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A B S T R A C T   

In this paper, the energy flow prediction of a grid-connected Hybrid Microgrid (HMG) is studied. The studied 
system consists of a 19 kW photovoltaic (PV) array, a 6.5 kW wind turbine (WT), and a 59.32 kWh battery Energy 
Storage System (ESS). Two energy prediction and optimization algorithms, Linear Programming and If-Else (LP- 
If-Else), are applied to analyze the site’s energy flow behavior and accurately predict it one day in advance. 
Meteorological data collected at the site and real load profiles are used in this study. To highlight the effec-
tiveness of the offline prediction approach, three extreme cases are applied to three energy management stra-
tegies and compared. The results of the prediction performed by the two algorithms showed that a single 
prediction algorithm (LP) is not sufficient to accurately predict the energy flow for the next day.   

1. Introduction 

The energy transition is currently imposing profound changes on 
electricity networks. The increase in demand, coupled with the massive 
integration of renewable and intermittent production sources, is jeop-
ardizing their stability. 

The integration of distributed energy resources, storage systems, 
distributed electrical loads, and the main distribution grid through the 
common coupling point is called a microgrid (Jiayi et al., 2008). The use 
of microgrids is one of the solutions to overcome the problem of over-
production or underproduction of energy. The use of clean and renew-
able energy sources such as PV (photovoltaic) and wind power is a 
remarkable and environmentally friendly method (Bernal-Agustín and 
Dufo-Lopez, 2009; Elsied et al., 2014). In the review Olatomiwa et al. 
(2016) and Zia et al. (2018), several papers have been listed that cover 
different configurations of hybrid renewable energy systems for power 
generation. To address this problem, the University of Djibouti has a 
multi-source power plant. This microgrid is connected to the main grid 
and serves as an auxiliary facility for the university during off-peak and 
peak hours. When the plant produces less energy to meet its own load 
demand, the site can draw power from the grid. On the other hand, when 
the plant produces more energy than its own load demand, the site can 

feed the excess energy back to the University to partially reduce the 
University’s bill. The main objective of this study is to accurately 
determine the energy flow of the power plant one day in advance using 
two algorithms (LP and If-Else), while adhering to the constraints and 
limits set by the energy management strategy formulated in this study. 
The emphasis is placed on quantifying the excess energy that can be 
injected into the university. This study aims to provide a clear under-
standing of the site’s energy behavior by considering meteorological 
data and consumption fluctuations. In our study, we focus on linear 
programming approaches using Matlab. Below is Table 1, which sum-
marizes the different works that are closely related to our case study, 
whether it is their configuration, approach, or strategies used. 

This paper is structured into five sections, each addressing specific 
aspects of the study. The first section provides an overview and intro-
duction to the research topic. The second section delves into the archi-
tecture and mathematical modeling of the studied system. In the third 
section, the problem formulation is presented, along with an analysis of 
the constraints and limitations of the system under study. The fourth 
section comprises the results and discussion, including the comparison 
of the two algorithms and the analysis of the three scenarios. Finally, the 
fifth section concludes the paper and provides potential avenues for 
further research. 
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2. Architecture & mathematical model of the studied system 

2.1. Architecture of the system 

The architecture of the system is presented in Fig. 1, which includes a 
photovoltaic park with a capacity of 19 kW. The park consists of four 
rows of 19 panels, each with a power rating of 250 W, connected in 
series. Additionally, there is a three-bladed ANTARIS wind turbine with 
a capacity of 6.5 kW and a diameter of 5.3 m. The system also in-
corporates a storage system (Hoppecke 6 OPzV) comprising 72 batteries, 
each with a voltage of 2 V and a capacity of 412 Ah, resulting in a total 
capacity of 1236 Ah C10. The batteries are divided into three rows 
connected in parallel, and each row consists of 24 batteries connected in 
series. 

