
HAL Id: hal-04614567
https://hal.science/hal-04614567

Submitted on 17 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

CREPE: Concurrent Reverse-Modulo-Scheduling and
Placement for CGRAs

Chilankamol Sunny, Satyajit Das, Kevin J M Martin, Philippe Coussy

To cite this version:
Chilankamol Sunny, Satyajit Das, Kevin J M Martin, Philippe Coussy. CREPE: Concurrent Reverse-
Modulo-Scheduling and Placement for CGRAs. IEEE Transactions on Parallel and Distributed Sys-
tems, 2024, 35 (7), pp.1293 - 1306. �10.1109/tpds.2024.3402098�. �hal-04614567�

https://hal.science/hal-04614567
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

1

CREPE: Concurrent Reverse-modulo-scheduling
and Placement for CGRAs

Chilankamol Sunny∗, Satyajit Das∗, Kevin J. M. Martin† and Philippe Coussy†
∗ IIT Palakkad, Palakkad, Kerala, India, † Université Bretagne Sud, Lab-STICC UMR 6285, Lorient, France
Email:112004004@smail.iitpkd.ac.in, satyajitdas@iitpkd.ac.in, {kevin.martin, philippe.coussy}@univ-ubs.fr

This document is the author version of the paper
“CREPE: Concurrent Reverse-Modulo-Scheduling and
Placement for CGRAs” by Chilankamol Sunny, Satyajit
Das, Kevin J. M. Martin, Philippe Coussy, accepted for
publication in IEEE TPDS Volume: 35 Issue: 7. The
IEEE Copyright Notice is:
IEEE Transactions on Parallel and Distributed Systems
Print ISSN: 1045-9219
Online ISSN: 1045-9219
Digital Object Identifier: 10.1109/TPDS.2024.3402098
The original paper is available in IEEE Xplore:

https://10.1109/TPDS.2024.3402098

Author version

Abstract—Coarse-Grained Reconfigurable Array (CGRA) ar-
chitectures are popular as high-performance and energy-efficient
computing devices. Compute-intensive loop constructs of complex
applications are mapped onto CGRAs by modulo-scheduling the
innermost loop dataflow graph (DFG). In the state-of-the-art
approaches, mapping quality is typically determined by initiation
interval (II), while schedule length for one iteration is neglected.
However, for nested loops, schedule length becomes important. In
this paper, we propose CREPE, a Concurrent Reverse-modulo-
scheduling and Placement technique for CGRAs that minimizes
both II and schedule length. CREPE performs simultaneous
modulo-scheduling and placement coupled with dynamic graph
transformations, generating good-quality mappings with high
success rates. Furthermore, we introduce a compilation flow
that maps nested loops onto the CGRA and modulo-schedules
the innermost loop using CREPE. Experiments show that the
proposed solution outperforms the conventional approaches in
mapping success rate and total execution time with no impact
on the compilation time. CREPE maps all kernels considered
while state-of-the-art techniques Crimson and Epimap failed to
find a mapping or mapped at very high IIs. On a 2×4 CGRA,
CREPE reports a 100% success rate and a speed-up up to 5.9×
and 1.4× over Crimson with 78.5% and Epimap with 46.4%
success rates respectively.

Index Terms—coarse-grained reconfigurable array (CGRA),
modulo-scheduling, loop optimization.

I. INTRODUCTION

In the quest for an efficient yet programmable hardware
architecture, CGRA (Coarse-Grained Reconfigurable Array)
architectures have been intensively studied as they offer the
best trade-off from an energy efficiency point of view [1],
[2]. A generic CGRA consists of an inter-connected array
of processing elements (PEs), each PE having a functional

unit (FU), context register (CR), register file (RF), and I/O
interconnects. Compute-intensive loop constructs of complex
applications are offloaded to CGRAs to improve the overall
performance of the application [2]. This is done by configuring
the PEs and interconnects every cycle based on the context pre-
pared by the compiler [3]. The extent to which an application
benefits from the efficiency of the CGRA hardware depends
on the efficacy of its compiler to map the loop kernels of the
application onto the CGRA. For a spatio-temporal CGRA that
maps applications in space and time dimensions, the mapping
process must solve both scheduling and binding (also called
placement and routing) problems [4].

Software pipelining is a compile-time optimization tech-
nique that improves performance by overlapping the execution
of different iterations of a loop. The most acclaimed and
widely used software pipelining technique in the CGRA
domain is modulo-scheduling [4]–[6]. Its goal is to find a
schedule of operations from different iterations of the inner-
most loop that can be repeated in a given interval called
initiation interval (II), expressed in cycles. Basically, II is
the number of cycles between the start of two consecutive
iterations of the innermost loop [7]. It can also be seen as the
length of the repeating schedule. There exists a lower bound
for the II, called minimum II (MII), for which a modulo
schedule exists for a given target architecture, determined
by two constraints: the resources, and the recurrence. MII is
computed as MII = max(ResMII, RecMII) where ResMII is the
resource-constrained MII, computed as the ratio of the number
of operation nodes in the loop DFG to the number of resources
in the CGRA. RecMII is the recurrence-constrained MII that
depends on the recurrence dependencies that exist in the
loop [8]. The best achievable goal is to find a modulo schedule
with II equal to MII. If such a schedule cannot be found,
II is incremented and the algorithm tries again until a valid
schedule is obtained. The data flow graph (DFG) formed by the
repeating schedule of operations is referred to as modulo-DFG
(MDFG). The set of operations that are executed before and
after the repeating schedule is called prologue and epilogue
respectively. Most works on modulo-scheduling consider II as
the key performance indicator (KPI) [4]. However, real-world
applications often feature complex nested loops and the total
execution time depends also on the schedule length for one
iteration of the innermost loop, which relates to the prologue
and epilogue cycles as well as II. Schedule length, also called
iteration latency is the length of the schedule for one iteration
of the loop [8]. In this paper, we introduce an agile approach

https://ieeexplore.ieee.org/abstract/document/10531698

2

to modulo-schedule and bind the innermost loop DFGs on
CGRAs, focusing on minimizing the overall execution latency
of the application. This is achieved by better solution space
exploration compared to the state-of-the-art approaches. As a
result, the proposed mapping finds the best IIs on smaller
CGRAs (less resource) while the existing approaches use
bigger CGRAs to find similar solutions.

The contributions of the paper are as follows:
• We propose CREPE, a Concurrent Reverse-modulo-

scheduling and Placement mechanism that minimizes
both II and schedule length of the innermost loop.
To the best of our knowledge, CREPE is the first
modulo-scheduling technique that performs simultaneous
(modulo-)scheduling and placement by traversing the
DFG in reverse topological order, coupled with dynamic
graph transformation for better exploring solution space.

• We present a compilation flow that maps an arbitrary
number of nested loops onto CGRAs with the innermost
loop modulo scheduled. The compilation flow supports
both hardware-based (employing hardware loop units)
and software-based (executing loop control instructions)
loop implementations.

• We perform an extensive set of experiments present-
ing the mapping quality and design space exploration
capability of CREPE compared to the state-of-the-art
methods. Results show that the proposed approach out-
performs the state-of-the-art solutions regardless of the
type of loop implementation (hardware/software-based).
CREPE is compared with two state-of-the-art solutions,
Epimap [7] and Crimson [9] by executing kernels with
varying DFG sizes on different CGRA configurations.
CREPE reported the least execution latencies and was
able to find mapping solutions for all the kernels and
configurations considered whereas Crimson and Epimap
failed to map large DFGs.

The rest of the paper is organized as follows. Section II
presents the related works on modulo-scheduling and explains
the motivation behind this work. Section III is dedicated to
detailing the proposed approach and illustrating its efficacy.
Section IV discusses experimental results and section V con-
cludes the paper.

II. BACKGROUND AND MOTIVATION

Numerous modulo-scheduling techniques have been pro-
posed to optimize loop execution on CGRAs [7], [9], [10],
[12]–[15], [18]–[20]. Iterative modulo-scheduling (IMS) [8],
the seminal work on modulo-scheduling, introduces a sim-
ple extension of the acyclic list scheduling algorithm with
a height-based priority function to efficiently schedule the
innermost loop. It first computes the theoretical best value for
II called minimum initiation interval (MII) [8], by considering
the recurrence and resource constraints imposed by the input
loop DFG and the target architecture. Then the IMS algorithm
is iterated with successively larger values of II, starting with
MII, until the loop has been scheduled. Edge-centric Modulo
Scheduling (EMS) [20] focuses on the routing problem as its
primary objective. Placement is a by-product of the routing

process and the schedule is developed by routing each edge
in the DFG. Experimental results show that EMS outperforms
IMS by 25% as the lack of a global resource management
strategy causes frequent routing failures in IMS, leading to
mappings with increased IIs.

Epimap [7] defines the mapping problem as a graph epi-
morphism problem. It pre-processes the input DFG and finds
the MII of the transformed graph which helps in reducing the
mapping search space. Placement is done by finding a max-
imum common subgraph (MCS) between MDFG and time-
extended CGRA (TEC) graph. The time-extended graph is
prepared by replicating the nodes in the CGRA multiple times.
For every pair (u, v) of connected nodes in the CGRA, there
is an arc from (replication of) u at time t to (replication of) v
at time t+1. Note that every node in the CGRA is connected
to itself [10]. Epimap enables flexible mapping options by
using recomputing as well as routing of operation nodes. This
helps Epimap obtain better performance results compared to
EMS which relies solely on routing (stage re-assignment)
to find the mapping solution. Epimap remains one of the
best modulo-scheduling techniques in terms of the quality of
mapping it generates [11]. REGIMap [10] defines mapping
as a simultaneous placement and register allocation problem.
It uses register files to route dependencies. GraphMinor [11]
formalizes the mapping problem as a restricted graph minor
containment of the innermost loop DFG in the modulo routing
resource graph (MRRG), representing the CGRA architecture.
The efficient graph minor search algorithm with aggressive
pruning and acceleration strategies finds mapping solutions
with minimal compilation time. The scheduling quality of
GraphMinor is claimed to be quite similar to that of Epimap.
However, the recomputation concept in Epimap enables addi-
tional scheduling and routing options that can lead to better-
quality solutions for certain kernels [11].

Gu et al in [16] present a heuristic two-stage stress-aware
mapping algorithm that integrates the intra-kernel and inter-
kernel stress optimization strategies into loop scheduling and
binding procedures. The method guarantees an optimized
performance comparable to EPIMap, in terms of II, while
effectively reducing and balancing the stresses accumulated
on PEs.

