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Abstract. In this paper, we propose a Simulated Annealing (SA) meta-
heuristic for efficiently solving the Area Coverage (AC) problem in Het-
erogeneous Multistatic Sonar Networks (HMSNs). In this problem, which
is new in the literature, the aim is to determine the optimal location for
the various sensors making up an HMSN, which is a particular case of
Heterogeneous Wireless Sensor Networks (HWSNs). HMSNs are made
up of a set of acoustic buoys, or sonobuoys, dropped by an airborne
carrier and which can be transmitter-only (Tx), receiver-only (Rx) or
transmitter-receiver (TxRx). In particular, an HMSN consists of a set
of active sonar systems in monostatic and/or bistatic configuration. The
bistatic case refers to the pairing between a source from a Tx or TxRx
buoy with a receiver from another Rx or TxRx buoy, which may be
kilometers apart from the former. This contrasts with the monostatic
case, referring to the situation where both the source and receiver are
integrated within the same unit, specifically a TxRx buoy. In addition,
in this work, we take into account a certain number of operational as-
pects such as coastlines, probabilistic detection models, an adverse ef-
fect called direct blast as well as variable performance depending on
the source/receiver pair under consideration. Morever, we also consider
the possibility that some pairings might be infeasible due to inter-sensor
incompatibility, for example because of different operating frequencies.
Finally, we present numerical results in which we compare ourselves with
a set of tailored Mixed-Integer Linear Programs (MILPs) for the same
problem.

Keywords: OR in defense · Multistatic sonar networks · Heterogeneous
sensors · Area coverage problem · Metaheuristic · Simulated annealing.

1 Introduction

Sonar (SOund NAvigation and Ranging) is an essential asset in the anti-submarine
arsenal, as it provides a cutting-edge capability for probing the oceans. In par-
ticular, they can be used for underwater target search and tracking operations,
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as well as for surveillance or sanctuarization of strategic regions. These systems
can be passive, simply listening to the sounds emitted by objects in the vicinity;
or active, operating by emitting acoustic waves that reflect off any object within
their range, thereby permitting their detection and location [14]. In this study,
we focus primarily on active sonar systems, with a particular emphasis on acous-
tic buoys, commonly known as sonobuoys [7]. These buoys are deployed within
the designated Area of Interest (AoI) from an airborne carrier, which could be
a Maritime Patrol Aircraft (MPA), a helicopter, or even an Unmanned Aerial
Vehicle (UAV). Upon impact with the water surface, their main unit submerges
to a predetermined depth, while remaining tethered to a surface float through a
wire cable. This float, fitted with a radio antenna, establishes and maintains the
communication link with the carrier. Acoustic buoys can be classified into three
primary categories: those that are solely transmitters (Tx), exclusively receivers
(Rx), and those combining both functions as transmitter-receivers (TxRx). A
sonar system is then virtually formed by the pairing of a source from a Tx or
TxRx buoy and a receiver from a TxRx or Rx buoy. When both the source
and the receiver are co-located, i.e. located within the same physical buoy (i.e.
TxRx), we refer to monostatism3; whereas we refer to bistatism when they are
not co-located, sometimes located several kilometers apart and potentially on
two separate immersion planes. Figure 1 illustrates this in a highly simplified
way. Furthermore, within each of these three categories of acoustic buoys (Tx,
Rx, TxRx), there are several types of buoy whose operating frequencies and per-
formance when paired with other buoys can vary considerably, hence the interest
in the heterogeneous problem addressed here [7]. A collection of heterogeneous
sonar systems in bistatic and/or monostatic configuration then constitutes a
Heterogeneous Multistatic Sonar Network (HMSN).