2.2. Mathematical model of the study system 

2.2.1. Photovoltaic panel model 
The mathematical model of the photovoltaic module has been found 

in the literature (Ayop and Tan, 2017; Thangamani et al., 2020). The 
expected power output of a module depends on factors such as ambient 
temperature, site irradiation rate, and the technical characteristics of the 
module. To estimate the power output of the module, the following 
equation can be used (Bhandari et al., 2015a): 

Ppv = Prefpv

I
Iref

[
1 + k

(
(T + 0.0256 × I) − Tref

) ]
(1)  

Where Prefpv 
is the reference power of the module (in kW), Iref is the 

reference irradiation rate (1 kW/m2), I is the actual irradiation exposed 
at the surface of the module (in W/m2), k is the temperature coefficient 
(in ◦C⁻1), T is the ambient temperature (in ◦C), and Tref is the reference 
temperature (in ◦C). 

Table 1 
Summary of studies of energy management system (EMS) based linear 
programming.  

Ref. Configuration EMS 
Approach 

Remarks 

(Dash and 
Bajpai, 
2015) 

Standalone PV/ 
Battery/ 
Fuel cell 

LP via 
Simulink 

An energy management strategy 
based on injecting excess energy 
into the electrolyzer when the 
battery is full was adopted in 
this study. The study 
emphasizes battery protection 
and achieving a balanced load 
and output. 

(Pascual 
et al., 
2015) 

Standalone PV/ 
Wind/ 
Battery/Grid 

LP In this EMS, the generation 
forecast, battery state of charge, 
and system input/output are 
taken into account. The grid is 
used as a backup, and the 
battery compensates for any 
discrepancies between the 
measured and forecasted power. 

(Comodi 
et al., 
2015) 

Standalone 
Wind/PV/ 
Microgaz/Grid 

LP An EMS strategy has been 
developed to predict the power 
produced one day in advance, 
irrespective of weather 
conditions. The objective of this 
strategy is to address the 
unpredictability of PV 
production and reduce primary 
fuel dependency. The utility 
grid serves as a backup. 

(Luna et al., 
2017) 

PV/Fuel cell/ 
Battery/Grid 

LP-PSO An online and real-time EMS 
has been developed to minimize 
the costs of electricity operation 
and shutdown. The developed 
model is analyzed using three 
case studies: perfect prediction, 
imperfect prediction, and 
accurate information. These 
case studies are subject to 
comparative analysis in terms of 
economic gain and calculation 
time. 

(Tenfen and 
Finardi, 
2015) 

PV/Wind/ 
Battery/ 
Fuel cell/Micro- 
turbines/Grid 

Mixed 
integer LP 

An optimal energy management 
strategy is proposed to minimize 
the operational cost of 
microgrids, considering the 
integration of compressible and 
movable loads in demand 
response. The objective function 
encompasses operating and 
maintenance costs, start-up and 
shutdown costs, energy 
exchange costs with the main 
grid, and power outage costs. 

(Ismail 
et al., 
2013) 

Standalone PV/ 
Battery/Diesel 

LP via 
Matlab 

In this study, a prioritization of 
the PV and the Battery as the 
primary sources to supply the 
load has been formulated. The 
Generator is utilized as a backup 
in cases of energy insufficiency 
from the PV and the Battery. 

(This study) Standalone PV/ 
Wind/ 
Battery/Grid 

LP via 
Matlab 

Three strategies for an energy 
management system have been 
formulated to minimize the 
excess of energy by feeding 
directly one building of the 
university. The objective of 
strategy 1 is to prioritize 
renewable sources (PV-Wind) to 
feed the load and use batteries 
up to the State of Charge 
SOCmin = 30 %. Excess energy 
should be fed to the University. 
The main grid will be used as a 
backup power supply in case of 
unavailability of PV, Wind, and  

Table 1 (continued ) 

Ref. Configuration EMS 
Approach 

Remarks 

Battery systems. The objective 
of strategies 2 and 3 have the 
same priority as strategy 1, as a 
different strategy 2 discharges 
the battery to a SOCmin =

50 %, and the other fully 
discharge the battery to 100 %.  

Fig. 1. Power plant architecture installed in the University of Djibouti.  
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2.2.2. Wind turbine model 
The power output Pw of the wind turbine can be represented 

mathematically by Eq. (2) as reported in Bhandari et al. (2015b) and 
Shin et al. (2017). 