RAMP [12] explores various ways to map the data depen-
dencies, before the scheduling step, to improve the mapping-
ability and mapping quality. It models various routing strate-
gies and one or more of these strategies are selectively applied
to find a mapping solution for a given II. This enables RAMP
to map those kernels that are not mapped by techniques like
REGIMap which rely on one single strategy for routing. Zhao
et al in [17] argue that temporal mapping (scheduling) should
be paid more attention than spatial mapping (binding) to
achieve better performance in minimal compilation time. The
work integrates interconnection and computational constraints
solving heuristics into the scheduling process to foresee fail-
ures at the spatial mapping stage and initiate rescheduling if
necessary. In addition to the efficient scheduling technique,
the approach employs spatial mapping with backtracking and
reordering to achieve good success rates with lower IIs and
compilation times compared to REGIMap and RAMP. Crim-

3

TABLE I
COMPARISON OF VARIOUS MODULO-SCHEDULING TECHNIQUES

Technique Approach Placement & Routing Graph Transformation

Epimap [7] schedule-then-place MCS using Levi’s algorithm static
REGIMap [10] schedule-then-place constrained maximal clique static
GraphMinor [11] simultaneous scheduling and placement graph minor static
RAMP [12] schedule-then-place maximal clique static
Crimson [9] schedule-then-place not mentioned static
Dynamic-II [13] schedule-then-place not mentioned static
PathSeeker [14] schedule-then-place MCS following reverse BFS static
SAT MapIt [15] schedule-then-place SAT-based formulation not applicable
Gu et al [16] schedule-then-place modified maximal compatibility classes not mentioned
Zhao et al [17] schedule-then-place cost function static
CREPE [this paper] simultaneous scheduling and placement incremental version of Levi’s algorithm

following reverse topological order
dynamic

son [9] introduces randomness in iterative modulo-scheduling
to explore the schedule space effectively. The technique gener-
ates different schedules on each invocation of IMS for a given
or increased II. This improves the possibility of finding a map-
ping solution and enables Crimson to achieve better mapping
success rates than RAMP and GraphMinor. PathSeeker [14]
is a mapping technique that analyzes mapping failures and
performs local adjustments to the schedule, achieving lower IIs
and compilation time compared to RAMP and GraphMinor.

SAT-MapIt [15] addresses the mapping problem through a
SAT-based formulation where data dependency, architectural
constraints, and schedule are expressed as boolean statements.
It is the first exact solution to the modulo-scheduling problem.
It can even support DFG sizes that were previously only
managed via heuristics and achieves better quality mappings
compared to RAMP and PathSeeker. One limitation of this
technique is that it does not apply any routing strategy, leading
to increased IIs compared to the state-of-the-art techniques for
certain kernels. Dynamic-II pipeline scheme [13] realizes a
pipeline with variable II by accommodating multiple iterations
of shorter length in one static configuration. This method
is designed exclusively for loops with irregular branches. It
can realize a pipeline with two II for true-path and false-
path respectively in a static configuration and dynamically
switch II at runtime. A hybrid compilation framework is
also implemented to extract branch features and correctly
choose the processing method to achieve a smaller average
II and shorter execution latency compared to conventional
approaches.

All these works are targeted to find mapping solutions
for the innermost loop DFG, considering II as the main
performance metric. However, the innermost loop execution
latency (TLoop) depends on both initiation interval (II) and
schedule length of one iteration (L) [8]. Equation 1 presents
the TLoop formulation, where N is the innermost loop iteration
count.

TLoop = (N − 1) ∗ II + L (1)

In the case of nested loops, the total execution latency
(T TLoop) is computed as shown in equation 2

T TLoop = TLoop ∗
d−1∏
i=1

ni +

d−1∑
j=1

cj ∗
j∏

k=1

nk (2)

where d is the depth of loop nesting with the innermost
loop at level d, cj is the number of cycles incurred by the
loop at level j for one iteration, excluding the cycles spent
in its inner loops, and ni and nk are the iteration counts of
loops at level i and k respectively. For perfectly nested loops
in which assignment statements appear only in the innermost
loop, the computation reduces to:

T TLoop = TLoop ∗
d−1∏
i=1

ni (3)

The impact of schedule length on the execution latency
of the loop is greater when the number of iterations for the
innermost loop is much smaller than the outer loops which
is often the case. Fig. 1(a) gives the source code of a 2D
convolution filter, that is widely used in signal processing and
AI applications. The kernel features a loop structure with a
very small iteration count for the innermost loop compared to
the outer loops. Fig. 1(b) shows the computation of T TLoop

assuming the ideal values for II and schedule length. T TLoop

breakdown given in Fig. 1(c) shows that the schedule length
affects the total execution time of the kernel significantly.
Furthermore, minimizing the II may not always result in
minimizing the schedule length. Fig. 2 (b) presents a mapping
solution with modulo scheduling for the DFG and CGRA
given in Fig. 2 (a). Fig. 2 (c) presents another valid mapping of
the modulo scheduled DFG onto the CGRA. Here, the DFG
formed by the repeating schedule of operations is different
from that in Fig. 2 (b), resulting in a different schedule length,
even though the length of the repeating schedule (i.e., II) is the
same. This illustrates that it is possible to generate different
mappings with the same II but different schedule lengths. For
this reason, optimizing the II alone is not sufficient to achieve
the best performance.

Further, as shown in Table I, most of the modulo-scheduling
techniques employ a schedule-then-place approach, perform-
ing resource-constrained (sometimes random-based) schedul-
ing as a first step for mapping. Once the schedule is prepared,
placement options are analyzed for predecessor nodes before

4

Total execution latency of the kernel

Outer Loop Schedule Length part II part

T_TLoop

Time spent in executing
the outer loops

Time spent in executing the innermost loop

LIIN Schedule Length (L) partII part

L∑ 𝑐 ∗ ∏ 𝑛L∗ ∏ n(N-1)∗ II ∗ ∏ n

158,4009,04867,86081,432533

for(i=1; i <=78; i++) {
for(j=1; j <=58; j++) {

sum = 0;
for(m=0; m < 3; m++) {

for(n=0; n < 3; n++) {
sum += in[i+m-1][j+n-1]* kernel[m][n];

}
}

out[i][j] = sum;

}

23

(a) (c)

(b)

Level 1
Level 2

Level 3
Level 4

d=
4

(n1=78, c1=0)
(n2=58, c2=2)

(n3=3, c3=0)

Fig. 1. Motivating example demonstrating the impact of schedule length
(L) on total execution latency (T TLoop). (a) Sample kernel with a loop
nest structure of depth d=4 and an innermost loop of iteration count N=3.
The iteration count (n1, n2, n3) of outer loops at each level as well as the
number of cycles (c1, c2, c3) exclusively incurred by those loops are shown;
(b) Computation of T TLoop assuming an ideal mapping solution with II
equal to MII (for a 2×4 CGRA) and L equal to the ASAP schedule length
of the innermost loop; (c) T TLoop breakdown

S
ch

ed
ul

e
L

en
gt

h
=

 3

a b

c

e

d

e

II
 =

 2

time

a
b

d
c e

a
b

d

II
=

2

a
c

b
a

c
d

S
ch

ed
ul

e
L

en
gt

h
=

 4

ea

e

a
b

time
(a) (b) (c)

iteration i-1 routing nodeiteration i iteration i+1

3
1 2 3

Fig. 2. (a) CGRA model and application DFG; (b) Mapping with II = 2 and
schedule length = 3; (c) Mapping with II = 2 and schedule length = 4

the successor nodes. If no placement solution is found, then,
static graph transformations are applied, II is increased and
the scheduling process restarts from the beginning. They
often cannot analyze data dependency accurately and tend to
unnecessarily transform the loop DFG. This affects the II and
schedule length, significantly increasing the total execution
cycles of the complex loop nests of the application.

Fig. 3 illustrates the Epimap technique of modulo-
scheduling and placement [7]. As the first step, MII, the
minimum possible value of II is computed as the maximum of
resource-constrained MII (ResMII) and recurrence-constrained
MII (RecMII) [8]. The next step is MDFG construction with
II=MII. Epimap creates the MDFG by assigning a level to
each node in the DFG, which is given by the level of that
node in the DFG modulo II. The algorithm then tries to find
a placement solution for the MDFG by finding the maximum
common subgraph (MCC) between TEC and MDFG using
Levi’s algorithm [21]. In case of failure, the algorithm collects
the nodes left unmapped and transforms the DFG by re-routing
or re-computing [7] the input nodes of the unmapped nodes
and tries again until a valid mapping is obtained. Re-routing
adds a routing node that makes explicit the storage of a value
to delay one operation and to keep data dependencies. Re-
computing duplicates an operation node by keeping its inputs

b’

Level 2

Level 1

Level 0a b

c d a

e

b

f Level 3

(e)

Level 2

Level 1

a b

c d e

f

Level 0

EPIMAP Running Ex

1 3 42

MII = max (ResMII, RecMII)
= ceil (No. of DFG nodes/

No. of CGRA nodes) = 2

a b

c d e

f

(j)

Level 2

Level 1

a b

c d a

e

b

f Level 3

Level 0

(a)

(b)

(c)

Cycle 1

b’

1 C 4B

1 C DB fa

c d

b

List of unmapped nodes = {e}

Cycle 0

time

(d)

Mapping not feasible at II =2
Restore DFG; Increment II

a b

b’

1 C 4B

1 C DB ea

c d

b

f

Cycle 0

Cycle 1

time

(g)

41 32

b’

1 C 4B

1 C 4B

f

a

c d

b

List of unmapped nodes = {e}

Cycle 0

Cycle 2

time

Cycle 1

(i)

(k)

ba

41 32

b’

1 C 4B

1 C 4B fa

c d

b

e

Cycle 0

time

Cycle 1

Cycle 2

(l)

b’a b

c d a

e

b f

(f)

Level 1

Level 0

a b

c d a

e

b

f

Level 2

Level 1

Level 0

a b

c d e

f(h) Level 2

Level 1

Level 0

Routing Node

Fig. 3. Motivating example showing that schedule-then-place approaches
employing static graph transformation and forward traversal of the DFG, like
Epimap, results in mapping at increased IIs. (a) Innermost loop DFG; (b)
CGRA model; (c) MDFG constructed choosing II=MII=2; (d) Placement and
Routing. Placement of e fails. (e) DFG after graph transformation. The input
nodes of the unmapped node e (nodes a and b) are re-routed (through register
file); (f) MDFG constructed from the transformed DFG with II=MII=2; (g)
Mapping is found to be infeasible with this transformation as there exists
no connection between the PEs to which node e and routing node of a are
placed. Input DFG is restored and II is incremented; (h) MDFG constructed
from the original DFG with II=3; (i) Placement and Routing. Mapping of e
fails; (j) DFG after graph transformation. The input nodes of e are re-routed;
(k) MDFG constructed from the transformed DFG with II=3; (l) Placement
and Routing. Mapping is successful, reporting an II > MII.

