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Abstract

Recently, due to the popularity of deep neural networks and other methods whose training

typically relies on the optimization of an objective function, and due to concerns for data privacy,

there is a lot of interest in differentially private gradient descent methods. To achieve differential

privacy guarantees with a minimum amount of noise, it is important to be able to bound precisely

the sensitivity of the information which the participants will observe. In this study, we present a

novel approach that mitigates the bias arising from traditional gradient clipping. By leveraging a

public upper bound of the Lipschitz value of the current model and its current location within the

search domain, we can achieve refined noise level adjustments. We present a new algorithm with

improved differential privacy guarantees and a systematic empirical evaluation, showing that our

new approach outperforms existing approaches also in practice.

Keywords: Machine Learning, Differential Privacy, Optimization.

1 Introduction

While machine learning allows for extracting statistical information from data with both high economical

and societal value, there is a growing awareness of the risks for data privacy and confidentiality.

Differential privacy Dwork and Roth (2013) has emerged as an important metric for studying statistical

privacy.

Due to the popularity of deep neural networks (DNNs) and similar models, one of the recently

most trending algorithmic techniques in machine learning has been stochastic gradient descent (SGD),

which is a technique allowing for iteratively improving a candidate model using the gradient of the

objective function on the data.

A popular class of algorithms to realize differential privacy while performing SGD is the DP-SGD

algorithm Abadi et al. (2016) and its variants. Essentially, these algorithms iteratively compute

gradients, add differential privacy noise, and use the noisy gradient to update the model. To determine

the level of differential privacy achieved, one uses an appropriate composition rule to bound the total

information leaked in the several iterations.

To achieve differential privacy with a minimum amount of noise, it is important to be able to bound

precisely the sensitivity of the information which the participants will observe. One approach is to

bound the sensitivity of the gradient by assuming the objective function is Lipschitz continuous Bassily

et al. (2014). Various improvements exist in the case one can make additional assumptions about

the objective function. For example, if the objective function is strongly convex, one can bound the

number of iterations needed and in that way avoid to have to distribute the available privacy budget

over too many iterations Bassily et al. (2019). In the case of DNN, the objective function is not convex

and typically not even Lipschitz continuous. Therefore, a common method is to ’clip’ contributed
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gradients Abadi et al. (2016), i.e., to divide gradients by the maximum possible norm they may get.

These normalized gradients have bounded norm and hence bounded sensitivity.

In this paper, we argue that gradient clipping may not lead to optimal statistical results (see

Section 4), and we propose instead to use weight clipping, an idea suggested in Ziller et al. (2021) but

to the best of our knowledge not investigated yet in depth. Moreover, we also propose to consider

the maximum gradient norm given the current position in the search space rather than the global

maximum gradient norm, as this leads to additional advantages. In particular, our contributions are as

follows:

• We introduce an novel approach, applicable to any feed-forward neural network, to compute

gradient sensitivity that when applied in DP-SGD eliminates the need for gradient clipping. This

strategy bridges the gap between Lipschitz-constrained neural networks and DP.

• We present a new algorithm, Lip-DP-SGD, that enforces bounded sensitivity of the gradients We

argue that our approach, based on weight clipping, doesn’t suffer from the bias which the classic

gradient clipping can cause.

• We present an empirical evaluation, confirming that on a range of popular datasets our proposed

method outperforms existing ones.

The remainder of this paper is organized as follows. First, we review a number of basic concepts,

definitions and notations in Section 2. Next, we present our new method in Section 3 and present an

empirical evaluation in Section 4. We discuss related work in Section 5. Finally, we provide conclusions

and directions for future work in Section 6.

2 Preliminaries and background

In this section, we briefly review differential privacy, empirical risk minimization (ERM) and differentially

private stochastic gradient descent (DP-SGD).

We will denote the space of all possible instances by Z and the space of all possible datasets by Z∗.

We will denote by [N ] = {1 . . . N} the set of the N smallest positive integers.

2.1 Differential Privacy

An algorithm is differentially private if even an adversary who knows all but one instances of a dataset

can’t distinguish from the output of the algorithm the last instance in the dataset. More formally:

Definition 1 (adjacent datasets). We say two datasets Z1, Z2 ∈ Z∗ are adjacent, denoted Z1 ∼ Z2,

if they differ in at most one element. We denote by Z∗∼ the space of all pairs of adjacent datasets.

