
HAL Id: hal-04614786
https://hal.science/hal-04614786

Submitted on 17 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

On-chip Traffic Injection to Counteract Timing
Side-Channel Attacks

Francisco Fuentes, Sergi Alcaide, Raimon Casanova, Jaume Abella

To cite this version:
Francisco Fuentes, Sergi Alcaide, Raimon Casanova, Jaume Abella. On-chip Traffic Injection to
Counteract Timing Side-Channel Attacks. ERTS2024, Jun 2024, Labège, Toulouse, France. pp.197-
208. �hal-04614786�

https://hal.science/hal-04614786
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


On-chip Traffic Injection
to Counteract Timing Side-Channel Attacks

Francisco Fuentes†,‡, Sergi Alcaide†, Raimon Casanova‡, Jaume Abella†

†Barcelona Supercomputing Center (BSC) ‡Microelectronic and Electronic Systems Department
Barcelona, Spain Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain

Abstract—Security has become a major concern in the last
decade, specially with the increment of low-level attack vectors
present in COTS MPSoCs. Safety-relevant systems are not an
exception, and they are also exposed to security concerns. Side-
channel attacks (SCAs) in general, and cache-based SCAs in
particular, have gained prominent importance due to the prolif-
eration of cache memories for increased performance. However,
there are a plethora of such attacks and effective countermeasures
are needed for all of those.

This paper investigates the effectiveness of using hardware
traffic injectors to counteract those attacks with the aim of
assessing to what extent those can be effective. In particular, we
consider the SafeTI, an open source traffic injector developed by
us, and assess to what extent attack-specific traffic patterns can
defeat Bernstein’s SCA targeting an AES-128 encryption process
in a space-relevant platform based on Frontgrade Gaisler’s IPs.

Index Terms—Cyber security, MPSoC, side-channel attack,
AES encryption

I. INTRODUCTION

The increasing importance of security in all sorts of comput-
ing devices has pushed for the standardization and implemen-
tation of secure cryptographic ciphers (e.g., RSA) on modern
machines. For instance, the growing RISC-V ecosystem has
ratified in the past years two volumes of Instruction Set
Architecture (ISA) extensions for the integration of inter-core
cryptographic modules [8], [17], providing standardization
for high-performance and secure encryption to the RISC-V
community. However, these implementations include several
components to be treated with security, such as cryptographic
keys, intermediate cryptographic operations, etc, that may
leak information that an attacker could use for malicious
purposes. This is the specific case for side-channel attacks
(SCAs), where an attacker without direct access to the de-
sired data, for instance an encryption key, may be able to
discover it through indirect methods such as temperature [15],
electromagnetic radiation [11], power consumption [10] or
timing [4], [14] analysis. Even modern Commercial-Off-The-
Shelf (COTS) Multi-Processor System-on-Chip (MPSoC) plat-
forms, using advanced Trusted Platform Modules (TPM2.0)
following industry-adopted standard ISO/IEC 11889 [13], are
vulnerable to such attacks [18].

This paper aims at assessing to what extent safety-critical
platforms are vulnerable to those attacks and whether a pro-
grammable traffic injector could be used to counteract those

attacks. In particular, we consider the open source platform
SELENE [12], which is based on Frontgrade Gaisler 64-
bit NOEL-V processor cores [3] and other Gaisler’s IP, and
whose main target is the space domain. We also consider
a modified version of Bernstein’s cache-based timing attack
on AES [4]. Originally, this is a cache-based SCA against
Advanced Encryption Standard (AES) [19] symmetric block
cipher on a network environment, which we move to occur in
an MPSoC (the SELENE platform).

To counteract the attack, we build on the SafeTI traffic
injector [21], which we integrate into the SELENE platform.
The SafeTI allows programming traffic patterns (i.e., read and
write operations with varying parameters) that are injected into
the specific interface where the SafeTI is integrated (e.g., the
bus connecting the cores to the shared L2 cache). In particular,
we focus on the injection of traffic patterns to evict some AES
data from the second level (L2) cache of the core performing
encryption tasks so that the SafeTI can provide, apart from
support for performance validation during MPSoC design [9],
security capabilities during operation.

The solution investigated in this paper uses the SafeTI
traffic injector for evicting cached data at regular intervals. By
enforcing the eviction of a specific AES table from L2 cache
periodically, we are able to reduce the amount of information
that Bernstein’s attack can discover from a victim in a system
without other countermeasures. This particular solution causes
an encryption latency increase, between 1 and 14% in average
depending on the protection level achieved, and since SafeTI
is programmable, it can be adapted through software for other
applications that may benefit from this solution.

The rest of the paper is organized as follows. Section II
provides some background on Bernstein’s attack and existing
solutions. Section III introduces the framework used to con-
duct our case study, which includes the SELENE platform and
the SafeTI traffic injector. Section IV provides a summary of
the contributions made for this case study, being the tailoring
of the Bernstein’s attack for our study environment and SafeTI
programming for timing SCA protection. Section V provides
result data and explanations on the different SafeTI based
protection vectors and Section VI provides a discussion of
various subjects related to SafeTI based protection and its
applicability. Finally, Section VII provides some final remarks
and future work.



II. BACKGROUND AND STATE OF THE ART

Among the attack vectors based on collateral information
leakage, timing attacks require special attention due to the high
risk level they present on interconnected systems. An attacker
with user permissions can perform a timing analysis on a
specific task to extract secret information (e.g., cryptographic
keys) remotely, without requiring physical access to the target
device in comparison to other attacks. In this section, we first
introduce the main characteristics of those timing SCAs in
Section II-A, and then present the state of the art on protection
methods in Section II-B.