the same and distributing output edges to reduce the number
of successors of the original operation node. If a mapping
solution cannot be found with current II, the algorithm re-
stores the original DFG, increments II, and attempts for a
new mapping. Fig. 3 depicts that the Epimap approach of
scheduling followed by placement and routing by forward
traversing the DFG pushed to map the DFG at an II greater
than the MII. Schedule-then-place approaches show similar
effects employing static graph transformations and forward
traversal of the DFG. In this paper, we propose a simul-
taneous reverse-modulo-scheduling and placement approach

5

Level 2

Cycle 1

Cycle 0

Level 2

Level 2 contd.
Nodes to be mapped={b,b’}
Cycle# = 0

Level 0

MDFG Mapping (MM)

a b

c d e

f Level 0

Level 1
Nodes ={c,d,e}
Cycle# 1

Level 2
Nodes ={a,b}
Cycle# = 0 mapping of b failed

Wip Proposed Approach MDFG
mapping

Level 1

Level 0
Nodes ={f}
Cycle# = 0

b’a b

c d e

f

Level 1

1 3 D2 f

Cycle 1 A C 4Bc d e

a

A C DBCycle 0

Cycle 1

f

A C 4Bc d e

ab b’

1 3 42

A C DB fab

Cycle 0 A C 4Bc d e

time

time time

(a) (d)

(b)

(c)

(e)

(f)

b’

Fig. 4. Running example demonstrating the proposed CREPE technique of
mapping. (a) Innermost loop DFG with levels assigned in reverse topological
order; (b) CGRA model; (c) Simultaneous modulo-scheduling and placement
by CREPE, following Algorithm 1. Starting from level 0, nodes at each level
are mapped at cycle# computed as level#%II, choosing II=MII=2. Placement
of node b fails which calls for a dynamic graph transformation; (d) DFG
after graph transformation. Node b is recomputed, adding node b’ to the
list of nodes to be mapped; (e) Mapping process continued. All nodes are
successfully mapped. (f) Final MDFG mapping obtained by reversing the
schedule. The schedule is reversed since it is prepared by traversing the DFG
backward. Mapping is successful, achieving an II equal to MII.

with dynamic graph transformation that minimizes both II and
schedule length of one iteration of the innermost loop. The
detailed approach is presented in the next section.

III. PROPOSED APPROACH

In this section, we introduce CREPE, a Concurrent Reverse-
modulo-scheduling and Placement method for CGRAs. We
also propose a compilation flow that maps arbitrarily nested for
loops (the nesting structure is not confined to a predetermined
number of levels or a finite count of loops at each level) onto
the CGRA and modulo-schedules the innermost loop using
CREPE. We present two variants of the compilation flow,
designed separately for CGRAs employing hardware loops and
for those supporting the traditional software-based method of
executing loop control instructions as part of the kernel code.

A. Concurrent Reverse-modulo-scheduling and Placement
(CREPE) Technique

Fig. 4 illustrates the proposed CREPE mapping technique
with the DFG and CGRA model used in the motivating exam-
ple in Fig. 3. The CREPE algorithm traverses the input DFG
in reverse topological order and maps the nodes at each level.
A node appearing at a particular level is modulo-scheduled by
assigning it to a cycle, computed as cycle = level%II . Once
the cycle is identified, the algorithm tries to place the node,
respecting the mappings already generated for that cycle. If
it fails to find a placement for the node, it transforms the
DFG dynamically to improve the placement options. Here

in this example, CREPE could map the MDFG at an II
equal to MII which is 2 while Epimap mapped it at an II
equal to 3; details will be given in the next subsections.
The simultaneous reverse-modulo-scheduling and placement
approach, coupled with dynamic graph transformation helped
CREPE achieve better II results by avoiding unnecessary graph
transformations.

1) CREPE Algorithm Overview: Algorithm 1 presents the
CREPE mapping algorithm which generates the MDFG, pro-
logue, and epilogue mappings for the innermost loop. The
algorithm takes the innermost loop DFG as well as the CGRA
model as inputs. It traverses the DFG in reverse topological
order (starting at the leaf node level) and ensures that a node
is mapped only after all its successor (according to the data
dependencies) nodes are mapped. This helps to accurately
analyze dependencies and efficiently explore the solution
space [22]. Once the list of operation nodes appearing at a
particular level of the DFG is prepared, it modulo-schedules
and binds each node in that level to the time-extended CGRA
(TEC) model.

If a mapping solution cannot be found for any of the nodes,
the DFG is transformed dynamically. If such a transformation
is not feasible, DFG is restored and mapping is restarted with
an incremented II. This repeats until all nodes in the DFG are
mapped, forming the MDFG mapping. The algorithm avoids
performing the complex mapping operation for the prologue
and epilogue parts of the loop. Instead, the mappings are
prepared from the MDFG mapping and ASAP schedule of
the input DFG (see sub-section 3). This saves the compila-
tion time. Moreover, the good-quality MDFG mappings that
CREPE generates result in low-latency prologue and epilogue
parts, ensuring optimized schedule lengths.

2) MDFG Mapping: As the first step, the mapping al-
gorithm computes MII. MII is the resource-constrained MII
(ResMII) or recurrence-constrained MII (RecMII), whichever
is larger [8]. It then attempts to modulo-schedule and place
and route the DFG onto the given CGRA model with this II
(line 3-53).

The function getNodesByRevTopSort returns the list of
nodes appearing at a given level of the DFG by traversing
the graph in reverse topological order (line 10). All nodes
appearing at a particular level are assigned to the same cycle.
Modulo-scheduling is done by setting cycle = level%II . The
list of nodes returned by getNodesByRevTopSort is then sorted
based on the mobility and fanout of the nodes. The algorithm
chooses the first node in the sorted list and checks whether
all its successor nodes are mapped or not (line 14,15). If
any of the successor nodes are not mapped, then the chosen
node is re-routed and removed from the list of nodes to be
mapped in the current cycle. The list is updated to include
the newly created routing node and sorted again (line 37-
41). If all the successor nodes are mapped, the algorithm uses
the function findPnRByIncLevi (find Placement and Routing
By Incremental Levi) to find a placement solution for the
chosen node, respecting the mappings already generated for
the current cycle (line 16). findPnRByIncLevi implements an
incremental version of Levi’s algorithm [21] to place and route
the node and applies a stochastic pruning on the partial map-

6

Algorithm 1: Concurrent Reverse-modulo-scheduling
and Placement

Input: DFG D, CGRA Model CM, MII
Output: Prologue Mapping PM, MDFG Mapping MM, Epilogue

Mapping EM
1 MII=computeMII(D,CM);
2 II=MII;
3 while true do
4 D’=D;
5 Mappings.reset();
6 backtrack=false;
7 NodestoBeMapped=getAllNodes(D’);
8 level=0;
9 while NodestoBeMapped 6= ∅ do

10 NodestoBeMappedCurrCycle=getNodesByRevTopSort(D’,level);
11 NodestoBeMappedCurrCycle.sortByPriority();
12 cycle=level%II;
13 while NodestoBeMappedCurrCycle 6= ∅ do
14 N=getFirstNode(NodestoBeMappedCurrCycle);
15 if isMapped(N.successorNodes) then
16 P=findPnRByIncLevi(N,Mappings[cycle],D’,CM);
17 if P is null then
18 newNodes=doRouteOrRecompute(N,D’);
19 if newNodes is null then
20 II=II+1;
21 backtrack=true;
22 break;
23 else
24 NodestoBeMappedCurrCycle.add(newNodes);
25 NodestoBeMapped.add(newNodes);
26 if N.reRouted() then
27 NodestoBeMappedCurrCycle.remove(N);
28 end
29 NodestoBeMappedCurrCycle.sortByPriority();
30 end
31 else
32 Mappings[cycle].add(P);
33 NodestoBeMappedCurrCycle.remove(N);
34 NodestoBeMapped.remove(N);
35 end
36 else
37 newNode=doRoute(N,D’);
38 NodestoBeMappedCurrCycle.remove(N);
39 NodestoBeMappedCurrCycle.add(newNode);
40 NodestoBeMapped.add(newNode);
41 NodestoBeMappedCurrCycle.sortByPriority();
42 end
43 end
44 if backtrack then
45 break;
46 end
47 level++;
48 end
49 if NodestoBeMapped = ∅ then
50 MM=Mappings.reverseCycle();
51 break;
52 end
53 end
54 AS=getASAPSchedule(D);
55 (PM,EM)=Prepare Prologue and Epilogue Mappings(AS,MM,MII);
56 return (PM,MM,EM);

ping set to prevent it from growing exponentially. The function
finds the placement solution by choosing a PE from a set of
candidate PEs. The candidate list preparation algorithm makes
the CREPE technique suitable for heterogeneous CGRAs. A
PE is chosen as a candidate PE to place an operation node
only if it supports the functionality of the operation node.

If a placement solution is not found for the current node,
the DFG is transformed dynamically, i.e., graph transformation
is applied (line 18) before attempting to map the next node.
Re-routing and re-computation are the two transformations
we employ. The function doRouteOrRecompute creates either
routing nodes or recompute nodes whichever is applicable, for
the failed node. The newly created nodes are added to the list
of nodes that need to be mapped in the current cycle. If the

node that could not be placed is re-routed in the transformation
step, then it is removed from this list. Then the set of nodes
to be mapped in the current cycle is sorted again (line 24-
29). If a valid transformation is not possible, the algorithm
restores the original DFG, increments II, and starts again all
over again (lines 20-22, 45, 3). This is repeated until all
nodes in the DFG are modulo-scheduled and placed (line 9).
Once this mapping is completed, the schedule of the mapping
solution is reversed since the modulo-schedule is prepared by
traversing the DFG backward (line 50). This forms the MDFG
mapping. The algorithm then proceeds to prepare mappings for
the prologue and epilogue parts of the loop by invoking the
function Prepare Prologue and Epilogue Mappings.

3) Prologue and Epilogue Mapping: The pseudocode of the
function, Prepare Prologue and Epilogue Mappings is
presented in Algorithm 2. The algorithm takes MDFG map-
ping (MM) and ASAP schedule (AS) of the input DFG as
inputs. It maintains a schedule pointer sPtr and three cycle
counters, mCycle, pCycle and eCycle corresponding to the
MDFG, prologue and epilogue mappings respectively. The
algorithm creates multiple copies of MM from which the
prologue and epilogue mappings are composed, by traversing
the MM multiple times. The number of copies to be created
depends on the number of times the innermost loop gets
unrolled (unroll factor) while preparing the modulo-schedule.
The unroll factor is computed as the ratio of the schedule
length and II [23]. The function getScheduleLength takes AS
and MM as inputs and returns the schedule length of one
iteration of the loop (line 2). The algorithm traverses the MM
(scheduleLength/II) − 1 times (denoted by count in the
algorithm) to create the required copies.

