition of the two-dimensional Tonnetze
of the form T [a, b,−(a+ b)].

Notice that the representation from Figure 11 provides a topological structure
for Euler’s Tonnetz, which is given by a torus. We also see the action of the PLR-
group of Neo-Riemannien transformations P (Parallel), L (Leading-tone) and R
(Relative), which transforms a major (or minor) chord into the nearest minor
(or major) chord. Note that this action is simply transitive, and we refer to [7]
for more details on this subject. These two observations are exactly the kind of
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properties that we want to emphasize with our model. Indeed, it will support
the use of the two-dimensional DFT in this particular context.
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Fig. 10: The score of twenty-four musical bars based on the major and minor
chords.
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Fig. 11: Euler’s Tonnetz as a simplicial complex T [3, 4, 5].

3.2 The Results: PLR-Group and One-Dimensional Cycles

Now that we have the point cloud, we can compute the associated barcodes
family, as presented in Figure 12.

Fig. 12: The associated barcodes family with Euler’s Tonnetz T [3, 4, 5].

Let us analyze these two barcodes, starting with degree 0: at 58% of the
filtration, each chord is connected to its relative, which means that the DFT
understands this proximity. With a scaling parameter of 59%, the complex looks
like in Figure 13 (left), where we have shown only the graphs (with vertices in
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{1, 2, . . . , 24} from the score 10): in this illustration, we have chosen to show the
complexes at 59% and 69% because the filtration stagnates at 59% (the first
moment where it is connected) and remains the same until it becomes as in
69%. There are several things to note here: first, in both cases we recover the
shape of a torus, with a duality relation since a triangle in T [3, 4, 5] is a vertex
in our graph. Secondly, each vertex of the complex at 59% has exactly three
neighbors: for instance, C-major chord (musical bar B1, vertex {1}) is connected
to musical bars B2, B8 and B10. Looking back at the simplicial representation
of Figure 11, we see that it corresponds to the minor chords Cm, Am and Em

respectively, the three neighbors of C given by its parallel P , its relative R and
its the leading-tone L, which are exactly the three minor chords that minimize
the DFT-distance from a given chord. This observation is illustrated in Figure
14 and is formalized in Theorem 2.

Fig. 13: The associated filtration with the Tonnetz T [3, 4, 5] with a scaling pa-
rameter of 59% (left) and 69% (right).

B1

B2

B8 B10

C

Cm

Am Em

P

R L

id

P

R L

Fig. 14: A zoom on the graph at 59% of the filtration: each chord has exactly
three neighbors that are given by the three basic transformations P , L and R.

Theorem 2. The graph associated with the twenty-four major and minor chords
of the Tonnetz T [3, 4, 5], given by the filtration below with a scaling parameter
of 59%, is exactly the Cayley graph of the PLR-group generated by the three
transformations P , L and R.

Proof. The action of the PLR-group on the set of the twenty-four major and
minor chords is simply transitive, so there is a bijection between the elements of
the PLR-group and the chords of the Tonnetz. Therefore, using the illustration
from Figure 14, the left graph from Figure 13 is exactly the corresponding Cayley
graph.



DFT and Persistent Homology for Topological Musical Data Analysis 11

The barcode in degree 0 seems to capture the topological structure of the
Euler’s Tonnetz, and there is a strong relationship between the filtration and the
PLR-group. On the other hand, the cycles in degree 1 also seem to emphasize
this property: in fact, we can classify them into three types, all given by the
transformation P , L and R. To illustrate these elements of 1-homology, we draw
a representative of each type of one-dimensional cycle that we can construct from
C-Major chord (but it is important to note that we can get these cycles from
any chosen chord). These cycles are obtained respectively with transformations
(PRL)2, (LP )3 and (PR)4, as shown in Figure 15.

C

Cm D♯

Gm

GEm

P

R

L

P

R

L

C

Em E

G♯
m

G♯Cm

L

P

L

P

L

P

C

Cm

D♯

D♯
m

F ♯

F

A

Am

P

R P

R

P

RP

R

Fig. 15: The one-dimensional cycles obtain from the major and minor chords and
the DFT as a metric: they are given repsectively by transformations (PRL)2,
(LP )3 and (PR)4 on a given chord (here C-Major).