A. Side-Channel Timing Attacks

Time based SCAs leverage the dependence between (a)
the operation of secret data, where the term ‘secret’ refers
to any un-encrypted data, key or information unknown by
arbitrary users, with (b) the execution time, or operation
latency, of the task using the secret data as an input. Time
dependence is a by-product of the operation from two sources;
(i) in-processor or accelerator execution of the algorithm (e.g.,
cryptographic encryption) and (ii) memory access latency.
Leakage from both sources can be mitigated by designing
time-constant algorithms, basing the logic operations on con-
stant latency instructions with no latency-variant branches,
while constraining memory allocation within the same cache
level so all data access have an identical time cost. Full com-
pliance with these statements limit the quality of the algorithm
(e.g., encryption complexity), reduce the compatibility by
targeting specific platform characteristics (e.g., cache capacity,
instruction latency), and may hold back performance against
using optimal operations (e.g., disable L1 cache). Moreover,
some other SCAs would still be possible by, for instance,
learning the cache sets or DRAM banks [16], [20] accessed by
the protected algorithm. Thus, industry has opted for design
policies and certification instead of a single air-tight solution,
providing diversity in implementation with low risk of single
point failure from a security standpoint.

Statistical analysis of the execution times has proven to be
effective regardless of the leakage source. As example, this
study uses Bernstein’s attack as a base, whose source code is
publicly available [4]. Operations with secrets are identifiable,
due to non-constant-time operations and/or non-constant data
access latencies, through a classification and correlation of
the average encryption timings from two data samples, with
a known (attacker) and unknown (victim) cryptographic keys
respectively. In particular, the timing measurements are cat-
egorized by the value of the plaintext bytes being encrypted
in byte segments, which for AES-128 makes a total of 4096
individual metrics (256 possible values for each of the 16
plaintext bytes), taking advantage from the internal byte-
wise operation, a common characteristic among cryptographic
ciphers. This segmentation allows the reduction of the total
number of encryptions, or sample size, required by the attack
to obtain a clear profile of the timings for each plaintext
byte value. Furthermore, the samples obtained by measuring
the duration of the cryptographic operation must be from

Fig. 1. Average encryption timings, in clock cycles, with plaintext byte posi-
tion 11 values listed by the x-axis. Data obtained from modified Bernstein’s
SCA with a sample size of 227 encryptions for each known and unknown
keys. Data values used by the SCA correlation are marked by arrows.

a randomized input, referring to the plaintext in encryption
or ciphertext in decryption, avoiding producing timing data
with dependencies on the attack itself instead of the target
operation.

As a practical example, Figure 1 shows the plaintext en-
cryption timings of a SCA in an unprotected system. The
SCA uses a sample size of 227 encryptions for each key, for
specifically the byte position 11. In detail, Bernstein’s SCA
correlation is a simple observation step, leaving aside standard
error calculations, where the most distant timings from the
average, around 732.25 clock cycles in the example, are taken
as usable data. The idea is that these plaintext values, 10 and
11 for the unknown key and 254 and 255 for the known
key marked in the figure, incur in an equivalent systematic
latency overhead during the cryptographic execution. Hence,
they can be correlated. Since the cipher base operation is the
logic exclusive or ⊕, the attacker is able of producing a list of
candidates for the key to discover by operating with the same
operation between the known key and the usable plaintext
values.

The actual equation used is K ′
b⊕P ′

b = Kb⊕Pb, where Kb

is the key byte value, Pb is a plaintext byte value, b the byte
position, and the ′ apostrophe indicates to be from unknown
key byte value or plaintext. Note that the exclusive or neutral
element in ⊕ is 0 (x⊕ 0 = x), therefore, using a zero for the
known key simplifies the operation to K ′

b|K=zero = P ′
b ⊕ Pb.

Hence, all experiments presented in this paper use a zero
known key. Following the figure example, the candidates the
SCA produces for the unknown key byte position 11 are found
as 10 ⊕ 254 = 244, 10 ⊕ 255 = 245, 11 ⊕ 254 = 245 and
11 ⊕ 255 = 244, finding 7 out of 8 bits from the actual
unknown key byte position 11, whose value is 244. Note that
each byte position has its own timing profile. Therefore, the
same operations are made for each byte position.



SCA sample sizes of a low number of encryptions will
provide a noisy cloud of timings, with high dispersion and
difficult correlation. Thus, for the attack to succeed, it is
crucial to work with large sample sizes, so the values with
particular higher or lower average encryption times move far
away from the average, reducing the number of dots to be
correlated. Modifications made to Bernstein’s attack for our
study are listed in Section IV-A, while further practical details
are explored in Section V-B.

B. State of the Art

Invulnerability against timing SCAs is challenging to
achieve since several factors and components interact in non-
obvious ways. Solutions to prevent timing SCAs can be
categorized into two branches: (i) implementing time-constant
cryptographic operations, and (ii) uncorrelating the access
latency during operation.

Time-constant operations executed by processors require
compliance with design policies for cryptographic security,
such as RISC-V ISA extensions [8], [17], which have already
been applied in a practical implementation [24]. Accelerator
and discrete co-processor solutions, such as TPMs, are also
included within this time-constant category, where the security
and performance trade-off is apparent due to lacking full
time-constant compliance for some products [18]. Software
solutions also tend to focus on the operation latency, such
as compiler optimizations [23] for avoiding branch prediction
and instruction cache attacks that may present non-constant
timings, and hence, a side-channel leak. Even if the cipher
algorithm was designed to comply with constant-time require-
ments, fitting within the lowest cache layer, an SCA could still
occur by forcing specific cache evictions between the timed
cryptographic operations, exposing secret data through cache
misses, hence leaking side-channel information. This paper
aims at counteracting SCA by focusing on the data access
latency.

Uncorrelation of the operating data and access latency, to
avoid timing pattern identification of secrets, can be achieved
by modifying the replacement policy of the data with custom
cache implementations [22], [25], forcing SCA data samples
to diverge due to timing diversity, making them uncorrelated,
hence, protecting secret data. In detail, the address allocation
of the application are encoded with a randomized seed, using
the resulting encoding for allocating the data in the cache sets.
In order to make the protection effective, it is necessary to en-
sure the seed is randomized periodically, not to let the attacker
learn. Such re-randomization needs to be performed by the
Operating System (OS), by the user program or, periodically
in an automated manner. One of the key characteristics of these
solutions is that the amount of timing data that can be used for
correlation purposes by the attacker is proportional to the time
a given seed is used for both keys without re-randomization.
Therefore, an attack can only be successful if the time elapsed
between seed updates is long enough to collect a sufficiently
large sample to learn from.