In the problem that interests us here, the objective is to determine the opti-
mal placement of a set of heterogeneous acoustic buoys over an AoI (forming an
HMSN) in order to maximize the coverage rate. This is an Area Coverage (AC)
problem in Wireless Sensor Networks (WSNs) [8] and a variant of the Maximal
Covering Location Problem (MCLP) [1] if we consider that customers are the
targets to be monitored and warehouses are the sonars to be deployed. Even
if we simplify the problem by considering only homogeneous TxRx buoys, it
is still an NP-Hard problem [10]. Preliminary work addresses the problem in
the homogeneous case [3,5,13] and this paper is a direct follow-up to the work
of [12] presenting a set of 9 Mixed-Integer Linear Programs (MILPs) for this
problem. As in the latter paper, we take into account coastlines, probabilistic
detection models, the adverse effect known as direct blast [2], variable perfor-
mance depending on the source/receiver pair as well as possible incompatible
sonar systems (e.g. in the case of different operating frequencies).

3 The term quasi-monostatism is also used whenever the source and receiver are
very close to each other (geographically speaking), although located in two sepa-
rate buoys.
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In this work, we present a metaheuristic, i.e. an approximate resolution
method, known as Simulated Annealing (SA) [9] in order to deal more effi-
ciently with this problem. This metaheuristic is based on a set of dedicated
neighborhoods, which we describe in more detail below. Moreover, we also pro-
pose original visual representations of the solutions which did not exist in the
current literature in order to help decision-makers.

The paper is organized as follows. In the first section, we formally present the
problem under study. In the second section, we present the proposed resolution
method with all the parameters and neighborhoods that we use. In the third
section, we present numerical results comparing ourselves with a set of efficient
MILPs from the literature. Finally, in the last section, we conclude this work
and give some prospects for future research.

Fig. 1. Simplified illustration of the operational context with a sonar system in bistatic
configuration comprised of two sonobuoys on the left side of the submarine (Tx →
Target → Rx) and a sonar system in monostatic configuration on the right side (TxRx
↔ Target).

2 Problem Description

Given an AoI, we first retrieve a Digital Elevation Model (DEM) of this zone,
i.e. a discretization into rectangular regular cells of size cellsize ∈ R+ from
bathymetric and altimetric data. We thus have m ∈ N∗ maritime cells, in the
center of which we assign a deployment position and a fictitious target used to
evaluate the performance of the network at a given point. Formally, we then have
E = {e1, . . . , em} ⊆ R2 the set of maritime cells and T = {t1, . . . , tm} ⊆ R2 the
set of targets. We denote TxRx the set of buoy types in the TxRx category, Tx
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the set of buoy types in the Tx category and Rx the set of buoy types in the
Rx category. In addition, we introduce I = TxRx ∪ Tx the set of buoy types
equipped with a source, J = TxRx ∪ Rx the set of buoy types equipped with a
receiver and K = TxRx ∪ Tx ∪ Rx the set of all buoy types. Furthermore, we
introduce ni ∈ N∗, the quantity of buoys of type i ∈ K available for deployment
and C ⊆ I × J the set of functional sonar systems, in the sense of compatibility
between source and receiver (i.e. operating frequency). The set of admissible
solutions (network) to the problem under study, denoted Ω, is then formally
defined as

Ω = {ω ⊆ E ×K | ∀e ∈ E, |{(e, i) ∈ ω}| ≤ 1, (a)

∀i ∈ K, |{(e, i) ∈ ω}| ≤ ni, (b)}, (1)

where (a) forces a maximum of one buoy per position and (b) is a constraint
on the number of buoys deployed for each type. Next, we introduce the set of all
theoretically possible sonar systems, denoted Ξ, formally defined as

Ξ = {(s, r) | s = (e, i) ∈ E × I, r = (e′, j) ∈ E × J, (i, j) ∈ C}, (2)

By extension, we will thus denote Ξω ⊆ Ξ the set of sonar systems in a
network ω ∈ Ω. Concerning the detection model, we now introduce Pω

d (t), the
Cumulative Detection Probability (CDP) of the target t by a network ω ∈ Ω,
computed as follows:

Pω
d (t) = 1−

∏
(s,r)∈Ξω

(
1− P

(s,r)
d (t)

)
, (3)

where P
(s,r)
d (t) is the Instantaneous Detection Probability (IDP) of the target

t. It is calculated using the following Fermi function (sigmoid-type):