Pw =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0,

Prefw × η(v),

Prefw ,

0

0 ≤ v ≤ vci

vci ≤ v ≤ vr

vr ≤ v ≤ vco

vco ≤ v

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(2)  

Where v , vci, vr and vco are the wind speed, the cut-in wind speed, the 
rated speed of the turbine and the cut-out wind speed respectively (in m/ 
s). Prefw 

is the rated electric of turbine (in kW) and η(v) is the wind speed 
coefficient. The formula for the wind speed coefficient η(v) is given in 
Eq. (3). 

η(v) = v − vci

vr − vci
(3)  

2.2.3. Storage system model 
The mathematical model of the battery power can be represented 

according to Eqs. (4) and (5) as reported in (Lan et al., 2015). The 
discharge and charge power of the batteries (in kW) is respectively: 

Pd
b(t) = Pl(t) − Ppv(t) − Pw(t) (4)  

Pc
b(t) = Ppv(t) + Pw(t) − Pl(t) (5) 

The energy of the batteries can also be represented according to Eqs. 
(6) and (7) as reported in (Chen et al., 2011). 

Ec
b(t) = Ec

b(t − 1) + Pc
b(t).

Δt
ηc

(6)  

Ed
b(t) = Ed

b(t − 1) + Pd
b(t).

Δt
ηd

(7)  

Where Pd
b , Pc

b, ηc, ηd, Ec
b(t − 1), Ed

b(t − 1) are the battery discharging and 
charging power (in kW), the battery charging and discharging effi-
ciency, the battery charging and discharging energy (in kWh) and Δt is 
the observed time interval set to 1 h and Pl(t) is the load power of plant 
(in kW). 

3. Problem formulation 

3.1. Objective function 

The objective function chosen is a cost function considering the cost 
of energy taken from the main grid. Minimizing the cost function will 
inversely increase the excess energy. The formula is written in the form 
of Eq. (8) as shown in (Elaouni et al.,): 

Min fLP(x) =
∑T

i=1

(
CG(i) × Pg(i)

)
(8)  

Where CG is the cost of purchasing energy from the electricity grid 
(0.27€ / kWh)1, Pg the power drawn from the main grid (in kW) and T is 
the energy management system period 24 h and i is the time interval (e. 
g., 1 h). 

3.2. Design constraint and system parameters 

The net power balance constraint imposes at each time of the day 
according to Eq. (9). 

∑(
Pl(t) + Pc

b(t) + Pexcess(t) − Ppv(t) − Pw(t) − Pg(t) − Pd
b(t)

)
= 0 (9) 

The storage constraint is formulated based on the limitations of the 
battery’s charge and discharge rates at each time. These limits are 
imposed by three Sunny Island 6.0 H units, with a charge current limit of 
90 A and a discharge current limit of 103 A. These constraints are rep-
resented by the following inequalities (10) and (11). 

0 ≤ Pc
b(t) ≤ Pcmax

b (10)  

0 ≤ Pd
b(t) ≤ Pdmax

b (11)  

Where Pcmax
b , Pdmax

b , are the maximum charge power of the battery (in 
kW) and the maximum discharge power of the battery (in kW). 

Djibouti, it is not permitted to inject excess energy into the main grid. 
Therefore, only the power drawn from the grid will be considered, as 
indicated by the following inequality (12). 

0 ≤ Pg(t) ≤ Pl(t) (12) 

Table 2 shows the rest of the limits of the system. 

3.3. Linear program implementation 

This section introduces the linear programming (LP) algorithm 
applied in this study for predicting the site’s energy flow one day in 
advance, as depicted in Fig. 2. The advantages of this algorithm can be 
summarized as follows (Dantzig et al., 1955):  

• It is one of the earliest and most widely used algorithms.  
• It demonstrates faster computational speed compared to other linear 

system-solving algorithms.  
• It is particularly effective when dealing with problems involving 

more than three variables, where graphical methods may not be 
suitable. 

3.4. If-else algorithm 

The If-Else algorithm is used to refine the prediction made by linear 
programming. In this approach, the same variables are used:  

● The excess power injected into the university (Pexcess).  
● The battery charge and discharging power (Pc

b and Pd
b).  

● The battery state of Charge (SOC).  
● The power withdrawn from the utility grid (Pg). 

The results of the linear programming, including the cost function 
formulated in Section 3.1, as well as the limits and constraints formu-
lated in Section 3.2, are utilized as inputs for the If-Else algorithm. The 
estimation of the site’s energy flow involves calculating the differences 
in load, Solar, and Wind power between the previously recorded data 
and the current data, as demonstrated by Eqs. (13) and (14). 