In each round, the algorithm compares ASAPHeight of
nodes that appear at each cycle of MM with the value of
the schedule pointer sPtr (line 12). If ASAPHeight of a node
is less than or equal to sPtr, mapping information of that node
is used to prepare the prologue mapping and if it is greater,
the mapping is used to prepare epilogue mapping. Mapping is
prepared by copying the node’s placement information from
MM and schedule information from the prologue / epilogue
cycle counter maintained by the algorithm (line 17-18, 24-25).
Schedule pointer sPtr is conditionally incremented (line 28,33)
as it visits each cycle (mCycle) in the MDFG mapping.

4) Computational Complexity: The MDFG mapping al-
gorithm consists of an iterative modulo scheduling (IMS)
procedure and an incremental version of Levi’s algorithm
that finds the maximum common subgraph (MCS) between
DFG and TEC. Both IMS and finding MCS are NP-complete
problems that are solvable in non-polynomial time i.e., they
have exponential time complexity. However, the empirical
time complexity of IMS is O(n2) where n is the number
of operation nodes in the DFG [8]. CREPE implements an
incremental version of Levi’s algorithm to place and route
the node and apply stochastic pruning on the partial mapping
set to prevent it from growing exponentially. The empirical
time complexity of the placement procedure with stochastic
pruning is (n × p) where p is the number of PEs in the
CGRA. The algorithm that prepares prologue and epilogue
mappings copies the mapping of each operation node in the

7

Algorithm 2: Prepare Prologue and Epilogue Mappings
Input: ASAP Schedule AS, MDFG Mapping MM, MII
Output: Prologue Mapping PM, Epilogue Mapping EM

1 sPtr=0; pCycle=0; eCycle=0;
2 count=ceil(getScheduleLength(AS,MM)/MII)-1;
3 II=MM.size(); //II is the schedule length of MDFG mapping
4 while count > 0 do
5 mCycle=0; pPrevC=0; ePrevC=0;
6 while mCycle < II do
7 incrementSptr=false;
8 i=0;
9 while i < MM [mCycle].size() do

10 N=getDFGNode(MM[mCycle],i);
11 ASAPHeight=getASAPHeight(AS,N);
12 if ASAPHeight <= sPtr then
13 if mCycle!=pPrevC then
14 pCycle++;
15 pPrevC=mCycle;
16 end
17 PE=getCGRANode(N,MM[mCycle]);
18 PM[pCycle].add(N,PE);
19 else
20 if mCycle!=ePrevC then
21 eCycle++;
22 ePrevC=mCycle;
23 end
24 PE=getCGRANode(N,MM[mCycle]);
25 EM[eCycle].add(N,PE);
26 end
27 if ASAPHeight%II >= mCycle OR

mCycle==getCycle(MM,N.getPredecessorNodes())+1 then
28 incrementSptr=true;
29 end
30 i++;
31 end
32 if incrementSptr then
33 sPtr++;
34 end
35 mCycle++;
36 end
37 count = count-1;
38 end
39 return (PM,EM);

MDFG multiple times as determined by the ratio of schedule
length and II. The time complexity of this procedure is O(n)
as the number of operation nodes in MDFG is the number
of operation nodes in the input DFG. Thus the statistical
complexity of the CREPE mapping algorithm is O(n2) since
no sub-routine’s complexity is worse than O(n2), provided the
number of operation nodes in the DFG (n) is greater than the
number of PEs in the CGRA(p). When p > n, the complexity
is O(n× p).

5) Running Example: Fig. 4 illustrates the MDFG mapping
process of CREPE. The first step is to compute the MII.
As there are no recurrence constraints in this example, MII
is determined by the resource constraints i.e., MII=ResMII.
ResMII is computed as the ratio of the number of nodes in
DFG to the number of PEs in the CGRA. There are 6 nodes
in the DFG and 4 PEs in CGRA, setting MII to 2. Next, the
algorithm tries to modulo-schedule the DFG with II equal to
MII and place and route it to the time-extended CGRA model
(TEC). The algorithm traverses the DFG in reverse topological
order, starting with the leaf node level. Modulo-scheduling of
nodes appearing at a particular level is done by assigning them
to a cycle computed as cycle = level%II . Here, level = 0,
II = 2 and cycle is computed as 0%2 = 0. In this example,
the only node at level 0 is f . The algorithm modulo-schedules
and binds f by assigning it to cycle 0 and the PE denoted by
4 in the TEC. The list of mappings corresponding to cycle 0

Cycle 1

Level 2

2’

sPtr=0; count = (scheduleLength/MII) - 1 = 1
mCycle=0 ; Nodes={c,d,e}
ASAPHeight (c,d,e) = 1 ; ASAPHeight > sPtr
Copy placement (c,d,e) to EM at eCycle=0
sPtr=1
mCycle=1 ; Nodes ={a,b,b’,f}
ASAPHeight (a,b) = 0 ; ASAPHeight < sPtr
Copy placement (a,b,b’) to PM at pCycle=0
ASAPHeight (f) = 2; ASAPHeight > sPtr
Copy placement (f) to EM at eCycle=1

A C 4B

1 3 D2

dc e

Epilogue Mapping (EM)

f

A C 4Bb a b’

Prologue Mapping (PM)

a b

c d e

f

Level 1

Level 0

A C DB fab

A C 4Bc d e

1 3 42

Proposed Approach prologue
epilogue

b’

(a)

(b)

Cycle 1

Cycle 0

time

Cycle 0

time

Cycle 0

time

(c) (d)

Fig. 5. Running example demonstrating the preparation of prologue and
epilogue mappings by CREPE (a) ASAP schedule of innermost loop DFG; (b)
CGRA model; (c) MDFG mapping (Refer Fig. 4); (d) Prologue and epilogue
mappings prepared by replicating the MDFG mapping, following Algorithm 2.
Mappings of the nodes mapped at cycle 0 (c,d,e) and node f mapped at cycle 1
are copied to epilogue mapping since their ASAP heights are greater than the
schedule pointer (sPtr) value. Mappings of a,b and b’ are copied to prologue
mapping since the ASAP heights of a and b are less than the schedule pointer
value.

is updated with this binding information.
Next, the list of nodes appearing at level 1 is selected and

sorted based on the mobility and fanout of the nodes. The
sorted list is {c, d, e}. The cycle number is computed as 1
(1%2). The algorithm chooses c, the first node from the list
and modulo-schedules it by assigning it to cycle 1. Then it
finds a placement solution for c, which is the PE denoted by
1 in the TEC. Similarly, node d is mapped to cycle 1 and PE
2. Next, e is mapped, considering the routing options from
PE 4 to which its child node f is assigned. These mapping
details are added to the mapping set corresponding to cycle
1. Moving to level 2, the algorithm identifies the list of nodes
as {a, b}. The cycle to which these nodes are to be scheduled
is computed as 0 (2%2). Placement of these nodes is to be
done respecting the mappings already generated for cycle 0.
The first node in the list, a is chosen and assigned to cycle 0.
The next step is to find a placement solution for a, considering
the routing options from the PE nodes in the TEC to which
its child nodes (c, d, e) are mapped. PE 2 is chosen and node
a is assigned to it. Coming to node b, the algorithm fails to
find a placement solution in cycle 0. Indeed, PE 2 is also the
only solution for node b, but already occupied by node a. This
calls for a dynamic graph transformation.

Recall that the two graph transformations CREPE employs
are re-computation and re-routing. It is worth noting that re-
routing often tends to increase the latency and hence it is wise
to choose recomputation whenever possible. Recomputation is
feasible if the number of unoccupied PE nodes in a particular
cycle in the TEC is more than the number of operation
nodes left to be mapped in that cycle. Thanks to dynamic
graph transformation, CREPE has the flexibility to choose
between these transformations based on the current mapping

8

loop body BB
with loop variable

update

terminating
condition

checking BB

2

(a) (b)

BB outside loop

BB outside loop
with loop variable

initialization

innermost
loop DFG

Prologue

MDFG

Epilogue

Fig. 6. (a) Generic CDFG representation of a for loop with no control
statements in its loop body; (b) MDFG, prologue, and epilogue construction
featured in CREPE mapping technique

status. Here, CREPE recomputes node b as the number of
PEs left unoccupied in cycle 0 is more than the number of
nodes that are yet to be mapped. The child nodes of b are
distributed between b and b′ in the transformed graph, relaxing
the placement constraints. The newly created b′ is added to
the list of nodes to be mapped in level 2. Following the graph
transformation, CREPE successfully maps the nodes in level 2.
The schedule is reversed to obtain the final mapping solution
as the mapping is done by traversing the DFG backwards. With
this, the MDFG construction and its mapping onto the CGRA
is completed, achieving an II equal to MII and a schedule
length equal to the ASAP length of the input DFG.

Using the MDFG mapping, MM and ASAP schedule of the
input DFG, the algorithm prepares the prologue and epilogue
mappings as shown in Fig. 5. In this example, the algorithm
creates one copy of the MM , as determined by the schedule
length (3) and II (2), by traversing the MM once. The initial
value of the schedule pointer, sP tr is 0. The list of nodes
in cycle 0 of MM is {c, d, e}. The ASAP height of all
three nodes is 1, greater than the current value (0) of sP tr.
This implies that these nodes are a part of the epilogue. The
placement information of these nodes is copied from MM to
the epilogue mapping at cycle 0. Before moving to cycle 1
of MM , sP tr is incremented to 1, as per the algorithm. The
nodes appearing at cycle 1 are b, a, b′ and f . As the ASAP
height (0) of the nodes a and b in the input DFG is less than
the sP tr value, their placement information is copied to the
prologue mapping at cycle 0. The ASAP height of node f is
2, which is greater than sP tr. Hence, the placement details
of f are copied from MM to epilogue mapping at cycle 1.
Thus, the prologue and epilogue mappings are prepared from
the MDFG mapping.

B. Compilation Flow

We introduce a compilation flow that maps arbitrarily nested
loops onto the CGRA and modulo-schedules the innermost
loop using CREPE. A variant that supports hardware-based
loop implementation is also designed, in view of leveraging
the benefits of both CREPE and hardware loop. We assume
that the innermost loop does not contain any control statements
in its loop body. State-of-the-art CGRA, IPA [24] is chosen

as the platform to implement the proposed model. The kernel
to be accelerated is represented as a set of single-entry-single-
exit blocks of instructions called basic blocks (BBs). The set
of BBs forms a control and data flow graph (CDFG) with
nodes representing BBs and edges representing the control
flow between them. Each BB is further represented as a
DFG. IPA supports direct CDFG mapping to facilitate the
execution of arbitrarily nested loops on the CGRA with no
host intervention.