Fig. 2. SELENE platform schematic including SafeTI integration.

In our case, we investigate the effectiveness of a less
intrusive hardware solution based on the integration and soft-
ware programming of the SafeTI traffic injector for protecting
against timing SCAs. While the SafeTI is not particularly
suited for security purposes, it is a flexible and programmable
component that could be leveraged for multiple functions, such
as providing protection against multiple attacks, as well as for
platform testing.

III. CASE STUDY FRAMEWORK

This section introduces the platform used as research vehicle
for our work, as well as the SafeTI traffic injector used to
counteract Bernstein’s SCA.

A. SELENE MPSoC Platform

The SELENE platform considered in this work [12] has
been released fully integrated and as an open-source platform
usable on FPGA [7]. It is based on Frontgrade Gaisler’s
technology including its 64-bit NOEL-V processor cores [3],
as well as the Advanced Microcontroller Bus Architecture
(AMBA) Advanced Peripheral Bus (APB) and Advanced
High-performance Bus (AHB) interconnects, and L1 and L2
caches, which are integrated from Gaisler’s GRLIB IP [1].

For this case study, we have integrated a SafeTI module
targeting the shared L2 cache level in a SELENE instance
with 4 NOEL-V cores (see Figure 2). The 4-way 32 B line
512 KBs L2 cache includes a pseudo-Least Recently Used
(pLRU) replacement policy and keeps coherence within the
core cluster. The L2 cache is also connected to the off-chip
DRAM through an AMBA Advanced eXtensible Interface
(AXI) and a memory controller. Each NOEL-V core integrates
two individual L1 caches, for instruction (IL1) and data (DL1),
of 4 ways and 16 KBs each, implementing a LRU replacement
policy, and write-through policy with bus-snooping and an
equal cache line size of 32 B to maintain coherence with the
L2 cache. Both pLRU and LRU replacement policies offer
vulnerabilities in front of SCAs due to their systematic eviction
patterns, which attackers can leverage to alter the latency of
data allocation during the cryptographic task.



B. SafeTI Traffic Injector

The SafeTI is an open-source hardware component, created
in our research group, devised as a flexible, portable and
programmable traffic injector [5], developed in VHDL. It
is AMBA AHB compatible, and we foresee making it also
AMBA AXI compatible in the near future. The SafeTI is
programmed through its integrated AMBA APB interface
using 32-bit descriptors, which are stored within the internal
descriptor buffer, made user-friendly through the public drivers
along with the component designs.

Traffic injection is effectively limited by the throughput
capable to be generated at the target interconnect. However, if
such traffic is injected by software means through processor
cores, it is further limited by the transaction size allowed
by cores (either a double-word or a cache line) and con-
trolled indirectly by inducing specific hardware behavior with
a sequence of software operations. Conversely, the SafeTI
can inject precisely any traffic pattern, programmed as a set
of descriptors, that the target interconnect accepts, including
varying size data requests (e.g., from 1 byte up to 512 MBs),
with/without burst mode, read/write, etc., and even intro-
duce specific cycle-accurate delays between traffic injections.
Hence, the SafeTI offers the flexibility and controllability
needed for our work.

Compared with some previous solutions, SafeTI pro-
grammability permits tailoring it for different applications,
compatible with virtually any cryptographic algorithm or vul-
nerable process to timing SCAs under certain conditions (e.g.,
shared L2 cache access). Integrability is supported by being a
standalone module, making it suitable for other platforms as
long as it is included with a compatible interface for targeting
the desired interconnect. Further discussion is provided in
Section VI.

IV. ATTACK CHARACTERISTICS AND COUNTERACTING
APPROACH

Our realizations in this paper include the adaptation of
Bernstein’s attack for a bare-metal execution on the SELENE
MPSoC platform, explained in Section IV-A, and the prepa-
ration of injection patterns for programming the SafeTI traffic
injector to counteract the attack, presented in Section IV-B.

A. Tailoring of Bernstein’s Attack

The original implementation [4] allows an attacker to dis-
cover part of the AES-128 encryption key stored in another
computer server by timing plaintext encryptions with a known
key and the unknown victim’s key. We modified the attack
source code to adapt it for the following evaluation envi-
ronment: (i) an MPSoC case study on bare-metal without
a network connection, meaning that all data and required
resources for the encryption are loaded in main system’s
memory prior to the start of the attack; (ii) AES encryption
implemented using the OpenSSL 3.1.2 low-level API [6]; and
(iii) programmation of the SafeTI injection patterns through
calls within the OpenSSL library.

The original source code of the attack is split into individual
programs for commodity and presentation, which we packed
into a single program and extended to apply an incremental
sample size, producing timing data and unknown key candi-
dates every power of 2 encryptions for each key. For instance,
whenever we indicate a SCA sample size of 221 encryptions,
we refer to a pair of timing data samples, one for each
key, of 221 encryptions each. Compiling data following this
method allows us to study the evolution of the attack at every
step, displaying the SCA sample size needed to retrieve some
information about the unknown key (i.e., what key values can
be discarded) and how much information is discovered with
increasing attack samples, which reduces the size of a brute
force attack to explore all remaining combinations (i.e., those
that the attack could not disregard).

These modifications have been made to evaluate the pro-
tection in the most favorable environment for the attacker. In
detail, we reduce the sources of noise that could challenge
the effectiveness of the attack by (1) constraining the attack
to occur in the cache hierarchy of the cores without any
other external interference (e.g., due to peripheral activity)
and (2) avoiding the simultaneous execution of any other
software within the MPSoC. This includes shrinking the timing
to exclusively the encryption operation, data access latencies
inclusive, cutting off any algorithm related to networking. Re-
garding the encryption AES cipher from the OpenSSL library,
we selected specifically the 128 bits Electronic CodeBook
(ECB) mode due to being the simplest one to attack.

B. SafeTI Injection Patterns

SafeTI countermeasure potential against SCAs has a great
dependence on the physical location of the module within
the hardware platform, being the best location as close to
the processor running the vulnerable operations as possible.
However, in this paper we wanted to consider a realistic
implementation where the SafeTI does not have access to the
DL1 cache, limiting protection capabilities, but instead it has
access to the shared L2 cache, expanding protection to any of
the processor cores from the MPSoC as Figure 2 shows.