P
(s,r)
d (t) =

1

1 + 10
(

ρt,s,r
ρ0

)−1

b

, (4)

with ρt,s,r =
√
ds,tdt,r and where ds,t and dt,r are respectively the source-to-

target and target-to-receiver distances. For coastline management, this IDP will
be set to 0 if the discretization of one of the two source → target or receiver →
target segments crosses a terrestrial cell. We also take into account an undesirable
effect called direct blast, which makes detection theoretically impossible inside
an ellipse of equation:

ds,t + dt,r < ds,r + 2rb, (5)

with rb = cτ
2 (in km) and which is equal to half the “pulse length”, i.e. the

distance travelled by the acoustic wave during the period τ ∈ R+ (in s) at celerity
c ∈ R+ (in km·s−1). A target will then be considered as covered (detected) when
the CDP is greater than a threshold ϕ ∈ [0, 1] fixed beforehand and generally
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close to 1, i.e. whenever Pω
d (t) ≥ ϕ. For more details on these detection models,

the reader is invited to refer to [13,12]. Finally, the objective function of the
problem corresponds here to the coverage rate of the AoI, formally defined as:

f : Ω → [0, 1]

ω 7→ 1

|T |
∑
t∈T

σ (Pω
d (t)) , (6)

where

σ(x) =

{
1 if x ≥ ϕ,
0 otherwise.

(7)

Ultimately, we attempt to find the optimal solution ω∗ ∈ Ω, i.e. the HMSN
maximising the function f previously defined:

ω∗ = argmax f(ω)
ω∈Ω

. (8)

3 Simulated Annealing (SA)

In this section, we present the SA [9] that we have implemented based on the
component-based classification proposed in [4]. For the complete pseudo-code of
the SA, readers are invited to consult the latter paper. We thus begin with the
two components that are problem-specific and end with the 7 components that
are algorithm-specific. As far as implementation is concerned, we rely heavily on
the techniques presented in [13] to be computationally frugal, and adapted here
to the heterogeneous case.

3.1 Problem-specific components

Initial Solution. The initial solution ω0 ∈ Ω provided to the SA is con-
structed here by randomly positioning all available sonobuoys on the AoI. Al-
though it would be possible to build this initial solution iteratively, for example
using a greedy heuristic such as the one presented in [13], the idea of an initial
random solution (like in [6]) is to introduce some variability at the initialization
of the algorithm. This variability at initialization is particularly useful when
several runs are performed (multi-start).

Neighborhoods. In this section, we introduce two different neighborhoods
families based on a given ω ∈ Ω solution: k-n-m-shift and k-swap. The way in
which these neighborhoods will be used will be detailed in Section 3.2 with the
exploration component. Moreover, for these neighborhoods, updating the objec-
tive function does not require a complete recalculation of the CDPs, but only
an adjustment for the buoys that have been moved. The first family, called k-n-
m-shift, corresponds to shifting a set of k sensors in a discrete square annulus
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region delimited by the inner ring n and the outer ring m. For a better under-
standing, the reader is referred to Figure 2 for an illustration of the ring concept
and to Figure 3 for examples of movements with this specific neighborhood. For-
mally, starting from a solution ω ∈ Ω, with 1 ≤ k ≤ |ω|, n ≥ 1, m ≥ n, the
neighborhood of ω with this family is defined as follows:

Fig. 2. Illustration of the ring concept surrounding a given deployment position.

N k−n−m
shift (ω) =

{
ω′ ∈ Ω | |ω| = |ω′|, (a)

∃B1 ⊆ ω,∃B2 ⊆ ω, |B2| = k ∧B1 ∩B2 = ∅ ∧B1 ∪B2 = ω, (b)

∀b ∈ B1,∃b′ ∈ ω′, b = b′, (c)