1) Proposed compilation flow for CGRAs supporting
software-based loop implementation: A loop in the CDFG
is identified as a subgraph with a back edge [25], as shown
in Fig. 6(a). This means that the innermost loop comprises
a set of DFGs while CREPE expects a single DFG as its
input. The proposed solution addresses this issue by modulo-
scheduling only the BB that represents the body of the
innermost loop and by properly orchestrating the control
flow between the BBs in the CDFG. Fig. 7(a) presents the
proposed compilation flow for CGRAs with software-based
loop implementation. The compilation process starts with
generating a CDFG representation of the kernel written in
C language, using a GCC plugin. The compiler selects each
BB in the CDFG and maps it onto the time-extended CGRA
model. If the chosen BB (represented as a DFG) corresponds
to the innermost loop body, mapping is done by the CREPE
module. The module takes the DFG and generates mappings
for MDFG, prologue, and epilogue DFGs formed by modulo-
scheduling the input DFG. The control flow between these
three DFGs is as depicted in Fig. 6(b). The BB that does the
terminating condition checking is mapped without applying
modulo-scheduling. The control flow restructuring module in
the compilation flow resets the control flow between these BBs
as shown in Fig. 8 and ensures proper execution of the kernel
code. Once all BBs are mapped, the compiler generates the
assembly code for the whole CDFG mapping. The assembler
converts the assembly code to a bitstream for the CGRA.

2) Proposed compilation flow for CGRAs supporting
hardware-based loop implementation: The baseline IPA com-
pilation flow that supports hardware-based loop execution [26]
is extended to include modulo-scheduling of the innermost
loop by CREPE as depicted in Fig. 7(b). The compilation flow
involves a cyclic-to-acyclic graph transformation, an illustra-
tion of which is given in Fig. 9. The transformation removes
the terminating condition-checking BB and the associated back
edge from the CDFG, reducing the innermost loop to a single
DFG, provided the loop has no control statements in the loop
body. The next step is the BB selection. If the selected BB
corresponds to the innermost loop, mapping is done by the
CREPE module. Every other BB is mapped by the scheduling
and placement module featured in the baseline compilation
flow [27]. The CREPE module generates mappings for MDFG,
prologue, and epilogue DFGs. The repeated execution of
MDFG is handled by the hardware. Once all BBs are mapped,
the compiler generates the assembly code and the assembler
generates the bitstream.

9

Modulo-scheduling
and placement & routing

by CREPE

Assembly code
generation

Scheduling and
placement & routing

Y

N

6

GCC
front-end

CGRA Model

C code CDFG

MDFG,
prologue and
epilogue mappings

Assembler bitstreamBB
selection

BB
representing

innermost loop
body ?

Last BB?
Y

N

Sw loop-specific
control flow
restructuring

(a)

DFG

Proposed compilation flow (a) for CGRAs supporting software-based loop implementation
(b) for CGRAs supporting hardware-based loop implementation;

DFG mapping

Scheduling and
placement & routing

Hw loop-specific
cyclic-to-acyclic

graph
transformation

N

GCC
front-end

CGRA Model

C code CDFG

Modulo-scheduling
and placement & routing

by CREPE MDFG,
prologue and
epilogue mappings

Assembly code
generation

Assembler bitstream
BB

selection
Innermost
loop BB?

Last BB?

DFG mapping

Y

N

Y

(b)

DFGCDFG

Fig. 7. Proposed compilation flow for (a) CGRAs supporting software-based loop implementation; (b) CGRAs supporting hardware-based loop implementation

MDFG (with loop
variable update)

loop variable
initialization

7

terminating
condition checking

outside of loop

Epilogue

Control flow restructuring to modulo-schedule software-based loops

Epilogue

Prologue

outside of loop

Epilogue
MDFG (with loop
variable update)

terminating
condition checking

Prologue

loop variable
initialization

loop variable
initialization

Fig. 8. Control flow restructuring in the compilation flow designed for
modulo-scheduling software-based loops

1

for (i=0; i<10; i++)
{

a[i]=0;
}

(a) (b) (c)

i=0;i=0;

i<10?

BB
outside loop

a[i]=0;
i=i+1;

a[i]=0;
i=i+1;

i=0;

BB
outside loop

Cdfg
trans
hw
loop

Fig. 9. (a) Sample for loop; (b) Corresponding CDFG; (c) CDFG after
hardware-loop-specific cyclic-to-acyclic graph transformation

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

The proposed mapping flow is fully automated through a
software tool implemented using Java and Eclipse Modeling
Framework (EMF). GCC is used to generate CDFGs from
applications described in C language. A GCC plugin is de-
veloped to parse the intermediate representation (IR) of GCC
and produce an equivalent IR in the Java world. Hence, all the
optimizations GCC offers are included in the transformation
including optimizations like function inlining. State-of-the-art
Integrated Programmable Array (IPA) [24] is considered as
the target CGRA. The IPA system is integrated into the PULP
cluster, a near-threshold tightly-coupled cluster of RI5CY

processors [28], as shown in Fig. 10. The SoC features a
multilevel memory hierarchy. Targeting low-power embedded
domains, an L1 scratchpad memory (TCDM) is employed
instead of a data cache. The TCDM (tightly coupled data
memory) is sized at 32 KB with 4 memory banks. The Global
context memory of IPA is sized at 4 KB to fit the configuration
data (i.e., instructions and constants). We consider 2× 4, and
4×4 configurations of IPA with each PE having a 64×21-bits
instruction memory, a 32 × 24-bits constant register file, and
a 8 × 32-bits regular register file. The DMA controller loads
data and instruction/context from the off-chip L2 memory.

All experiments have been performed on a post-placement-
and-routing netlist. Execution latency results are collected
using the cycle-accurate simulator, QuestaSim. Load and store
operations incur two cycles each without stall whereas arith-
metic operations (integer) take one cycle each.

The CGRA design is synthesized with Cadence Genus
Synthesis Solution using 90nm CMOS technology libraries at
17.5 MHz frequency, 0.9 V supply voltage, in typical process
conditions. Placement-and-routing is performed using Cadence
Innovus and power analysis is done with Cadence Voltus.
Energy results are computed using the switching activity
obtained by simulating the placement-and-routed netlist.

We analyze the efficiency of CREPE against the state-of-
the-art solutions, Epimap [7] and Crimson [9]. We chose
Epimap and Crimson as they exhibit superior performance
in terms of mapping quality and success rate respectively,
over the earlier methodologies, discussed in Section II. We
profiled a set of loop-intensive kernels including those from
PolyBench [29] benchmark suite to analyze the efficiency of
our approach. An extensive series of experiments is carried out
with varying DFG sizes, obtained by unrolling the innermost
loop DFG with different unroll factors. Table II presents the
kernel statistics, such as the iteration count of the kernel,
loop unroll factor, and the innermost loop DFG details such
as ASAP length and the number of operation nodes after
unrolling. #memnodes denotes the number of memory access
(load/store) nodes and #nodes represents the total number of
operation nodes including compute nodes and memory access

10

TABLE II
KERNEL STATISTICS

Kernel Max Iteration Count Unroll Factor ASAP Length #nodes #memnodes

syrk 64x64x64=262 144

2 5 13 4
4 7 23 8
8 11 43 16

16 19 83 32
32 35 163 64

gemm 64x64x64=262 144

2 5 13 4
4 7 23 8
8 11 43 16

16 19 83 32
32 35 163 64

bicg 32x32=1 024 2 5 21 11
4 7 37 19

2DConv 58x38x3x3=19 836
3

(1 loop full unroll) 5 15 6

9
(2 loops full unroll) 12 40 19

sobel 62x62x3x3=34 596
3

(1 loop full unroll) 5 15 6

9
(2 loops full unroll) 15 44 19

2DNon-sep 58x78x3x3 = 40 716
3

(1 loop full unroll) 5 15 6

9
(2 loops full unroll) 14 42 19

matrixMul 32x32x32=32 768
4 6 19 8
8 10 35 16

16 18 67 32

matrixAdd 32x32=1 024
4 3 18 12
8 3 34 24

16 3 66 48

histogram 80x60=4 800

4 4 18 8
6 4 26 12

10 4 42 20
15 4 62 30

RI5CY
#0

RI5CY
#7

DMUX DMUX

Instruction cache

Instruction bus

Sy
st

em
 B

us

P
er

ip
he

ra
l i

nt
er

co
nn

ec
t

Low latency interconnect

Bank
#0

Bank
#1

Bank
#15

IPA
integration

DMA
Cores

C
lu

st
er

 b
usD

C
 F

IF
OL2

Memory

Periph

L1
TCDM

…

…

…

Instruction
Cache

PE

PE PE PE PE

PE PE PE

PE PE PE PE

PE PE PE PE

T
C

D
M

RISC-V
CPU

PE PE with load/store unit (LSU) PE without LSUPE

Global
context
memory

DMA
controller

Cluster bus

L
ow

 l
at

en
cy

 i
nt

er
co

nn
ec

t

Peripheral
interconnect

IPA
controller

Fig. 10. IPA used as an accelerator in PULP SoC

nodes in the innermost loop DFG. The test cases are split into
three categories that involve DFGs with less than 40 nodes (15
DFGs), 40 to 60 nodes (6 DFGs), and greater than 60 nodes
(7 DFGs).

B. Performance results on IPA with software-based loop im-
plementation

This section gives a performance comparison of CREPE
with that of Epimap and Crimson in terms of mapping success
rate and quality of mapping, on a 2×4 PE array configuration
of IPA with 8 Load Store Units (LSUs).

0

20

40

60

80

100

<40 40-60 >60

Su
cc

es
s

R
at

e
(%

)

#nodes in DFG

Crimson Epimap CREPE

0

20

40

60

80

100

<40 40-60 >60

Su
cc

es
s

R
at

e
(%

)

#nodes in DFG

Crimson Epimap CREPE

17

(a) (b)

Fig. 11. Mapping success rate achieved by different approaches for varying
sizes of innermost loop DFG on (a) 2×4 and (b) 4×4 CGRAs

1) CREPE achieves 100% success rate in mapping DFGs
of varying sizes on constrained CGRA architectures (small
PE array): Fig. 11(a) presents the mapping success rates
achieved by the three techniques for varying sizes of the
innermost loop on a 2×4 CGRA. The success rate of an
approach is defined as the percentage of times the approach
finds a mapping solution. As done in Crimson experiments [9],
if a valid mapping cannot be found even after increasing II up
to 50 cycles, it is considered a mapping failure. The best of five
runs are considered to collect the mapping results to nullify
the effect of stochasticity in the placement process.