Note that, in order to maximize the protection range, it is
required to design an injection pattern tailored for the target
environment. For instance, given that the SafeTI is unable to
access the DL1 cache, and the DL1 is non-inclusive with
the L2 cache in our case study, the data utilized by the
vulnerable operation cannot be pre-cached or evicted by the
SafeTI at the lowest cache level. Instead, SafeTI protection
must be completely based on L2 cache evictions and rely on
the vulnerable data to not be fully allocated within the DL1
cache. That way, SafeTI traffic generation may influence the
timings of the operation by evicting essential data from the L2
cache, producing eventual L2 misses with increased latency.

Considering the L2 cache implementation characteristics,
i.e., pLRU replacement policy and 4-way set associative, it
is compulsory, in order to ensure data eviction, to execute
at least 4 traffic accesses to each of the cache sets used by
the target data (see Figure 3). Therefore, for every targeted



Fig. 3. Traffic generated by SafeTI injection to evict a specific data array,
allocated at the cache lines marked with asterisks, from the L2 cache by filling
all sets with arbitrary data using a stride of 128 KBs, the L2 cache way size.
The arrow out from the end to the start of the injection pattern indicates an
execution loop, which is always present in all injection patterns used.

block for eviction, SafeTI injection pattern includes 4 read
descriptors with an address stride of 128 KB, the L2 cache way
size, targeting the same cache sets as the target data. In detail,
if the data desired to evict is allocated starting from address
P, the first descriptor is programmed to start the access at
address P+S·128 KBs, the second P+(S+1)·128 KBs, the third
P+(S+2)·128 KBs, and the fourth P+(S+3)·128 KBs, where S
is any integer but -1, -2, -3 and -4 to avoid accessing the
eviction target.

In addition, the descriptors include an access size field, al-
lowing us to study protection capabilities with varied eviction
size with bursty accesses. In Figure 3, the different strided
accesses (with starting addresses separated by 128 KBs across
accesses) are shown with different colors, namely red, green,
blue and yellow. The amount of data fetched by each access
is set identical for all accesses matching the amount of cache
lines to be evicted from the L2 cache.

The data selected for eviction is data accessed by the
vulnerable operation recurrently at a fixed memory address for
each execution. This ensures that evicting such data produces a
latency overhead generated by the L2 eviction that propagates
to the SCA’s timing profile. In this paper, we have used the 4
encryption tables from the AES library as eviction target, from
Te0 to Te3, whose size is 1 KB each, being the address of all
of them set at compile time. The access of these tables by
the ECB cipher depends on both the key and plaintext being
encrypted, making several accesses to different segments of
the tables for every encryption operation.

Finally, a constant (too frequent) data eviction may be
detrimental for the operation latency and/or the protection.
Therefore, a stand-by time, in clock cycles, is added between
target evictions to adjust the eviction rate frequency. To sustain
the protection, SafeTI is programmed during initialization and
configured in QUEUE mode, where the injection pattern is
iterated until disabled. In summary, this paper explores a
SafeTI L2 eviction based protection against Bernstein’s SCA
testing a wide range of injection rate frequencies, varying also
the target (a fraction of a table, a full table, or several tables),
and considering increasingly large sample sizes for the attack.

TABLE I
NUMBER OF BITS DISCOVERED BY THE SCA

AGAINST ALTERNATIVE CACHE COMPOSITIONS

Enabled caches SCA sample size (encryptions)
DL1 L2 221 222 223 224 225

✓ ✓ 2.9 14.3 33.3 70.6 72.2
✓ 0.0 0.0 0.0 0.0 0.0

✓ 3.7 14.9 28.1 89.3 92.0
41.8 64.2 72.6 80.0 80.0

V. EMPIRICAL ASSESSMENT

A. Evaluation Framework

The experiments and data presented in this paper have been
produced from software executions on a bare-metal synthesis
of the MPSoC SELENE hardware platform on the Xilinx
Virtex UltraScale+ VCU118 FPGA-based evaluation kit [26],
operating at a frequency of 100 MHz. Software programs
executed on the cores have been written in C and compiled
with Frontgrade Gaisler AB’s NCC GCC Bare-metal toolchain
version 1.0.4 on a Linux system with an O2 optimization
level for a RISC-V target. Programs are loaded into memory
using the FPGA debug software GRMON3 [2] with the main
core set with a specific pointer during the platform booting,
matching the program compilation pointer. All secondary cores
are left disabled to provide a noise-free environment for the
experiments. The program software includes the modified
Bernstein’s timing SCA targeting AES-128 ECB cryptographic
cipher. Specifically, the attack targets low-level encryption
operations of randomized plaintext.

The evaluation presented in this paper is divided per each
type of countermeasure tested as follows:

• Disabling platform caches (Section V-B).
• Evicting Te tables by segments in every time interval

(Section V-C).
• Evicting a single Te table every time interval (Sec-

tion V-D).
• Evicting a combination of Te tables every time interval

or alternatively in every time interval (Section V-E).

B. Cache Disabling as Countermeasure

Obtaining a base reference of the timing SCA effectiveness
on this case study environment is imperative in order to pro-
vide a contrasted view of the protection achieved by the SafeTI
in the following sections. Therefore, this section presents
and reasons about the SCA capabilities in four different
environments where DL1 and L2 caches can be enabled or
disabled, namely, when both are enabled, when only DL1 is
enabled, when only L2 is enabled, and when both are disabled.

Table I shows the equivalent number of bits found by the
attacker (out of the total 128 bits of the key) for several sample
sizes of the attack in our evaluation platform. These values
must be read as follows: if the attacker discovers X bits of the
key, it would need a brute force attack exploring 2128−X key
values. Note that, in practice, the attacker does not discover
specific key bits but discards byte values for different parts



of the key. However, we represent results as the number of
key bits that would need to be discovered to match the same
cost of a brute force attack to facilitate understanding. For
instance, given a key of 16 bits, hence consisting of 2 bytes,
if the attack narrows down the value of the key to 37 out of
256 values for one byte and 59 for the other, the subsequent
brute force attack would require exploring 37x59 = 2, 183
key combinations (instead of 216), which we express as having
to find 11.1 bits (i.e. log2(2183)), or equivalently, as having
found 4.9 bits.