Definition 2 (differential privacy Dwork and Roth (2013)). Let ε > 0 and δ > 0. Let

A : Z∗ → O be a randomized algorithm taking as input datasets from Z∗. The algorithm A is

(ε, δ)-differentially private ((ε, δ)-DP) if for every pair of adjacent datasets (Z1, Z2) ∈ Z∗∼, and for

every subset S ⊆ O of possible outputs of A, P (A(Z1) ⊆ S) ≤ eεP (A(Z2) ⊆ S) + δ. If δ = 0 we also

say that A is ε-DP.

If the output of an algorithm A is a real number or a vector, it can be privately released thanks to

differential privacy mechanisms such as the Laplace mechanism or the Gaussian mechanism Dwork

et al. (2006). While our ideas are more generally applicable, in this paper we will focus on the Gaussian

mechanism as it leads to simplier derivations. In particular, the Gaussian mechanism adds Gaussian

noise to a number or vector which depends on its sensitivity on the input.
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Definition 3 (sensitivity). The `2-sensitivity of a function f : Z → Rp is

s2(f) = max
Z1,Z2∈Z∗∼

‖f(Z1)− f(Z2)‖2

Lemma 4 (Gaussian mechanism). Let f : Z → Rp be a function. The Gaussian mechanism

transforms f into f̂ with f̂(Z) = f(Z) + b where b ∼ N (0, σ2Ip) ∈ Rp is Gaussian distributed noise. If

the variance satisfies σ2 ≥ 2 ln(1.25/δ)(s2(f))2/ε2, then f̂ is (ε, δ)-DP.

2.2 Empirical risk minimization

Unless made explicit otherwise we will consider databases Z = {zi}ni=1 containing n instances zi =
(xi, yi) ∈ X × Y with X = Rp and Y = {0, 1} sampled identically and independently (i.i.d.) from an
unknown distribution on Z. We are trying to build a model fθ : X → Ŷ (with Ŷ ⊆ R) parameterized
by θ ∈ Θ ⊆ Rp, so it minimizes the expected loss L(θ) = Ez[L(θ; z)], where L(θ; z) = `(fθ(x), y) is the
loss of the model fθ on data point z. One can approximate L(θ) by

R̂(θ;Z) =
1

n

n∑
i=1

L (θ; zi) =
1

n

n∑
i=1

`(fθ(xi), yi),

the empirical risk of model fθ. Empirical Risk Minimization (ERM) then minimizes an objective

function F (θ, Z) which adds to this empirical risk a regularization term ψ(θ) to find an estimate θ̂ of

the model parameters:

θ̂ ∈ arg min
θ∈Θ

F (θ;Z) := R̂(θ;Z) + γψ(θ)

where γ ≥ 0 is a trade-off hyperparameter.

Feed forward neural networks An important and easy to analyze class of neural networks are

the feed forward networks (FNN). A FNN is a direct acyclic graph where connections between nodes

don’t form cycles.

Definition 5. A FNN fθ : Rn → Rm is a function which can be expressed as

fθ = f
(K)
θK
◦ . . . ◦ f (1)

θ1

where f
(k)
θk

: Rnk → Rnk+1. f
(k)
θk

is the k-th layer function parameterized by θk for 1 ≤ k ≤ K. We

denote the input of f
(k)
θk

by xk and its output by xk+1. Here, θ = (θ1 . . . θK), n = n1 and m = nK+1.

Common layers include fully connected layers, convolutional layers and activation layers. Parameters

of the first two correspond to weight and bias matrices, θk = (Wk, Bk), while activation layers have no

parameter, θk = ().

2.3 Stochastic gradient descent

To minimize F (θ, Z), one can use gradient descent, i.e., iteratively for a number of time steps t = 1 . . . T

one computes a gradient g(t) = ∇F (θ̃(t), Z) on the current model θ̃(t) and updates the model setting

θ̃(t+1) = θ̃(t)− η(t)g(t) where η(t) is a learning rate. Stochastic gradient descent (SGD) introduces some

randomness and avoids the need to recompute all gradients in each iteration by sampling in each iteration

a batch V ⊆ Z and computing an approximate gradient ĝt = 1
|V |

(∑|V |
i=1∇L(θ̃(t), vi) + b(t)

)
+ γ∇ψ(θ).