The results go with the findings of Crimson paper that
IMS-based modulo-scheduling techniques (like RAMP [12]
and Epimap) fail to explore the solution space efficiently and
they tend to generate schedules that are not mappable even
with increased II. Epimap could not map any of the kernels
with DFGs having more than 60 nodes and the success rate
reported for DFGs with 40 to 60 nodes is only 16.7%. Due
to the static scheduling with resource constraints, solution
space is limited as it often generates similar schedules with
increased II. Crimson that employs randomized-IMS [9] for
scheduling could map all kernels with less than 60 nodes in
the innermost loop DFG. However, the success rate is only
14.3% in the category of DFGs with more than 60 nodes.
As the DFG size increases randomized scheduling either fails
to explore huge solution space efficiently or finds increased
II with unnecessary static graph transformations. We discuss
the effect of graph transformations in the later sections as
well. Thanks to the simultaneous backward modulo-scheduling
and placement approach, the proposed technique, CREPE can
efficiently traverse the solution space and find valid mappings
for all the different sizes of DFGs.

2) CREPE reports the least IIs and execution latencies for
all kernels: Table III presents a comparison of the effective
II values achieved by different approaches against MII for the
considered kernels. An effective II is different from the map-
ping II in that the effective II value denotes the actual number
of cycles between the launch of two consecutive iterations of
the MDFG. This includes the cycles spent in implementing
the loop control flow. Symbol X in the results table denotes
a mapping failure. CREPE achieved lower IIs compared to
Crimson and Epimap for all kernels. Table IV gives the total
execution latencies reported by Crimson, Epimap, and CREPE.
In this comparison, we included only those kernels for which
at least two of the techniques could find a mapping solution. It
is observed that CREPE reports the least execution latency for
all the kernels. It achieves an average of 1.4× and a maximum
of 3.6× speed-up over Crimson, the technique that could map
a comparable number of kernels.

C. Performance results on IPA with hardware-based loop
implementation

In this section, we analyse the efficiency of our technique
against Crimson and Epimap on CGRAs with hardware loop
support. The results reflect the combined effect of modulo-
scheduling and hardware-based loop implementation.

11

TABLE III
COMPARISON OF II (CYCLES) ACHIEVED BY CRIMSON, EPIMAP AND CREPE AGAINST MINIMUM INITIATION INTERVAL (MII) FOR VARIOUS KERNELS ON

A 2×4 CGRA THAT EMPLOYS SOFTWARE-BASED LOOP IMPLEMENTATION

Kernel syrk gemm bicg 2DConv sobel 2DNon-sep matrixMul matrixAdd histogram
Unroll Factor 2 4 8 16 32 2 4 8 16 32 2 4 3 9 3 9 3 9 4 8 16 4 8 16 4 6 10 15
Crimson 6 9 15 X X 6 9 14 X X 8 11 6 20 6 30 7 24 8 12 X 7 10 X 7 9 11 15
Epimap 6 7 X X X 6 8 X X X 8 X 7 X 6 X 7 X 7 14 X 7 8 X 7 7 9 X
CREPE 5 7 11 19 35 5 7 11 19 35 6 9 6 8 6 7 6 9 7 11 19 6 8 12 6 7 9 11
MII 2 4 8 16 32 2 4 8 32 32 3 5 3 5 3 6 3 6 4 8 16 3 5 9 3 4 4 8

TABLE IV
TOTAL EXECUTION LATENCY (CYCLES) REPORTED ON A 2×4 CGRA WITH SOFTWARE-BASED LOOP IMPLEMENTATION

Kernel syrk gemm bicg 2DConv sobel 2DNon-sep matrixMul matrixAdd histogram
Unroll Factor 2 4 8 2 4 8 2 4 3 9 3 9 3 9 4 8 4 8 4 6 10 15
Crimson 1 098 705 988 164 824 392 1 102 801 861 188 832 592 8 088 5 803 94 066 72 145 89 386 247 565 114 994 285 087 137 954 129 830 4 064 3 477 14 456 14 322 10 284 9 721
Epimap 1 098 739 796 020 - 1 102 835 815 796 - 7 488 - 94 618 - 89 394 - 114 564 - 114 179 146 778 4 305 3 111 13 908 11 105 9 027 -
CREPE 984 026 791 539 715 823 979 938 795 652 713 817 6 520 4 890 90 168 34 230 89 352 69 535 104 968 85 542 112 346 97 070 3 296 3 084 11 968 8 882 8 453 6 993

TABLE V
COMPARISON OF II (CYCLES) ACHIEVED BY DIFFERENT APPROACHES AGAINST MINIMUM INITIATION INTERVAL (MII) ON 2×4 AND 4×4 CGRAS WITH

HARDWARE-BASED LOOP IMPLEMENTATION

II Achieved on 2x4 CGRA with 8 LSUs
Kernel syrk gemm bicg 2DConv sobel 2DNon-sep matrixMul matrixAdd histogram
Unroll Factor 2 4 8 16 32 2 4 8 16 32 2 4 3 9 3 9 3 9 4 8 16 4 8 16 4 6 10 15
Crimson 3 5 11 X X 3 6 11 X X 5 15 4 18 3 30 4 34 4 9 X 4 12 X 4 5 11 12
Epimap 3 4 X X X 3 5 X X X 5 X 4 X 4 X 4 X 4 12 X 4 6 X 4 4 6 X
CREPE 2 4 8 16 32 2 4 8 16 32 3 6 3 6 3 7 3 6 4 8 16 3 6 9 3 4 6 8
MII 2 4 8 16 32 2 4 8 16 32 3 5 3 5 3 6 3 6 4 8 16 3 5 9 3 4 4 8

II Achieved on 4x4 CGRA with 8 LSUs
Kernel syrk gemm bicg 2DConv sobel 2DNon-sep matrixMul matrixAdd histogram
Unroll Factor 2 4 8 16 32 2 4 8 16 32 2 4 3 9 3 9 3 9 4 8 16 4 8 16 4 6 10 15
Crimson 2 4 10 X X 2 4 8 X X 3 X 3 15 3 21 3 22 4 10 X 3 5 X 2 4 5 15
Epimap 2 4 9 X X 2 4 9 X X 4 X 3 X 3 X 3 X 4 12 X 3 4 X 2 4 5 8
CREPE 2 4 8 16 32 2 4 8 16 32 3 6 3 4 3 4 3 4 4 8 16 2 4 9 2 2 4 8
MII 2 4 8 16 32 2 4 8 16 32 3 5 3 3 3 3 3 4 4 8 16 2 3 5 2 2 3 4

0

20

40

60

80

100

120

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

2 4

0

20

40

60

80

100

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

2 4 8 16 32

0

10

20

30

40

50

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

4 8 16

21

T
L

oo
p

(c
yc

le
s)

0

500

1000

1500

2000

2500

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

3 9

0

500

1000

1500

2000

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

3 9

0

20

40

60

80

100

120

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

2 4 8 16 32

0

175

350

525

700

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

3 9

0

10

20

30

40

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

4 8 16

0

10

20

30

40

50

60

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

4 6 10 15

Unroll Factor

II part - Crimson Schedule Length part - Crimson

II part - Epimap Schedule Length part - Epimap

II part - CREPE Schedule Length part - CREPE

syrk gemm bicg 2DConv sobel 2DNon-sep matrixMul matrixAdd histogram

Fig. 12. Comparison of innermost loop latency (TLoop) achieved by different approaches on a 2×4 CGRA

1) CREPE achieves the optimum II (MII) for majority
of the kernels and the least schedule lengths for all kernels
in the comparison: The comparison of II values (expressed
in cycles) achieved by Crimson, Epimap, and CREPE against
MII is presented in Table V. A mapping failure is denoted
by the symbol X in the table and the same is highlighted
in red colour. CREPE generates mappings with the least IIs
compared to Crimson and Epimap for all kernels. In the
case of CGRAs that implement loop control on hardware,
mapping II and effective II are the same, making it possible
to achieve an effective II equal to the MII. The proposed
approach achieves an II equal to MII (highlighted in green
colour) for 82% of the kernels on 2×4 CGRA. On the other
hand, Crimson and Epimap could achieve this for only 7%

of the kernels. We discuss the performance results for 4 × 4
CGRA in section IV-C4.

Theoretical values of innermost loop execution latency
(TLoop) are computed by using equation (1). Results are given
in Fig. 12 with II part and schedule length part stacked in
each bar. Among the three approaches, CREPE reports the
least schedule lengths and IIs, and consequently the least
execution latencies. The TLoop charts support the claim that
the schedule length for one iteration of the innermost loop has
a significant role in determining the execution latencies. It is
also observed that the impact of schedule length grows with
the unroll factor, except for 2DConv, sobel, and 2DNon-sep
kernels. This is because, by partially unrolling the loop, the
iteration count decreases with the increasing unroll factors.

12

0

10

20

30

40

50

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

4 8 16

22

0

20

40

60

80

100

120

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

2 4 8 16 32

0

10

20

30

40

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

4 8 16

0

20

40

60

80

100

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

2 4 8 16 32

0

175

350

525

700

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

3 9

0

500

1000

1500

2000

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

3 9

0

10

20

30

40

50

60

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

4 6 10 15

Unroll Factor

0

500

1000

1500

2000

2500

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

3 9

T
L

oo
p

(c
yc

le
s)

(b)

0

20

40

60

80

100

120

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

C
ri

m
so

n
E

pi
m

ap
C

R
E

P
E

2 4

II part - Crimson Schedule Length part - Crimson

II part - Epimap Schedule Length part - Epimap

II part - CREPE Schedule Length part - CREPE

4x4 TLoop

syrk gemm bicg 2DConv sobel 2DNon-sep matrixMul matrixAdd histogram

Fig. 13. Comparison of innermost loop latency (TLoop) achieved by different approaches on a 4×4 CGRA

As discussed in section II, schedule length becomes more
important when the innermost loop iteration count gets smaller.
In the case of 2DConv, sobel, and 2DNon-sep kernels, two
innermost loops are fully unrolled with a factor of 9. Hence,
the resulting innermost loops with iteration counts 38, 62, and
78 respectively are the ones that got modulo-scheduled. Here,
the innermost loop iteration counts are not small anymore
compared to the number of iterations of the outermost loop.
Consequently, II becomes more significant in the execution
latency figures, compared to the schedule length.