Starting from the base cache composition of DL1 and L2
caches enabled, the SCA results correspond with the infor-
mation presented in previous sections. The attacker is capable
of discovering more bits of the unknown key by increasing
the sample size of the attack, since that way, it is capable
of reducing the number of plaintext values highlighted by a
higher or lower average encryption times compared to other
plaintext value timing averages.

Disabling the DL1 cache but maintaining the L2 cache
enabled shows that no information has been discovered by the
timing SCA, therefore, we learn 2 things. First, all memory
accesses from the AES-128 CBS algorithm have an equal op-
eration latency in this setup. This evidence proves data access
latency is the exclusive leakage source from the cryptographic
operations being timed, at least on the SELENE platform. Sec-
ond, not finding timing differences between plaintext values,
even when increasing the SCA sample size, indicates all data
accessed by the SCA fits within the 512 KBs of the L2 cache.

The complementary case where the DL1 cache is enabled
but the L2 cache is disabled denotes slightly more suscepti-
bility to the SCA than the base cache configuration. In this
case, DL1 cache misses, instead of hitting in L2 cache, need
to access main memory, whose latency is higher than that of
L2 cache hits. Hence, those timings that were discrepant in the
setup with both caches enabled become even more discrepant
when the L2 cache is disabled. Therefore, larger differences
provide easier correlation, which in turn provides a smaller list
of unknown key candidates, or what is equivalent to, a higher
discovery rate.

Last but not least, the disabled DL1 and L2 caches con-
figuration shows to be the most susceptible to the attack
from all cache combinations with small samples. Initially,
one could expect this case to behave similarly to the prior
case with disabled DL1 and enabled L2 caches, given that all
data accessed by the timed operations fits within the external
DRAM. However, these off-chip components introduce data
and access latency dependencies [16], [20], leaking side-
channel information whereas the previous case where DL1 is
disabled and L2 enabled provides homogeneous latency for all
L2 cache hits. In detail, there is an access latency difference
when accessing depending on the data accessed due to bank
and rank access patterns, generating a data-dependent timing
profile due to specific plaintext encryption values requiring
extra latency for their accesses than others.

From a countermeasure perspective, the disabled DL1 and
enabled L2 cache composition is a strong contender as a

protection solution against Bernstein’s timing attack. However,
reducing cache levels results in higher data access latencies,
increasing the average encryption time, from the 730 clock
cycles of the baseline case (both caches enabled) to 4,763
clock cycles, a considerable 552% overhead. Moreover, it
could be argued that a smart attacker may be able to re-
enable the attack by evicting parts of the data used by the
cryptographic operation to highlight the use of specific data,
hence enable correlations in the timing behavior of the cipher
algorithm since the accesses latency would depend on the
plaintext.

C. Partial Table Eviction with SafeTI

The first countermeasure method using SafeTI for evicting
data from the L2 cache consists of evicting AES Te tables,
block by block, but only evicting one segment in every time
period. For instance, if a table occupies 1 KB of cache space,
and it is divided into 4 blocks of 256 B each, SafeTI evicts
bytes 0-255 in period P , 256-511 in period P + 1, 512-767
in P + 2, 768-1023 in P + 3, 0-255 again in P + 4, and so
on and so forth.

Due to SafeTI’s limited descriptor buffer, the injection pat-
terns tested have been constrained to the following 4 different
cases: Te0 eviction by 64 B blocks; Te0, Te1 and Te2 eviction
by 128 B blocks; all Te tables eviction by 256 B blocks; and
all Te tables eviction by 512 B blocks. Between each evicted
block, the injection pattern includes a stand-by time in clock
cycles, which we refer as Delay, that is constant for each
experiment so that evictions are homogeneously distributed
over time.

Regardless of the Delay or table/s eviction granularity,
experimental results show that this protection method is in-
effective at counteracting the SCA. The Delay values tested
are in the range between 103 and 105 clock cycles. These
values allow full tables to be evicted at the same frequency
as the best cases for subsequent experiments where tables are
evicted at once instead of block by block. Results show a
similar discovery rate of the key by the attack among all 4
protection cases.

Furthermore, the SCA is slightly more successful with this
approach than for the base SCA without protection. This
negative effect (i.e., the protection helps the attack rather than
counteracting it) relates to the fact that the data accessed from
the cryptographic operation depends on the plaintext. Hence,
evicting single blocks of the Te tables only highlights such
plaintext values that access the recently evicted cache lines.
Therefore, the attacker learns faster and injection patterns
evicting full tables at once are expected to cure this anomaly
as analyzed next.

D. Table Eviction with SafeTI

The injection pattern for the experiment in this section is
analogous to that of the previous section, but with the evicted
block matching the table size of 1 KB. Hence, in every period
the target Te table is evicted. Then, SafeTI stands by for Delay
clock cycles before looping again.



Fig. 4. Remaining key combinations from several SCAs with single table
eviction protection, including different Delay values, from 223 to 226 en-
cryption sample sizes.

Figure 4 shows the result of the SCA while a full Te
table eviction protection is in place (for Te0 in particular),
for different sample sizes for the SCA (between 223 and 226

sample sizes), varying the Delay between full-table evictions.
We reach the following observations:

• Results are noisy due to minor modifications in the source
code, presenting an intrinsic variability in the execution
time measurements and SCA results (shown in Figure 5)
as we discuss next.

• There is a (central) range of Delay values for which the
SCA is unable to learn anything about the key so that
the number of potential key combinations to explore by
brute force remains at 2128. However, as the sample size
increases, such Delay range narrows down. If the sample
is large enough, as we show in later experiments, the
range becomes null and the SCA starts learning about
the secret key regardless of the Delay value. Still, there
is always a particular delay minimizing the amount of
information learnt by the SCA.