∀b = (e, i) ∈ B2,∃b′ = (e′, i′) ∈ ω′, i = i′ ∧ e′ ∈ An−m(e) (d)
}
,

where: (a) forces the original solution ω and the neighboring solution ω′

to have the same number of sensors (buoys); (b) is a partition of the original
solution into two subsets of buoys: B1 the set of |ω| − k buoys that will not be
shifted and B2 the set of k buoys that will be shifted; (c) all the buoys belonging
to the subset B1 must be present in the neighboring solution ω′, as they are not
shifted; (d) all the buoys b = (e, i) in the subset B2 must be found in the
neighboring solution ω′ at one of the positions in the discrete square annulus
region around their original positions e. The set of these eligible positions is
denoted by the set An−m(e), which is formally defined as:

An−m(e = (x, y)) =
{
e′ = (x′, y′) | ∃∆x ∈ J−m,mK,∃∆y ∈ J−m,mK,

|∆x| ∈ Jn,mK ∨ |∆y| ∈ Jn,mK,

x′ = x+∆x · cellsize ∧ y′ = y +∆y · cellsize
}
.

Note that it is virtually impossible to shift a buoy to a position already
occupied by another buoy with this type of movement (implicit by the definition
of Ω). An upper bound on the size of this neighborhood is:
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Fig. 3. Illustration of the k-n-m-shift movement family, with k the number of sensors
to be shifted, n the inner ring and m the outer ring, defining a discrete square annulus
region as potential landing positions (color-coded cells).

|N k−n−m
shift (ω)| ≤ |ω|!

(|ω| − k)!k!
·

 ∑
i∈Jn,mK

8i

k

, (9)

which can be tightened slightly by excluding positions that are already occu-
pied and taking into account terrestrial cells. The second family, called k-swap,
involves exchanging the two sensors within k unique pairs (i.e. no overlap be-
tween pairs). One particularity is that it is not permitted to have two sensors
of the same type in a given pair, as this is of no interest in terms of coverage
payoff. Examples of movements with this specific neighborhood are available in

Figure 4. Formally, starting from a solution ω ∈ Ω, with 1 ≤ k ≤
⌊
|ω|
2

⌋
, the

neighborhood of ω with this family is defined as follows:

N k
swap(ω) =

{
ω′ ∈ Ω | |ω| = |ω′|, (a)

∃B ⊆ ω,∀i ∈ J1, kK,∃Bi = (b1 = (e1, i1), b2 = (e2, i2)) ∈ ω, i1 ̸= i2,

B ∪
⋃

i∈J1,kK

Bi = ω ∧

∀i ∈ J1, kK, B ∩Bi = ∅ ∧ ∀(i, j) ∈ J1, kK2, i ̸= j, Bi ∩Bj = ∅, (b)

∀b ∈ B, ∃b′ ∈ ω′, b = b′, (c)

∀i ∈ J1, kK,∀(b1 = (e1, i1), b2 = (e2, i2)) ∈ Bi,∃(b′1 = (e′1, i
′
1), b2 = (e′2, i

′
2)) ∈ ω′

e′1 = e2 ∧ i′1 = i1 ∧ e′2 = e1 ∧ i′2 = i2 (d)}

where: (a), as before, forces the original solution ω and the neighboring
solution ω′ to have the same number of sensors; (b) is a partition of the original
solution into a first subset B of buoys which will not be moved and k subsets
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of two buoys of different types whose positions will be interchanged (swapped);
(c) all the buoys belonging to set B must be present as such in the neighboring
solution; (d) for each subset of two buoys in the partition of the original ω
solution, the same two buoys must be found in the neighboring solution with
their positions interchanged. An upper bound on the size of this neighborhood
is:

|N k
swap(ω)| ≤

∏
i∈J1,kK

(|ω| − 2(i− 1))!

(|ω| − 2i)!2
, (10)

which can be tightened by removing pairs of buoys of the same type, as they
have no interest in being exchanged, as discussed earlier.

Fig. 4. Illustration of the k-swap movement family, where k is the number of unique
pairs within which the two sensors will be swapped.

3.2 Algorithm-specific components

Here, we present the 7 algorithm-specific components derived from the clas-
sification presented in [4] and summarized in Table 3.2. First, we introduce
∆(ω, ω′) = f(ω′)− f(ω): the difference in coverage rate between two candidate
solutions ω, ω′ ∈ Ω.