Δday(t) = Pl(t) − Ppv(t) − Pw(t) (13)  

Δforecast(t) = Pl− forecast(t) − Ppv− forecast(t) − Pw− forecast(t) (14) 

Δday is the difference in power of the day (in kW), Δforecast is the 

Table 2 
The limits of the system.  

ID Type Min. Power (kW) Max. Power (kW) 

1 Ppv 0 19 
2 Pw 0 6.5 
3 Pl 0 8.5 
4 Pc

b 0 1.48 
5 Pd

b 0 1.23  1 55 Fdj = 0.27 € the price of kWh in Djibouti 2023. 
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difference in power of the previous day (in kW) and t is the time (in 
24 h). 

Subsequently, a difference in results is made as shown in Eq. (15). 

Δ(t) = Δday(t) − Δforecast(t) (15) 

Δ(t) are the result of the energy flow powers (in kW). 
If − Else =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pexcess− forecast,

Pc
b− forecast,

Pd
b− forecast,

Pg− forecast,

SOCforecast,

if Δ(t) = 0} (16)  

Fig. 2. The prediction approach adopted in this study.  
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Fig. 3. (a) and (d) depict the evolution of temperature, solar irradiation, and wind speed on October 7–8, 2021, for scenario 1. (b) and (e) illustrate the evolution of 
temperature, solar irradiation, and wind speed on November 29–30, 2021, for scenario 2. (c) and (f) showcase the evolution of temperature, solar irradiation, and 
wind speed on July 4–5, 2022, for scenario 3. 

C. Ibrahim et al.                                                                                                                                                                                                                                 



Energy Reports 9 (2023) 294–300

298

If − Else =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pexcess,

Pc
b,

Pd
b,

Pg,

SOC,

if Δ(t) ∕= 0} (17)  

4. Discussion and results 

The energy flow prediction for the next day in a power plant is 
determined using the linear programming algorithm. The algorithm 
considers the actual weather data and load profile as input to forecast 
the power generated by the battery, excess power, and power drawn 
from the utility grid. The meteorological data recorded by a station 
installed at the University of Djibouti is used in this study. Fig. 3 illus-
trates the patterns of temperature, irradiation, and wind speed for three 
different scenarios: October 7–8, 2021; November 29–30, 2021; and 
July 4–5, 2022. To evaluate the performance of the two algorithms, 
three scenarios were formulated in this study. Scenario 1: In this case, 
the power plant’s performance is evaluated under the worst weather 
conditions recorded in Djibouti. The weather data from October 7, 2021, 
and October 8, 2021, were used for this case study. Due to forgetfulness 
or other reasons, certain buildings in Djibouti might continue to operate 
without being turned off, making it important to simulate this situation. 
Scenario 2: This scenario assumes that the devices in the power plant 
operate for a full day, resulting in a significantly higher charging power 
compared to the expected charging power. The weather data from 
November 29, 2021, and November 30, 2021, were used for this case 
study. Scenario 3: This scenario considers summer weather conditions 
with high load and weather fluctuations. The weather data from July 4, 
2022, and July 5, 2022, were used for this case study. This scenario is 
inspired by real situations that occurred in Djibouti. 

4.1. Comparison of the two algorithms 

In scenario 1, a 100 % difference between the results of the Linear 
Programming (LP) algorithm and the If-Else algorithm can be observed 
for grid power. However, the difference between the excess power and 
the excess power forecast is not as significant, with a maximum differ-
ence of 50 %. In scenarios 2 and 3, there is a significant difference be-
tween the two algorithms for the excess power, grid power, and battery 
power, with a 100 % difference observed. In both case studies, there is a 
notable disparity between the predicted and observed power flow 
behavior. These findings highlight that a single algorithm is insufficient 
to accurately predict the power flow behavior of the plant. 