During our experiments, we noticed that small variations in
the code created significant variations in the results for a given
Delay and sample size, and concluded that the particular cache
alignment of the data has an impact on the results in absolute
terms, yet trends hold. This is illustrated in Figure 6, which
represents two sets from a 4-way cache, where there is data
in static addresses allocated during compile time, and data in
dynamic addresses allocated during runtime (e.g., in the stack
frame), both marked with s and d suffixes respectively. The
data is ordered from most recently used A to least recently
used E. Focusing on the first case without a filler size (i), the
set 0 caches sA (spanning across two cache lines), dC, dD
and dE data lines, but once a filler size is applied to displace
dynamic data by one set at (ii), dE is no longer able to fit
within the cache, illustrating why some pointer displacements
are able to leak more information than others.

Fig. 5. Remaining key combinations from unprotected and protected SCAs
with Te3 table eviction and optimal Delay of 2x105 clock cycles for different
sample sizes, and varying filler sizes shifting the compile address alignment
of useful data.

Fig. 6. Associative-set mapping diagram from a 4-way cache in two instances
of (i) no filler size and (ii) filler size with one set of displacement. Data is
named after being statically s or dynamically d allocated, from most used A
to least E.

Figure 5 shows both the protected (straight lines) and
unprotected attacks (dashed lines) for several compilations
of the same program (cipher and attack) but with different
filler sizes (between 512 B and 8 KB), which is an unrelated
data array used to shift the cryptographic operation pointers
for each experiment. The figure shows the diverse results in
the unprotected case, ranging between 225 and 257 unknown
key candidates, with a sample size of 227 encryptions. In
the protected case, variability is drastically decreased, partly
because few key combinations are filtered out by the attack.
Note that, whenever the filler size is a multiple of the DL1 way
size (4 KBs), such as 4 and 8 KBs, results remain the same,
confirming the DL1 set-mapping influence over the SCA. In
any case, no array for shifting pointers has been used for the
remaining experiments in this paper.

As shown before in Figure 4, the degree of protection
achieved depends on the Delay value, or eviction period. Such
evictions aim at generating arbitrary noise able to remove any
correlation that could be used by an attacker. If performed
with the right periodicity, evicting a Te table from the L2
cache causes L2 misses, and hence, access latency increases
(and so execution time increases) arbitrarily and with enough
magnitude to surpass the execution time variability caused by
the underlying access patterns that the attacker is trying to



Fig. 7. Remaining key combinations from protected SCAs with Te0, Te1,
Te2 or Te3 table eviction and optimal Delay, in order to maximize protection,
for each table at different sample sizes.

learn. For instance, a DL1 cache set may contain a Te table
line or not depending if it has been recently used. Given that
the plaintext encrypted in the recent past has determined, along
with the pLRU replacement policy of the DL1 cache, what
lines of the Te tables are stored in DL1, Te lines retrieved
from L2 are, to some extent, arbitrary. Hence, when those
accesses experience higher latencies due to L2 misses caused
by SafeTI evictions is, therefore, highly arbitrary. This makes
execution times be apparently random because the level of
noise introduced is high enough and, apparently, uncorrelated
with the key. However, if the eviction period is too small, DL1
misses also miss in L2 highly systematically, which makes
overall execution time increase, but noise be low. Similarly,
if the eviction period is too high, meaning that evictions only
occur seldom, the protection effect SafeTI has on the SCA is
very limited.

Finding the optimal Delay for the protection is challenging,
due to a dependence with collateral data being evicted from
the same sets where the target Te is cached. This makes, in
fact, that the optimal Delay varies across Te tables, as shown
in Figure 7. Therefore, the only method available to optimize
the Delay and choose the value that maximizes the sample
size needed by the attacker is through empirical testing. As
shown in the figure, the degree of protection achieved across
the different tables, even for near-optimal Delay periods, may
also vary. For instance, Te1 periodic eviction provides slightly
higher protection than that achieved by evicting other tables
due to the interactions with other data of the cipher program.
Yet, these results also depend on the program pointer shift as
shown before in Figure 5.

Overall, the single table eviction protection, once adjusted
with the optimal delay, maintains zero side-data leak up to
an attack sample size no lower than 225 with an average
encryption time of 741 clock cycles, x32 times the attack
sample size at the cost of 1% increase in average encryption
latency when compared with the unprotected SCA.

Fig. 8. Remaining key combinations from unprotected and protected SCAs
using all 4 methods presented in this paper at different sample sizes.

E. Multiple Table Eviction with SafeTI

This section extends the injection patterns, considering cases
where all tables are evicted rather than focusing on one of
them. The goal of evicting all tables rather than the very same
one systematically is introducing higher entropy, and hence,
further challenging the attack.

Figure 8 shows a summary of all SCA cases presented in
this paper, focusing on the most favorable setups identified in
each case, including scenarios where all tables are evicted. In
particular, the configurations evaluated are as follows:

• Unprotected SCA (dashed purple line).
• Te3 eviction by 64 B blocks every 400 clock cycles (red

line).
• Full Te3 table eviction every 2x105 clock cycles (green

line).
• All Te tables evicted simultaneously every 2x105 clock

cycles (orange line).
• Same as previous one, but instead of evicting all Te

tables at once, we evict them in an interleaved manner
so that one Te table is evicted every 5x104 clock cycles
(blue line), which matches the eviction frequency of the
previous case where all tables are evicted every 2x105

clock cycles.
Focusing on the patterns where we evict all tables, the

orange line withstands full protection up to an attack sample
size of 227, with a 4% average latency overhead, whereas
the blue line keeps full protection up to an attack of 230

encryptions, with a 12% average latency overhead. Although
one could expect the encryption latency overhead to be pro-
portional to the number of L2 misses induced, and thus to the
L2 cache evictions performed by the traffic injector, this is not
the case between orange and blue lines, which correspond to
an equivalent eviction rate, and thus, should cause a similar
performance overhead. However, the case of individual table
evictions at a higher frequency (blue line) turns out to perform



the evictions clashing with the execution of the encryption
function more often, and hence causing higher L2 cache access
interference, and increasing encryption latency.

All Delay values present in the figure have been empirically
optimized, with the exception of the last case where we evict
all tables in an interleaved manner, where the 231 encryptions
experiment duration has been 29 hours in our FPGA, making
it unreasonable any further increase in the sample size.