To avoid leaking sensitive information, Abadi et al. (2016) proposes to add noise to the gradients.

Determining good values for the scale of this noise has been the topic of several studies. One simple

strategy starts by assuming an upper bound for the norm of the gradient. Let us first define Lipschitz

functions:
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Definition 6 (Lipschitz function). Let Lg > 0. A function f is Lg-Lipschitz with respect to some
norm ‖ · ‖ if for all θ, θ′ ∈ Θ there holds ‖f(θ)− f (θ′)‖ ≤ Lg ‖θ − θ′‖ . If f is differentiable and
‖ · ‖ = ‖ · ‖2, the above property is equivalent to:

‖∇f(θ)‖2 ≤ Lg, ∀θ ∈ Θ

We call the smallest value Lg for which f is Lg-Lipschitz the Lipschitz value of f .

Then, from the model one can derive a constant Lg such that the objective function is Lg-Lipschitz,
while knowing bounds on the data next allows for computing a bound on the sensitivity of the gradient.
Once one knows the sensitivity, one can determine the noise to be added from the privacy parameters
as in Lemma 4. The classic DP-SGD algorithm Abadi et al. (2016), which we recall in Algorithm 3 in
Appendix A for completeness, clips the gradient of each instance to a maximum value C (i.e., scales
down the gradient if its norm is above C) and then adds noise based on this maximal norm C.

g̃t =
1

|V |

 |V |∑
i=1

clipC

(
∇θ̃L

(
θ̃(t), vi

))
+ bt

+ γ∇ψ(θ)

where bt is appropriate noise and where

clipC (v) = v.min

(
1,

C

‖v‖

)
.

2.4 Regularization

Several papers Ioffe and Szegedy (2015); Wu and He (2018) have pointed out that regularization can

help to improve the performance of stochastic gradient descent. Although batch normalization Ioffe

and Szegedy (2015) does not provide protection against privacy leakage, group normalization Wu and

He (2018) has the potential to do so De et al. (2022). De et al. (2022) combines group normalization

with DP-SGD, the algorithm to which we propose an improvement in the current paper. Group

normalization is a technique adding specific layers, called group normalization layers, to the network.

Making abstraction of some elements specific to image datasets, we can formalize it as follows.

For a vector v, we will denote the dimension of v by |v|, i.e., v ∈ Rv.

If the k-th layer is a normalization layer, then there holds |xk| = |xk+1|. Moreover, the structure of
the normalization layer defines a partitioning Γk = {Γk,1 . . .Γk,|G|} of [|xk|], i.e., a partitioning of the

components of xk. The components of xk and xk+1 are then grouped, and we define x
(k:q)
k = (xk,j)j∈Γk,q

,

i.e., x
(k:q)
k is a subvector containing a group of components. Similarly, x

(k:q)
k+1 = (xk+1,j)j∈Γk,q

. Then,

the k-th layer performs the following operation:

x
(k:q)
k+1 = f

(k)
θk

(x
(k:q)
k ) =

1

σ(k:q)

(
x

(k:q)
k − µ(k:q)

)
, (1)

(but note we will adapt this in Eq (5)) where

µ(k:q) =
1

|Γk,q|

|Γk,q |∑
j=1

xk,j ,

σ(k:q) =

 1

|Γk,q|

|Γk,q |∑
j=1

(
xk,j − µ(k:q)

)2
+ κ

1/2

,

with κ a small constant.

Various feature normalization methods primarily vary in their definitions of the partition of features

Γk,q.
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3 Our approach

In this work, we constrain the objective function to be Lipschitz, and exploit this to determine sensitivity.

An important advantage is that while traditional DP-SGD controls sensitivity via gradient clipping

of each sample separately, our new method estimates gradient sensitivity based on only the model

in a data-independent way. This is grounded in Lipschitz-constrained model literature (Section 5),

highlighting the connection between the Lipschitz value for input and parameter. Subsection 3.1

demonstrates the use of backpropagation for gradient sensitivity estimation. Subsection 3.2 delves

into determining an upper Lipschitz bound, and in 3.3, we introduce Lip-DP-SGD, a novel algorithm

ensuring privacy without gradient clipping.