The concurrent reverse-modulo-scheduling and placement
approach, coupled with dynamic graph transformation helped
CREPE track the dependencies in the DFG accurately and
avoid unnecessary graph transformations. This led to the
generation of good-quality mappings with lower execution
latencies than the state-of-the-art works that follow the static
graph transformation and schedule-then-place approach, in less
compilation time. Table VIII presents the average number
of graph transformations performed by each approach for
different configurations. It can be noted that our approach
keeps the number of graph transformations under control,
which helps in managing the scalability. CREPE follows a
”highly adaptable” approach by dynamic transformation vs
”less adaptable” static graph transformation in state-of-the-
art methods in the context of finding valid and good-quality
mappings. Hence, the proposed method is agile in exploring
architectural space and finding high-quality mappings with
limited resources. Considering the kernels for which all three
approaches could find a mapping solution, the average com-
pilation time reported by Crimson, Epimap, and CREPE is
48.9 sec, 41.1 sec, and 38.2 sec respectively. The average
compilation time that Epimap reported is found to be less
than that of Crimson and CREPE since it could not map large
DFGs which incur more time for mapping.

2) CREPE achieves up to 5.9× speed-up over Crimson:
Table VI compares the total execution latencies reported by
Crimson, Epimap, and CREPE on a 2×4 CGRA with 8
LSUs. As seen in Table V, Crimson failed to map kernels
with very large DFGs and Epimap could not map even those
kernels that Crimson mapped while the proposed CREPE
technique mapped all kernels. The kernels for which at least
two techniques could find a mapping solution are considered
in this comparison. It is observed that CREPE reports the least
execution latency among the three approaches, for all kernels
and achieves up to 5.9× and 1.4× speed-up over Crimson and
Epimap respectively.

3) The high-quality mapping generated by CREPE results
in reduced energy consumption compared to Crimson and
Epimap: The energy consumption (µJ) results by different
approaches on a 2×4 CGRA are presented in Table VII. Re-
sults include the energy spent on the entire PE array including
the LSUs interfacing with TCDM and the interconnects used
for data transfer between PEs. As in the case of execution
latency, we presented only the results for those kernels that are
mapped by at least two of the three techniques we consider.
Results confirm that CREPE achieves a considerable reduction
in energy consumption compared to Crimson and Epimap by
generating mappings with better IIs and schedule lengths.

4) CREPE explores the solution space better: We have
seen that CREPE generates mappings that lead to good per-
formance results on a small CGRA with 2×4 PE array as well
as large application graphs where the conventional modulo-
scheduling techniques fail to find a mapping or map at very
high IIs and latencies. Next, we analyze how well CREPE as
well as the other two techniques we consider perform on a
larger CGRA, by choosing an IPA implementation with 4×4
PE array and 8 LSUs for our experiments.

Fig. 11(b) presents the mapping success rate achieved by
Crimson, Epimap, and CREPE on a 4×4 CGRA. Crimson
mapped all kernels with less than 60 nodes in the innermost
loop DFG. Epimap could map only 50% for DFGs with 40 to
60 nodes, and 93.3% of the DFGs with less than 40 nodes. For
the DFGs with more than 60 nodes, the mapping success rate
of both Crimson and Epimap is as low as 14.3%. As expected,
CREPE achieved a 100% success rate in all categories. The
comparison of II values achieved is presented in Table V
and the estimated innermost loop execution latency is given
in Fig. 13 with II part and schedule length part stacked in
each bar. Table V shows that for some cases CREPE achieves
similar II for 2 × 4 and 4 × 4 CGRA. Furthermore, most
of these IIs are similar to MII. Crimson and EpiMap find
the same solutions only for 4 × 4 configuration. As a result,
the state-of-the-art methods require increased compilation time
with a greater area footprint to achieve similar performance.
This degrades the area and energy efficiency. These methods
are unable to find solutions with fewer resources in contrast to
CREPE due to inefficient solution space exploration. Further,
CREPE improved its performance on 4×4 CGRA for DFGs
(like matrix addition and histogram equalization) of which
the MII is determined by resource constraints, confirming that
CREPE scales well with resources.

Table VIII gives the average number of graph transforma-

13

TABLE VI
EXECUTION LATENCY (CYCLES) FOR DIFFERENT APPROACHES ON 2×4 AND 4×4 CGRAS WITH HARDWARE-BASED LOOP IMPLEMENTATION

Total Execution Latency Reported on 2x4 CGRA with 8 LSUs
Kernel syrk gemm bicg 2DConv sobel 2DNon-sep matrixMul matrixAdd histogram
Unroll Factor 2 4 8 2 4 8 2 4 3 9 3 9 3 9 4 8 4 8 4 6 10 15
Crimson 721 075 537 579 601 640 721 832 733 156 607 272 6 976 7 586 71 426 126 938 114 654 302 851 127 553 467 892 64 218 66 334 3 392 3 773 10 928 9 170 9 669 9 321
Epimap 594 865 476 123 - 590 835 537 572 - 6 047 - 69 216 - 123 930 - 154 672 - 66 009 74 808 3 512 2 643 9 488 7 180 6 827 -
CREPE 586 730 467 922 549 903 588 961 472 043 490 535 5 631 4 483 58 134 42 022 103 904 70 839 118 471 79 662 63 170 61 814 2 464 2 428 8 528 6 616 6 827 5 910

Total Execution Latency Reported on 4x4 CGRA with 8 LSUs
Kernel syrk gemm bicg 2DConv sobel 2DNon-sep matrixMul matrixAdd histogram
Unroll Factor 2 4 8 2 4 8 2 4 3 9 3 9 3 9 4 8 4 8 4 6 10 15
Crimson 459 896 468 140 594 655 447 843 598 107 500 878 5 357 8 309 64 801 119 698 127 837 212 851 118 530 312 451 66 169 70 561 2 973 2 786 7 917 7 975 7 373 12 433
Epimap 458 896 533 518 560 304 594 983 609 634 559 784 6 539 - 62 703 - 116 275 - 127 620 - 65 299 74 808 2 992 2 584 7 349 8 289 7 382 5 376
CREPE 453 867 455 468 549 903 437 963 472 043 490 535 5 112 4 483 56 103 40 816 102 495 44 112 117 610 57 422 61 321 61 814 2 119 2 106 7 307 5 400 5 948 5 153

TABLE VII
COMPARISON OF ENERGY (µJ) CONSUMED BY DIFFERENT APPROACHES ON 2×4 AND 4×4 CGRAS WITH HARDWARE-BASED LOOP IMPLEMENTATION

Energy Consumption Reported on 2x4 CGRA with 8 LSUs
Kernel syrk gemm bicg 2DConv sobel 2DNon-sep matrixMul matrixAdd histogram
Unroll Factor 2 4 8 2 4 8 2 4 3 9 3 9 3 9 4 8 4 8 4 6 10 15
Crimson 209.62 168.53 188.61 209.84 229.84 190.38 2.03 2.38 22.39 39.80 35.94 94.94 39.99 146.68 18.67 20.80 1.06 1.18 3.24 2.72 3.09 2.98
Epimap 172.93 149.26 - 171.76 168.53 - 1.76 - 21.70 - 38.85 - 48.49 - 19.19 23.45 1.10 0.83 2.81 2.13 2.18 -
CREPE 170.56 146.69 172.39 171.21 147.99 153.78 1.64 1.41 18.23 13.17 32.57 22.21 37.14 24.97 18.36 19.38 0.77 0.76 2.48 1.96 2.14 1.89

Energy Consumption Reported on 4x4 CGRA with 8 LSUs
Kernel syrk gemm bicg 2DConv sobel 2DNon-sep matrixMul matrixAdd histogram
Unroll Factor 2 4 8 2 4 8 2 4 3 9 3 9 3 9 4 8 4 8 4 6 10 15
Crimson 239.07 243.36 309.13 226.42 315.01 263.80 2.82 4.38 34.13 63.04 67.33 112.10 59.79 164.56 33.38 35.59 1.50 1.41 4.00 4.03 3.73 6.29
Epimap 232.01 269.74 283.28 300.82 311.00 285.57 3.34 - 31.99 - 59.32 - 64.38 - 32.94 37.74 1.51 1.31 3.72 4.19 3.85 2.72
CREPE 229.47 230.28 278.03 221.43 238.66 248.01 2.58 2.27 28.37 20.64 51.82 22.30 59.33 29.03 30.93 31.18 1.07 1.06 3.69 2.73 3.01 2.61

TABLE VIII
COMPARISON BETWEEN THE NUMBER OF GRAPH TRANSFORMATIONS

PERFORMED BY DIFFERENT APPROACHES

Average No. of Transformed Nodes on 2x4 CGRA
#nodes in DFG <40 40-60 >60
Crimson 41 156 151
Epimap 15 8 X
CREPE 1 1 2
Average No. of Transformed Nodes on 4x4 CGRA
#nodes in DFG <40 40-60 >60
Crimson 38 164 156
Epimap 19 50 4
CREPE 1 1 2

tions performed by each approach. The results testify that
CREPE limits graph transformations to unavoidable situations.
The average compilation time reported by Crimson, Epimap,
and CREPE in generating mappings for 4×4 CGRA config-
uration is 228.4 sec, 73.5 sec, and 132.2 sec respectively.
Table VI and Table VII respectively present a comparison
of the total execution latencies and energy consumption (µJ)
results reported by the three techniques. As in the case of
2×4 CGRA, CREPE reports the least execution latencies and
energy consumption among the three approaches.

V. CONCLUSION

In this paper, we proposed an efficient mapping technique
for CGRAs, named CREPE. Most of the existing techniques
follow a schedule-then-place policy, perform placement by
forward traversing the DFG, and employ static graph trans-
formation. Such an approach often cannot analyze data de-

pendency accurately and results in either a mapping failure
or unnecessary graph transformations that affect the execu-
tion latency. CREPE performs simultaneous reverse-modulo-
scheduling and placement, coupled with dynamic graph trans-
formation that enables it to generate good-quality mappings
with high success rates. We also introduced a compilation flow
that maps arbitrarily nested loops onto the CGRA and modulo-
schedules the innermost loop using CREPE. We presented the
compilation flow that supports hardware-based and software-
based loop implementations for CGRAs.

Experimental results show that i) the proposed CREPE tech-
nique finds a mapping solution on constrained architectures
as well as large application graphs where the conventional
modulo-scheduling techniques fail to find a mapping or map
at very high IIs and latencies. It reported a 100% mapping
success rate for DFGs of varying sizes including those with
more than 60 nodes where Crimson and Epimap failed to find
mapping solutions for large DFGs. ii) CREPE outperforms
the state-of-the-art solutions in terms of II, schedule length,
execution latency, and energy efficiency with no impact on
the compilation time. The agile mapping approach proposed
in this paper explored the architectural space better, thanks
to its ability to find accurate dependencies in the DFG, and
resulted in good-quality mappings with fewer resources.