VI. DISCUSSION

This section provides light and additional considerations
for several topics related to the proposed mechanism, namely,
alternative cache compositions in Section VI-A, comparison
with related work in Section VI-B, considerations and re-
quirements of the protection in Section VI-C, and protection
capacity against alternative SCA sources in Section VI-D.

A. Alternative cache compositions

The case study setup includes a write-through DL1, hence
propagating all write operations to the L2 cache. Our eviction
patterns evict all data in specific L2 cache sets (i.e. those sets
where the target Te is mapped). Hence, write operations to
data in those sets also experience L2 misses due to SafeTI’s
evictions. If DL1 implemented a write-back policy instead,
those other write operations would not be affected by our
evictions if they hit in DL1. Hence, the effect of the evictions
would be lower and we would expect to need a higher eviction
frequency to compensate this effect or, alternatively, being able
to plug the SafeTI in a way that it can evict data from DL1
rather than from L2 cache only.

Using a random replacement policy in the L2 cache would
challenge to some extent the generation of eviction patterns
with the SafeTI to evict full tables, which would only be
evicted probabilistically. However, noise introduced would be
more random, which would play against the attack.

The SELENE platform used in this work implements 2
levels of cache. Adding further cache levels is expected to
be innocuous since all data fits in L2, and hence, it would
also do in L3, which would provide analogous behavior to
that of the DRAM memory in the current setup.

B. Related work comparison

Being SafeTI a hardware component, the closest solution
for a fair comparison would be the caches implementing
custom placement policies [22], [25] in order to uncorrelate
cryptographic operation input data with its data access latency.
These solutions offer a higher protection grade (full protection,
indeed) than our protection based on SafeTI, with negligi-
ble execution time impact. However, they are intrusive with
the original cache components, which would require a new
implementation, and verification and validation processes for
each affected cache component, hence challenging portability
and increasing costs. Our solution, instead, offers a different
tradeoff by providing some relevant protection and needing
only additional validation of the SafeTI integration, since
existing cores and caches remain unaltered.

In terms of resource usage, the SafeTI implementation
represents a 1% LUTs and 5% registers with respect the whole
platform, or 3.2% LUTs and 12.6% registers with respect to
one of the NOEL-V cores, which we consider to be low by
supporting all cores.

C. Considerations and requirements of the protection

Eviction patterns caused by the SafeTI are systematic since
they repeat specific actions at specific time intervals. This
could, theoretically, be leveraged by the attacker to speed up
its learning process and decrease the size of the sample needed
to retrieve information from the secret key. However, it is
unclear how this could be done given that the impact of the
evictions caused by the SafeTI vary depending on the plaintext
encrypted, as discussed before. Moreover, it would not be
difficult extending SafeTI to make Delay across evictions be
random while preserving average eviction frequency to further
challenge any attack.

Overall, we do not find practical methods where SafeTI-
based protection could be defeated other than increasing the
attack sample size, or disabling the SafeTI altogether.

All experiments presented show protection capabilities on
a SCA targeting AES-128 ECB cryptographic cipher for a
specific unknown victim key on encryption operations. In
principle, the base of the protection builds exclusively on the
SCA profiling dynamic and the encryption timings. Therefore,
the protection is agnostic to the key being protected and the
calibration may be kept for symmetrical operations such as
decryption, offering an equivalent protection level. Tailoring
for other vulnerable operations may be achieved through cali-
bration of the inter-eviction Delay time, which in theory makes
it capable of tailoring virtually to any vulnerable operation
under the following specific requirements:

• The initial address and size of a cryptographic resource,
such as the Te table(s), is required to be known during
SafeTI injection pattern programming in order to evict
such data during operation.

• Our protection method requires the SafeTI be able to
reach a cache memory where the protected process (e.g.,
the encryption function) performs a relevant number of
cache hits since, otherwise, SafeTI evictions would be
ineffective.

D. Defense capacity against alternative SCA sources

The focus on this case study has been timing attacks, but
other attack vectors exist as mentioned at the introduction,
such as power, electromagnetic, temperature analysis, among
others. A defining characteristic of SCAs is that, due to
being a collateral data analysis, they build on some non-
functional metrics from where to infer information about secret
keys. We believe that SafeTI patterns can be used in many
cases to induce additional activity or alter the activity of the
unprotected system in a way that attack vectors other than
timing can also be counteracted. Yet, how to tailor SafeTI
patterns in each such case is beyond the scope of this work.



VII. CONCLUSIONS AND FUTURE WORK

Security concerns become increasingly significant in safety-
relevant platforms. In this paper, we explore the effectiveness
of Bernstein’s SCA in a space-relevant platform and show how
it rapidly discovers encryption key information by exploiting
cache latencies. We propose using a programmable traffic
injector as a lowly intrusive and adaptable countermeasure and
show that it is highly effective and causes very low perfor-
mance degradation for some configurations, but starts losing
efficacy as the sample size of the attack grows. Therefore, we
consider this solution is particularly appropriate to be used
in conjunction with other defense mechanisms that may take
advantage or require the attacker to be staggered in order to
provide full protection against timing SCA. This would be the
case of, for instance, software solutions whose latency may be
substantially higher than that of a hardware mechanism as the
one proposed in this work.

The solution proposed in this paper aims at emphasizing
the feasibility to use a traffic injector to counteract SCAs, and
how it can be easily programmed to challenge the ability of
the attacker to learn. However, underlying patterns to be learnt
by the attacker still exist and, with a sufficiently large sample,
eventually emerge and are learnt. Part of our ongoing research
consists of devising approaches to inject traffic with the aim of,
rather than adding noise, making emerge fake information so
that the attacker is completely fooled and, instead of learning
more or less information, it simply learns false information,
which would completely defeat the attack.

ACKNOWLEDGEMENT

This work is part of the project (ISOLDE), funded by
MICIU/AEI/10.13039/501100011033 and the European Union
NextGenerationEU/PRTR under grant PCI2023-143372, and
the European Union’s Horizon Europe Programme under
project KDT Joint Undertaking (JU) under grant agree-
ment No 101112274. This work has also been partially
supported by the Spanish Ministry of Science and Innova-
tion under grant PID2019-107255GB-C21 funded by MICI-
U/AEI/10.13039/501100011033.