Acceptance Criterion (AC). We have chosen the Metropolis-based criterion
proposed in the original formulation of the SA [9] and denoted AC1. This cri-
terion systematically accepts movements that lead to improving or same quality
solutions, i.e. whenever ∆(ω, ω′) ≥ 0 (maximization problem), and accepts dete-
riorating movements with a certain probability depending on the ratio between
the value ∆(ω, ω′) and the current temperature T . Formally:

pmetropolis =

{
1 if ∆(ω, ω′) ≥ 0,

e
∆(ω,ω′)

T otherwise.
(11)

Stopping Criterion (SC). As a stopping criterion for the SA algorithm, we
have chosen a maximum number of iterations, or candidate moves, denoted by
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SC2. Contrary to a fixed computational budget as a stopping criterion, the exe-
cution time is not determined a priori but rather depends on the search progress,
which in turn depends directly on the hardware involved and the instance under
consideration. Here, the maximum number of iterations is fixed at 30 000.

Initial Temperature (IT). The initial temperature T0 is derived from an
initial acceptance probability of deteriorating movements, denoted p0, which
correspond to IT6. To do this, we perform an initial random walk in the search
space, which gives us a sequence of admissible solutions ω0, ω1, . . . , ωl ∈ Ω with
l ∈ N∗ the total length of the walk. From the values f(ω0), f(ω1), . . . , f(ωl)
which we treat as a time series, we derive ∆avg the average gap between two
consecutive solutions in the random walk. Then, using the Metropolis criterion,
we find T0 =

∆avg

ln(p0)
. Here, we set l to 5 % of the total number of iterations,

i.e. 1 500, and p0 to 40 % with the aim of achieving a good balance between
intensification (hill-climbing behavior, p0 = 0.0) and diversification (random-
walk behavior, p0 = 1.0). In addition, we retain the best solution found during
this random walk as the initial solution of the SA algorithm.

Exploration Criterion (EC). For the exploration criterion, we have chosen
to randomly explore the neighborhood N (ω) of a solution ω ∈ Ω, which means
that at each iteration we generate and evaluate a solution drawn randomly from
this neighborhood. This corresponds to EC14, but we here propose a variant.
Indeed, in our case, we define N (ω) = N 1−1−1

shift (ω) ∪N 2−1−1
shift (ω) ∪N 3−1−1

shift (ω) ∪
N 1

swap(ω) and the drawing will thus be made through a roulette wheel selection
with a uniform distribution between the 4 sub-neighborhoods.

Temperature Length (TL). Let L ∈ N∗ be the number of iterations per-
formed at a given temperature, i.e. before updating the temperature according
to the chosen cooling scheme. Here we have chosen to carry out a single itera-
tion at each temperature, which therefore corresponds to TL1 with L = 1 in
the “fixed temperature length” category.

Cooling Scheme (CS). For temperature updating, we have chosen a geometric
scheme, like the original paper [9]. In this scheme, the temperature at iteration
i+1 is calculated as follows: Ti+1 = α·Ti with 0 < α < 1 and generally α close to
1 so as to have a slow monotonic decrease in temperature, making the acceptance
of deteriorating movements increasingly unlikely. This therefore corresponds to
CS2 and we set α = 0.999 in our case.

Temperature Restart (TR). Finally, in order to avoid converging towards
hill-climbing behavior as the temperature gradually decreases, we will perform
restarts. The hope behind this choice is to escape a local optimum that could have
been reached at a certain point during the search. To do this, we calculate the
overall average acceptance rate among deteriorating movements and we perform

4 In the original paper, this is NE1, but we prefer EC1 for reasons of uniformity.
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a restart when this rate falls below a given threshold, which corresponds to TR6.
When restarting, the best solution found so far is used as a starting point and
the acceptance rate is reset to 0. Furthermore, we here propose a variant where
we must wait for n ∈ N∗ iterations before restarting, so that the acceptance rate
becomes reasonably representative of the current situation. In our case, we set
the threshold at 5 % and the minimum number of iterations at 100.