REFERENCES

[1] L. Liu, J. Zhu, Z. Li, Y. Lu, Y. Deng, J. Han, S. Yin, and S. Wei,
“A survey of coarse-grained reconfigurable architecture and design:
Taxonomy, challenges, and applications,” ACM Comput. Surv., vol. 52,
no. 6, Oct. 2019. [Online]. Available: https://doi.org/10.1145/3357375

[2] A. Podobas, K. Sano, and S. Matsuoka, “A survey on coarse-grained
reconfigurable architectures from a performance perspective,” IEEE
Access, vol. 8, pp. 146 719–146 743, 2020.

https://doi.org/10.1145/3357375

14

[3] Z. Li, D. Wijerathne, and T. Mitra, “Coarse grained reconfigurable array
cgra,” Book Chapter in Springer Handbook of Computer Architecture,
2022.

[4] K. J. M. Martin, “Twenty years of automated methods for mapping ap-
plications on cgra,” in 2022 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). IEEE, 2022, pp. 679–
686.

[5] K. Choi, “Coarse-grained reconfigurable array: Architecture and appli-
cation mapping,” IPSJ Transactions on System LSI Design Methodology,
vol. 4, pp. 31–46, 2011.

[6] J. a. M. P. Cardoso, P. C. Diniz, and M. Weinhardt, “Compiling for
reconfigurable computing: A survey,” ACM Comput. Surv., vol. 42, no. 4,
Jun. 2010. [Online]. Available: https://doi.org/10.1145/1749603.1749604

[7] M. Hamzeh, A. Shrivastava, and S. Vrudhula, “Epimap: Using epimor-
phism to map applications on cgras,” in Proceedings of the 49th Annual
Design Automation Conference, 2012, pp. 1284–1291.

[8] B. R. Rau, “Iterative modulo scheduling: An algorithm for software
pipelining loops,” in Proceedings of the 27th annual international
symposium on Microarchitecture, 1994, pp. 63–74.

[9] M. Balasubramanian and A. Shrivastava, “Crimson: Compute-intensive
loop acceleration by randomized iterative modulo scheduling and op-
timized mapping on cgras,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 39, no. 11, pp. 3300–
3310, 2020.

[10] M. Hamzeh, A. Shrivastava, and S. Vrudhula, “Regimap: Register-
aware application mapping on coarse-grained reconfigurable architec-
tures (cgras),” in Proceedings of the 50th Annual Design Automation
Conference, 2013, pp. 1–10.

[11] L. Chen and T. Mitra, “Graph minor approach for application mapping
on cgras,” ACM Transactions on Reconfigurable Technology and Systems
(TRETS), vol. 7, no. 3, pp. 1–25, 2014.

[12] S. Dave, M. Balasubramanian, and A. Shrivastava, “Ramp: Resource-
aware mapping for cgras,” in Proceedings of the 55th Annual Design
Automation Conference, 2018, pp. 1–6.

[13] B. Yuan, J. Zhu, X. Man, Z. Ma, S. Yin, S. Wei, and L. Liu, “Dynamic-ii
pipeline: Compiling loops with irregular branches on static-scheduling
cgra,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 41, no. 9, pp. 2929–2942, 2021.

[14] M. Balasubramanian and A. Shrivastava, “Pathseeker: a fast mapping
algorithm for cgras,” in 2022 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2022, pp. 268–273.

[15] C. Tirelli, L. Ferretti, and L. Pozzi, “Sat-mapit: A sat-based modulo
scheduling mapper for coarse grain reconfigurable architectures,” in
2023 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2023, pp. 1–6.

[16] J. Gu, S. Yin, L. liu, and S. Wei, “Stress-aware loops mapping on
cgras with dynamic multi-map reconfiguration,” IEEE Transactions on
Parallel and Distributed Systems, vol. 29, no. 9, pp. 2105–2120, 2018.

[17] Z. Zhao, W. Sheng, Q. Wang, W. Yin, P. Ye, J. Li, and Z. Mao, “Towards
higher performance and robust compilation for cgra modulo scheduling,”
IEEE Transactions on Parallel and Distributed Systems, vol. 31, no. 9,
pp. 2201–2219, 2020.

[18] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins,
“Exploiting loop-level parallelism on coarse-grained reconfigurable ar-
chitectures using modulo scheduling,” in 2003 Design, Automation and
Test in Europe Conference and Exhibition, 2003, pp. 296–301.

[19] M. Karunaratne, A. K. Mohite, T. Mitra, and L.-S. Peh, “Hycube: A cgra
with reconfigurable single-cycle multi-hop interconnect,” in Proceedings
of the 54th Annual Design Automation Conference 2017, ser. DAC ’17.
New York, NY, USA: Association for Computing Machinery, 2017.
[Online]. Available: https://doi.org/10.1145/3061639.3062262

[20] H. Park, K. Fan, S. A. Mahlke, T. Oh, H. Kim, and H.-s. Kim, “Edge-
centric modulo scheduling for coarse-grained reconfigurable architec-
tures,” in Proceedings of the 17th international conference on Parallel
architectures and compilation techniques, 2008, pp. 166–176.

[21] G. Levi, “A note on the derivation of maximal common subgraphs of
two directed or undirected graphs,” Calcolo, vol. 9, no. 4, pp. 341–352,
1973.

[22] T. Peyret, G. Corre, M. Thevenin, K. J. M. Martin, and P. Coussy,
“Efficient application mapping on cgras based on backward simulta-
neous scheduling/binding and dynamic graph transformations,” in 2014
IEEE 25th International Conference on Application-Specific Systems,
Architectures and Processors, 2014, pp. 169–172.

[23] B. R. Rau, M. S. Schlansker, and P. P. Tirumalai, “Code generation
schema for modulo scheduled loops,” ACM SIGMICRO Newsletter,
vol. 23, no. 1-2, pp. 158–169, 1992.

[24] S. Das, K. J. Martin, D. Rossi, P. Coussy, and L. Benini, “An energy-
efficient integrated programmable array accelerator and compilation
flow for near-sensor ultralow power processing,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 38,
no. 6, pp. 1095–1108, 2018.

[25] J. Stanier and D. Watson, “Intermediate representations in imperative
compilers: A survey,” ACM Computing Surveys (CSUR), vol. 45, no. 3,
pp. 1–27, 2013.

[26] C. Sunny, S. Das, K. J. M. Martin, and P. Coussy, “Hardware based
loop optimization for cgra architectures,” in Applied Reconfigurable
Computing. Architectures, Tools, and Applications: 17th International
Symposium, ARC 2021, Virtual Event, June 29–30, 2021, Proceedings.
Springer, 2021, pp. 65–80.

[27] S. Das, K. J. M. Martin, P. Coussy, D. Rossi, and L. Benini, “Efficient
mapping of cdfg onto coarse-grained reconfigurable array architectures,”
in 2017 22nd Asia and South Pacific Design Automation Conference
(ASP-DAC). IEEE, 2017, pp. 127–132.

[28] D. Rossi, A. Pullini, I. Loi, M. Gautschi, F. K. Gürkaynak, A. Teman,
J. Constantin, A. Burg, I. Miro-Panades, E. Beignè et al., “Energy-
efficient near-threshold parallel computing: The pulpv2 cluster,” Ieee
Micro, vol. 37, no. 5, pp. 20–31, 2017.

[29] L.-N. Pouchet and S. Grauer-Gray, “Polybench: The polyhe-
dral benchmark suite, 2012,” URL http://www-roc. inria. fr/˜
pouchet/software/polybench, 2012.

Chilankamol Sunny is currently pursuing the Ph.D.
degree in Computer Science at Indian Institute of
Technology (IIT) Palakkad, Kerala, India. Her re-
search interests include computer architecture, com-
pilers, reconfigurable computing and low-power sys-
tem design.

Satyajit Das is an Assistant Professor in the Depart-
ment of Data Science, and Computer Science and
Engineering at IIT Palakkad. He received his joint
Ph.D. degree from the University of South Brittany,
France, and the University of Bologna, Italy. Prior to
joining IIT Palakkad, he was a postdoctoral fellow
at Lab-STICC, UBS. His research spans the areas
of Systems for AI, architecture, methods, and tools
for low power systems, including CGRAs, custom
processors, multi-cores, high-level synthesis, and
compilers. The main focus of Dr. Das’s research

is to implement highly energy-efficient solutions for digital architectures in
the domain of heterogeneous and reconfigurable multi-core System on Chips
(SoCs).

Kevin J. M. Martin received a M.S. degree in
electrical and computer engineering in 2004 and a
PhD in computer science in 2010 from the Universite
de Rennes, France. He is since 2011 an associate
professor at Universite Bretagne-Sud in Lorient,
France, in the Lab-STICC. His research interests
stand at the crossing point between architecture,
methods and tools, including but not limited to: cus-
tom processors, CGRA, multi-processor platforms,
high-level synthesis, computer-aided design tools,
compilers and software engineering.

https://doi.org/10.1145/1749603.1749604
https://doi.org/10.1145/3061639.3062262

15

Philippe Coussy is a full professor at the Université
de Bretagne-Sud, France. He is Deputy-head of
the Lab-STICC (UMR CNRS). He has been Vice-
head of the Doctoral School Math-STIC, Head of
the Master program in Electrical and Computer
Engineering and Head of the Lab-STICC CACS
Department. He is an elected member of the techni-
cal committee of the IEEE DISPS since 2011. His
research interests include High-Level Synthesis and
Coarse Grained Reconfigurable Architectures. He
has organized several conferences, workshops and

tutorials. He was guest editor for several special issues of scientific journals
and co-editor of two books (Springer). He regularly serves as a (inter)national
scientific expert and participates as PC member/ reviewer in many ACM/IEEE
conferences/journals. He is Associate Editor of the IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD) and he
has been Associate Editor of the IEEE Signal Processing Letters (2013-2017).

	Introduction
	Background and Motivation
	Proposed Approach
	Concurrent Reverse-modulo-scheduling and Placement (CREPE) Technique
	CREPE Algorithm Overview
	MDFG Mapping
	Prologue and Epilogue Mapping
	Computational Complexity
	Running Example

	Compilation Flow
	Proposed compilation flow for CGRAs supporting software-based loop implementation
	Proposed compilation flow for CGRAs supporting hardware-based loop implementation

	Experiments And Results
	Experimental Setup
	Performance results on IPA with software-based loop implementation
	CREPE achieves 100% success rate in mapping DFGs of varying sizes on constrained CGRA architectures (small PE array)
	CREPE reports the least IIs and execution latencies for all kernels

	Performance results on IPA with hardware-based loop implementation
	CREPE achieves the optimum II (MII) for majority of the kernels and the least schedule lengths for all kernels in the comparison
	CREPE achieves up to 5.9 speed-up over Crimson
	The high-quality mapping generated by CREPE results in reduced energy consumption compared to Crimson and Epimap
	CREPE explores the solution space better

	Conclusion
	References
	Biographies
	Chilankamol Sunny
	Satyajit Das
	Kevin J. M. Martin
	Philippe Coussy