REFERENCES

[1] Frontgrade Gaisler AB. Frontgrade Gaisler AB SoC GRLIB IP library.
Retrieved January 16, 2024 from https://www.gaisler.com/index.php/
products/ipcores/soclibrary.

[2] Frontgrade Gaisler AB. GRMON3 FPGA debugger software product
page. Retrieved January 16, 2024 from https://www.gaisler.com/index.
php/products/debug-tools/grmon3.

[3] Frontgrade Gaisler AB. NOEL-V processor webpage. Retrieved
Novemeber 17, 2023 from https://www.gaisler.com/index.php/products/
processors/noel-v.

[4] Daniel J. Bernstein. Cache-timing attacks on aes. 2005. Retrieved Nove-
meber 17, 2024 from https://cr.yp.to/antiforgery/cachetiming-20050414.
pdf.

[5] Barcelona Supercomputing Center. Traffic injector SafeTI open IP
repository. Retrieved January 18, 2023 from https://github.com/bsc-loca/
SafeTI.

[6] OpenSSL Community. Openssl 3.1.2 library repository. Retrieved
Novemeber 17, 2023 from https://github.com/openssl/openssl/releases/
tag/openssl-3.1.2.

[7] Universitat Politècnica de València. SELENE platform open source
repository. Retrieved January 16, 2024 from https://gitlab.com/
selene-riscv-platform/selene-hardware.

[8] Ken Dockser, Allen Baum, Barna Ibrahim, Barry Spinney, Ben Mar-
shall, Derek Atkins, Markku-Juhani O. Saarinen, Nicolas Brunie, and
Richard Newell. RISC-V Cryptography Extensions Volume II: Vector
Instructions. Version v1.0.0, 05 October 2023.

[9] F. Fuentes et al. SafeTI traffic injector enhancement for effective
interference testing in critical real-time systems, 2023. Retrieved
Novemeber 17, 2023 from https://doi.org/10.48550/arXiv.2308.11528.

[10] Hasindu Gamaarachchi and Harsha Ganegoda. Power analysis based
side channel attack, 2018. Retrieved January 10, 2024 from https://doi.
org/10.48550/arXiv.1801.00932.

[11] Nilupulee A. Gunathilake, Ahmed Al-Dubai, William J. Buchanan, and
Owen Lo. Electromagnetic side-channel attack resilience against present
lightweight block cipher, 2021. Retrieved January 10, 2024 from https:
//doi.org/10.48550/arXiv.2112.12232.

[12] C. Hernàndez et al. SELENE: Self-monitored dependable platform
for high-performance safety-critical systems. In 2020 23rd Euromicro
Conference on Digital System Design (DSD), pages 370–377, 2020.

[13] International Standards Organization. ISO/IEC 11889. Trusted platform
module library, 2015.

[14] Elmira Karimi, Zhen Hang Jiang, Yunsi Fei, and David Kaeli. A timing
side-channel attack on a mobile gpu. In 2018 IEEE 36th International
Conference on Computer Design (ICCD), pages 67–74, 2018.

[15] Taehun Kim and Youngjoo Shin. ThermalBleed: A practical thermal
side-channel attack. IEEE Access, 10:25718–25731, 2022.

[16] Myoung Jin Lee and Kun Woo Park. A mechanism for dependence of
refresh time on data pattern in dram. IEEE Electron Device Letters,
31(2):168–170, 2010.

[17] Ben Marshall, Alexander Zeh, Andy Glew, Barry Spinney, Daniel
Page, Derek Atkins, Ken Dockser, Markku-Juhani O. Saarinen, Nathan
Menhorn, L Peter Deutsch, Richard Newell, and Claire Wolf. RISC-V
Cryptography Extensions Volume I: Scalar & Entropy Source Instruc-
tions. Version v1.0.1, ratified on 18’th Feb, 2022.

[18] Daniel Moghimi, Berk Sunar, Thomas Eisenbarth, and Nadia Heninger.
TPM-FAIL: TPM meets timing and lattice attacks. In 29th USENIX
Security Symposium (USENIX Security 20), pages 2057–2073. USENIX
Association, August 2020.

[19] National Institute of Standards and Technology. Advanced Encryption
Standard (AES), May 2023.

[20] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and
Stefan Mangard. DRAMA: Exploiting DRAM addressing for Cross-
CPU attacks. In 25th USENIX Security Symposium (USENIX Security
16), pages 565–581, Austin, TX, August 2016. USENIX Association.

[21] Oriol Sala, Sergi Alcaide, Guillem Cabo, Francisco Bas, Ruben Lorenzo,
Pedro Benedicte, David Trilla, Guillermo Gil, Fabio Mazzocchetti, and
Jaume Abella. Safeti: a hardware traffic injector for mpsoc functional
and timing validation. In 2021 IEEE 27th International Symposium on
On-Line Testing and Robust System Design (IOLTS), pages 1–7, 2021.

[22] David Trilla Rodrı́guez, Carles Hernández Luz, Jaume Abella Ferrer,
and Francisco Javier Cazorla Almeida. Cache side-channel attacks
and time-predictability in high-performance critical real-time systems.
Association for Computing Machinery (ACM), Jun 2018.

[23] Jeroen Van Cleemput, Bjorn De Sutter, and Koen De Bosschere.
Adaptive compiler strategies for mitigating timing side channel attacks.
IEEE Transactions on Dependable and Secure Computing, 17(1):35–49,
2020.

[24] Aleksander Waage. Secure implementation of a RISC-V
AES accelerator, 2022. Retrieved January 10, 2024 from
https://hdl.handle.net/11250/3023096.

[25] Zhenghong Wang and Ruby B. Lee. New cache designs for thwarting
software cache-based side channel attacks. SIGARCH Comput. Archit.
News, 35(2):494–505, jun 2007.

[26] Xilinx Virtex UltraScale+ FPGA. VCU117 evaluation kit. Retrieved Jan-
uary 16, 2024 from https://www.xilinx.com/products/boards-and-kits/
vcu118.html.