4.2. Comparison of the three strategies 

Fig. 4 illustrates the scenario 1, focusing on strategy 1, with a daily 
production of 17.65 kWh (significantly lower than the forecasted 81.6 
kWh), the site consumes 33.2 kWh of energy from the network, ac-
counting for 55 % of the daily load. In strategy 2, the site consumes 
34.47 kWh of grid energy, representing 57.5 % of the daily load power. 
Strategy 3 demonstrates the lowest grid energy consumption among the 
three strategies, with the site drawing 31.5 kWh or 52.5 % of the daily 
load consumption. Notably, in all three strategies, no excess energy is 
generated, and a significant amount of energy is drawn from the grid, 
contrary to what was predicted by the LP algorithm. 

Fig. 5 illustrates the results for scenario 2, focusing on strategy 1. 
With a daily load of 204 kWh, significantly higher than the predicted 
load of 60 kWh, the site consumes 118 kWh of energy from the utility 
grid, accounting for 57 % of the daily load. Simultaneously, 26 % of the 
daily production, equivalent to 20.88 kWh, is injected into the univer-
sity, representing 53 % of the predicted amount. Notably, the LP algo-
rithm predicted that no energy would be drawn from the grid. In 
strategy 2, the site consumes 121.26 kWh of energy from the grid, which 
corresponds to 59.4 % of the daily load power. Additionally, a slightly 

Fig. 4. (a) Represents the power of PV, Load, Battery, and Grid predicted by LP of scenario 1, (b) Represents the power of PV, Load, Battery, and Grid rectified by If- 
Else of scenario 1. The variation in the state of charge and excess power was predicted and rectified by LP and If-Else for scenarios 1 (c) and (d). 
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higher amount of excess energy is generated, amounting to 22.07 kWh, 
or 27.8 % of the daily production. However, in strategy 3, the site has the 
lowest energy consumption from the grid at 115.3 kWh, accounting for 
56 % of the daily consumption. In terms of excess energy, this strategy 
generates 19.1 kWh, equivalent to 24 % of the daily production. This can 
be attributed to the battery discharging to its maximum capacity, 
effectively storing as much energy as possible. 

Fig. 6 demonstrates the results for scenario 3, focusing on strategy 1. 
With a daily load of 236 kWh, significantly higher than the predicted 
load of 60 kWh, the plant consumes 143 kWh of energy from the utility 
grid, accounting for 60 % of the daily load. Interestingly, we can observe 
a consistent discharge of the battery throughout the day. However, no 
excess energy is injected into the university. It is worth noting that the 
LP algorithm predicted that no energy would be drawn from the grid, 

and 30.83 kWh of energy was expected to be injected into the university. 
In strategies 2 and 3, regardless of the state of charge (50 % and 100 %), 
we observe the same result provided by both algorithms. The compari-
son of the three strategies is summarized in Table 3. 

5. Conclusion 

This study focused on predicting the day-ahead energy flow of a 
power plant installed at the University of Djibouti. Two prediction al-
gorithms, namely LP and If-Else, were utilized for three energy man-
agement strategies under extreme scenarios. A comparison between the 
LP and If-Else algorithms revealed a significant difference of at least 90 
% between the predicted and observed results. These findings high-
lighted that a single prediction algorithm, such as LP, is insufficient for 
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Else of scenario 2. The variation in the state of charge and excess power was predicted and rectified by LP and If-Else for scenarios 2 (c) and (d). 
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Else of scenario 3. The variation in the state of charge and excess power was predicted and rectified by LP and If-Else for scenarios 3 (c) and (d). 

C. Ibrahim et al.                                                                                                                                                                                                                                 



Energy Reports 9 (2023) 294–300

300

accurately predicting the next day’s energy flow. Furthermore, a com-
parison between the three strategies was conducted, and the most 
favorable result was obtained with strategy 1, which incorporated a 
minimum State of Charge (SOC) of 30 %. This strategy aligned perfectly 
with the objectives outlined in this study, including the protection of 
battery life (a crucial criterion for the Djiboutian desert climate) and low 
energy consumption from the grid. For future work, it is recommended 
to reinforce this study by exploring additional prediction algorithms, 
such as genetic algorithms and the Fuzzy logic algorithm, and 
comparing them to linear programming. To enhance accuracy, real-time 
prediction of energy flow could be implemented using multiple predic-
tion algorithms, such as a combination of linear programming and ge-
netic algorithms. All these predictions could be compared to real-time 
data using a Supervisory Control and Data Acquisition (SCADA) system. 
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