Acceptance
Criterion

(AC)

Stopping
Criterion

(SC)

Initial
Temperature

(IT)

Exploration
Criterion

(EC)

Temperature
Length
(TL)

Cooling
Scheme
(CS)

Temperature
Restart
(TR)

AC1 SC2 IT6 EC1 TL1 CS2 TR6

Table 1. Characterization of the Simulated Annealing (SA) metaheuristic according
to the classification proposed in [4]: 7 algorithm-specific components.

4 Numerical Experiments

4.1 Instances

First of all, concerning the instances, we have selected a subset of 32 instances
from the 100 instances presented in [12] and detailed exhaustively in the fol-
lowing GitHub directory: https://github.com/owein-thuillier/MSN-dataset (last
access: April 1st, 2024). More precisely, we have selected 8 difficult instances
in each of the 4 main groups (i.e. DEMs): peninsula, strait, island and river. A
given instance then corresponds to a DEM from which it is derived, along with a
volume of sensors for each of the types listed in Table 2 below. The inter-sensor
performances ρi,j0 (km) are presented in the double-entry Table 3 and the pa-
rameters used in these experiments are listed in Table 4. Given performances
are example values for the purpose of demonstration, yet realistic enough.

4.2 Results

The numerical results are reported in Table 4.2, where, for the 32 instances, we
have: (a) the coverage rate (%) and the resolution time (s) of the best solution
found by the best of the 9 MILPs presented in [12]; (b) statistics on the 20 SA
executions, i.e. average (avg.), standard deviation (std.), minimum (min.) and
maximum (max.) for both coverage rate (%) and execution times (s). Note that
the presence of an asterix next to the coverage rate means that this is the opti-
mal solution, proven by the execution of one of the MILPs. Besides, a coverage
rate in bold means that it is the best integer solution known to date, which
may not be optimal (or proven optimal). All the experimentations have been
carried out on a Debian 11 server, 64-bit architecture, equipped with 190 GB of
RAM and 2 Intel® Xeon® Gold 6258R processors running at a clock speed of
2.70 GHz, each having 50 cores. Moreover, the implementations were done under
Julia 1.7.3 and the exact resolutions were performed using IBM ILOG CPLEX
20.1 with default settings, 8 threads in parallel and a computational budget of
7 200 seconds (2 hours). No parrallelism was set up for the SA.

https://github.com/owein-thuillier/MSN-dataset
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Category TxRx Tx Rx

Type AHF BLF CHF DLF EHF FHF GLF HLF

Table 2. Types (name and operating frequency) of the different sonobuoys considered
here in each of the three categories: TxRx, Tx and Rx. HF stands for High Frequency
and LF for Low Frequency.

I

J
AHF EHF FHF BLF GLF HLF

AHF 5.0 4.0 3.5 x x x

CHF 4.5 3.0 2.5 x x x

BLF x x x 8.0 7.5 6.5

DLF x x x 7.0 6.0 5.5

Table 3. Performances (ρi,j0 , in km) of the various compatible sonar systems (i.e.
(i, j) ∈ C).

c τ rb ϕ Fermi (b)

1.5 1 0.75 0.95 0.2

Table 4. Parameter values for numerical experiments.

If we take the example of instance no. 6 in the “peninsula” group, we see
that the best MILP model terminates at the end of the computational budget
of 7 200 seconds and returns an integer solution with a coverage rate of 85.71 %.
The SA, over 20 runs, found an average coverage rate of 85.57 % with an average
execution time of 1.467 s, i.e. around 4908 times faster for only 0.14 percentage
points less in coverage rate. In addition, the minimum coverage rate is 84.29 %,
the maximum coverage rate is 85.71 % (best known solution) and the standard
deviation is 0.44 %. In terms of resolution times, we have a minimum of 1.439
s, a maximum of 1.511 s and a standard deviation of 0.020 s. Finally, based
on all the results, we can see that the SA gives excellent results and is highly
robust, both in terms of execution times and coverage rates. Indeed, on average
across all instances, the SA is 3253 times faster for only 0.59 percentage points
less in coverage rate. Besides, the solutions obtained are also robust, as they
have a mean standard deviation of 0.036 s for execution times and 0.60 % for
coverage rates. Furthermore, the best known integer solution has been found at
least once in the entirety of the instances, and often on several runs (sometimes
finding better solutions, such as instance no. 13).