3.3 A Study of the Two-Dimensional Tonnetze

As an extension of this work, we apply this new model to the eleven other sets
of 3-chords based on the two-dimensional Tonnetze of the form T [a, b,−(a+ b)].
This analysis, which is fully described in [5], leads to a summary classification
of the different filtrations for each point cloud, which is presnted in Table 1.

The barcodes in degree 0 capture the topological structure of each Tonnetz.
As for Euler’s Tonnetz, we recover the shape of the different T [a, b,−(a + b)]
in the filtration, such as the tori, the cylinders, or even the several connected
components for T [2, 2, 8], T [2, 4, 6], T [3, 3, 6] and T [4, 4, 4]. In addition, barcodes
of degree 1 allow us to manually generate one-dimensional cycles. Each Tonnetz
provides specific types of generators of H1, and it is interesting to compare
them: for some Tonnetz we have cycles of length 4, while for others it can go
up to 12. Table 15 classifies the different types of cycles we can find in these
two-dimensional Tonnetze.

4 Conclusion and Perspective for Future Work

We begin this paper by introducing a new method for extracting a filtration
and more precisely a point cloud from a given score. In order to support this
approach, we wanted to consider the inverse problem, that is, to apply the DFT
together with persistent homology to artificially constructed musical scores and
show that the DFT is a reasonable choice of metric.
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Point cloud Topology
Most relevant stage Length of cycles (degree 1)

of the filtration 4 6 8 10 12

T [1, 2, 9], T [2, 3, 7]

Torus

× × ×
T [1, 3, 8], T [3, 4, 5] × ×

T [1, 4, 7] ×

T [1, 1, 10], T [2, 5, 5] Cylinder ×

T [1, 5, 6]
Necklace of six
tetrahedra

×

T [2, 2, 8] Two cylinders ×

T [2, 4, 6]
Two necklaces of
three tetrahedra

× ×

T [3, 3, 6] Three tetrahedra ×

T [4, 4, 4] Four triangles

Table 1: A classification of the twelve two-dimensional Tonnetz T [a, b,−(a+ b)]
by their topological structure and their types of cycle in H1 using the DFT.

The score we choose is given by 3-chords from a specific space, specifically the
Euler’s Tonnetz, or more generally any two-dimensional Tonnetz of the classical
form T [a, b,−(a+ b)]. The barcodes in degrees 0 and 1 seem to reveal consistent
musical features: in particular, we find back the topological structure associated
with the Tonnetze, such as the torus in the case of T [3, 4, 5]. This construction
also allows us to emphasize the strong relationship with PLR-group of funda-
mental transformations of Euler’s Tonnetz, as illustrated by Theorem 2. This
confirms that the metric constructed by means of the DFT, together with per-
sistent homology, seems to be a reasonable tool for understanding known musical
structures.

However, there are several other artificial musical scores on which we might
want to test our model. As a natural starting point, we could try artificial scores
based on scales, as in [5]. We could also try the metric on the set of all the
3-chords in Z /12Z: for a given 3-chord, the closest would still be its relative,
then its leading-tone and its parallel, but this will allow us to classify all the 220
chords with this DFT, and this will also give a meta-classification between the
twelve Tonnetze. Finally, the DFT-distance could also be applied to n-chords,
or simply to higher dimensional Tonnetze, as presented in [8]. To go further, we
could also imagine trying out our metric on musical objects that focus more on
rhythms, such as the general Zeitnetze that is introduced in [10].
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Finally, we have proposed here a new model for associating a filtration of
simplicial complexes with a musical score, and thus a topological signature given
by barcodes. If this method seems to provide strong and encouraging results
in applications on artificial scores, a natural work has been to apply it in the
context of more general problems, such as automatic classification of musical
styles. These other kinds of applications of this model based on the DFT and
persistent homology are presented in [5].
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