Future work should focus on studying and improving the performance of this
metaheuristic on a wider range of instances, in particular by varying the sizes
and geometric configurations of the AoIs, using, for example, the catalogue of
17 700 instances provided in [11].
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Simulated Annealing (SA) - 20 runs

Best MILP CPU time (s) Coverage (%)

Group Instance CPU time (s) Coverage (%) avg. std. min. max. avg. std. min. max.

Peninsula

9 × 9 (81 cells)
70 maritime (86.42 %)
11 terrestrial (13.58 %)

06 7200.00 85.71 1.467 0.020 1.439 1.511 85.57 0.44 84.29 85.71

08 3295.51 72.86* 1.347 0.046 1.304 1.528 72.86 0.00 72.86 72.86*

11 7200.00 80.00 1.310 0.010 1.285 1.327 79.86 0.44 78.57 80.00

13 7200.00 92.86 2.432 0.034 2.382 2.523 92.79 0.73 91.43 94.29

17 3266.10 94.29* 1.707 0.011 1.694 1.744 94.14 0.44 92.86 94.29*

18 7049.85 98.57* 1.893 0.023 1.857 1.936 96.93 0.84 95.71 98.57*

19 7200.00 91.43 2.415 0.022 2.376 2.454 91.21 0.52 90.00 91.43

20 7200.00 67.14 2.285 0.028 2.242 2.362 66.86 0.59 65.71 67.14

Strait

12 × 12 (144 cells)
81 maritime (56.25 %)
63 terrestrial (43.75 %)

27 7200.00 92.59 1.803 0.156 1.664 2.250 92.59 0.00 92.59 92.59

28 7200.00 97.53 1.852 0.019 1.826 1.903 97.53 0.00 97.53 97.53

32 7200.00 83.95 2.194 0.038 2.161 2.343 83.40 0.63 82.72 83.95

33 7200.00 88.89 2.538 0.026 2.501 2.602 88.46 0.72 86.42 88.89

34 7200.00 91.36 2.742 0.031 2.698 2.814 90.62 0.93 87.65 91.36

35 7200.00 95.06 3.345 0.039 3.257 3.421 94.44 0.75 92.59 95.06

39 7200.00 90.12 1.967 0.118 1.759 2.179 90.06 0.28 88.89 90.12

42 7200.00 80.25 1.726 0.023 1.704 1.801 79.81 0.60 79.01 80.25

Island

10 × 10 (100 cells)
90 maritime (90.00 %)
10 terrestrial (10.00 %)

54 7200.00 45.56 1.694 0.047 1.626 1.782 45.33 0.46 44.44 45.56

55 7200.00 85.56 2.205 0.020 2.176 2.260 84.94 0.67 83.33 85.56

56 7200.00 98.89 2.895 0.023 2.850 2.934 99.11 0.58 97.78 100.00*

58 7200.00 92.22 2.722 0.032 2.674 2.794 91.50 0.83 90.00 92.22

59 7200.00 93.33 2.693 0.025 2.645 2.770 92.61 0.75 91.11 93.33

60 7200.00 97.78 3.149 0.047 3.070 3.249 96.83 0.41 96.67 97.78

61 7200.00 95.56 2.103 0.023 2.076 2.152 95.44 0.34 94.44 95.56

62 7200.00 98.89 2.607 0.033 2.556 2.678 98.39 0.57 97.78 98.89

River

22 × 22 (484 cells)
99 maritime (20.45 %)
385 terrestrial (79.55 %)

79 7200.00 52.53 1.571 0.045 1.497 1.647 51.92 0.69 50.51 52.53

82 7200.00 69.70 1.915 0.042 1.850 2.010 68.54 0.59 67.68 69.70

83 7200.00 91.92 2.089 0.028 2.048 2.143 90.81 0.73 88.89 91.92

84 7200.00 90.91 2.010 0.031 1.969 2.080 89.75 0.75 87.88 90.91

85 7200.00 91.92 2.188 0.030 2.148 2.243 91.11 0.62 89.90 91.92

86 2057.99 98.99* 2.573 0.022 2.539 2.622 97.68 0.66 96.97 98.99*

89 7200.00 98.99 3.382 0.038 3.310 3.467 97.07 1.18 94.95 98.99

99 7200.00 67.68 1.584 0.020 1.553 1.637 65.91 1.39 62.63 67.68

Table 5. Numerical experiments with the best MILP from [12] and the Simulated
Annealing (SA) metaheuristic developed in this paper on a selection of instances.
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4.3 Example of Solution

A complete example of a solution obtained at the end of an execution of the
SA on instance no. 58 (island group) is presented in Figure 5, which is broken
down into several parts. (a) is the continuous heatmap of CDPs for the entire
network over the whole AoI. (b) is the translation of the previous map in its
discrete version, with the cells effectively covered (in red), i.e. where the point in
the center is covered with a CDP greater than or equal to the detection treshold
(ϕ = 0.95). The white line highlights the separation between zones where the
CDP is lower than the detection threshold and zones where it is higher. (c)
is a bar chart that shows the importance of each buoy within the network.
More precisely, this diagram quantifies the coverage rate that would be lost if a
given buoy were to disappear (malfunction, destruction, etc.), in absolute values
with the bar on the left and in relative values with the bar on the right. For
example, if buoy no. 1 were to be removed, we would lose around 55 percentage
points of coverage (absolute), which equates to a drop of around 60 % in the
current coverage rate (relative). Note that this diagram is only valid for a single
horizon and that it would have to be regenerated after the removal or addition
of a buoy. (d) is a chord diagram representing the contribution of the different
sonar systems made up by each of the buoys, adding complementary information
to the previous diagram. Here, for a network ω ∈ Ω, the contribution of a

given sonar system (s, r) ∈ Ξω is calculated as follows:
∑

t∈T min{P̃ (s,r)
d (t), 1},

with P̃
(s,r)
d (t) = log(1−ϕ)(1− P

(s,r)
d (t)). It is therefore the sum of the individual

contributions, taking care not to include contributions greater than or equal
to 1, because a target is considered to be covered as soon as the contributions
are greater than 1. Hence, it is useless to know that a target is covered more
than necessary by a given sonar system. Finally, in this diagram, the thicker
the connection (the edge) between two buoys, the more significant the sonar
system formed by these two buoys is within the network. (e) is a collection of
heatmaps represented in matrix form with buoys having a source in rows and
buoys having a receiver in columns. Thus, at the intersection of a row and a
column we find the visualization of the individual contribution of a given sonar
system. For example, at the intersection of row no. 1 and column no. 4 is the
contribution of the sonar system formed by the source of the buoy TxRx with
unique identifier 1 and the receiver of the buoy Rx with unique identifier 6.

5 Conclusions and Perspectives

In conclusion, in this paper, we have proposed a new method for efficiently solv-
ing the Area Coverage (AC) problem in Heterogeneous Multistatic Sonar Net-
works (HMSNs), based on a Simulated Annealing (SA) metaheuristic with a set
of dedicated neighborhoods. We first take into account various factors including
coastlines, probabilistic detection models, an adverse phenomenon referred to as
direct blast and three categories of buoys (Tx, Rx, TxRx) with several types of
buoys in each of these categories. Then, we also consider variable performance
depending on the source/receiver pair as well as potential incompatibilities, for
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Fig. 5. Example of a Simulated Annealing (SA) solution on instance no. 58 (island
group).
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example because of different operating frequencies. As a result, we are able to
process instances of interest from an operational point of view much more effi-
ciently than current state-of-the-art methods. Furthermore, we introduce a novel
and innovative framework designed to visualize the solutions we have derived.
Future work could extend this method and these experiments to a larger col-
lection of instances, taking care to further vary the sizes and and the geometric
configuration of coastlines.
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