3.1 Backpropagation

Consider a feed-forward network fθ. We define Lk(θ, (xk, y)) = `
((
f

(K)
θK
◦ . . . ◦ f (k)

θk

)
(xk), y

)
. For

feed-forward networks, backpropagation relies on the subsequent recursive equations:

∂Lk
∂xk

=
∂Lk+1

∂xk+1

∂xk+1

∂xk
=
∂Lk+1

∂xk+1

∂f
(k)
θk

∂xk

∂Lk
∂θk

=
∂Lk+1

∂xk+1

∂xk+1

∂θk
=
∂Lk+1

∂xk+1

∂f
(k)
θk

∂θk
.

(2)

Note that θk and xk are vectors, so also ∂Lk
∂xk

, ∂Lk
∂θk

and
∂Lk+1

∂xk+1
are vectors, and

∂f
(k)
θk

∂xk
and

∂f
(k)
θk

∂θk
are

Jacobian matrices. In terms of 2-norms there holds∥∥∥∥∂Lk∂xk

∥∥∥∥
2

≤
∥∥∥∥∂Lk+1

∂xk+1

∥∥∥∥
2

∥∥∥∥∥∥∂f
(k)
θk

∂xk

∥∥∥∥∥∥
2∥∥∥∥∂Lk∂θk

∥∥∥∥
2

≤
∥∥∥∥∂Lk+1

∂xk+1

∥∥∥∥
2

∥∥∥∥∥∥∂f
(k)
θk

∂θk

∥∥∥∥∥∥
2

(3)

We will use lk to denote an upper bound of maxxk,y ‖
∂Lk(θ,xk,y)

∂xk
‖2 and ∆k to denote the upper

bound of maxxk ‖
∂Lk
∂θk
‖2. In particular, we will ensure that lK+1 ≥ maxxK+1,y ‖ ∂`

xK+1
(xK+1, y)‖2 and

lk ≤ lk+1 max
xk

∥∥∥∥∥∥∂f
(k)
θk

∂xk

∥∥∥∥∥∥
2

∆k ≤ lk+1 max
xk

∥∥∥∥∥∥∂f
(k)
θk

∂θk

∥∥∥∥∥∥
2

(4)

By definition 3 and the triangle inequality, the sensitivity of the gradient ∂Lk
∂θk

is upper bounded by

twice maxxk ‖
∂Lk
∂θk
‖, so ∆k ≥ s2

(
∂Lk
∂θk

)
/2.

Note that we can easily provide such upper bounds lk and ∆k if the layers f
(k)
θ and the loss ` are

Lipschitz. If so, since all f
(k)
θ and ` are differentiable on any xk, per Rademacher’s theorem Rademacher

(1919),
∥∥∥∂Lk∂xk

∥∥∥ is bounded by the Lipschitz value of Lk. We only need to find a tight upper bound of

this Lipschitz value.
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3.2 Estimating lipschitz values

In this section we bound Lipschitz values of different types of layers. We treat linear operations (e.g.,

linear transformations, convolutions) and activation functions as different layers.

Loss function and activation layer. Examples of Lipschitz losses encompass Softmax Cross-

entropy, Cosine Similarity, and Multiclass Hinge. When it comes to activation layers, layers composed

of an activation function, several prevalent ones, such as ReLU, tanh, and Sigmoid are 1-Lipschitz. We

provide a detailed list in the Appendix Table 2.

Normalization layer. To be able to easily bound sensitivity, we define the operation of a

normalization layer f
(k)
θk

slightly differently than Eq (1):

x
(k:q)
k+1 = f

(k)
θk

(x
(k:q)
k ) =

x
(k:q)
k − µ(k:q)

max(α, σ(k:q))
. (5)

with α an hyperparameter. It is easy to see that the sensitivity is bounded by∥∥∥∥∥∥∂f
(k)
θk

∂xk

∥∥∥∥∥∥
2

≤ max
q∈[|Γk|]

1

max
(
α, σ(k:q)

) ≤ 1/α. (6)

Note that a group normalization layer has no trainable parameters.

Linear layers. If f
(k)
θk

is a linear layer, then∥∥∥∥∥∥∂f
(k)
θk

∂θk

∥∥∥∥∥∥
2

=

∥∥∥∥∂(W>k xk +Bk)

∂(Wk, Bk)

∥∥∥∥
2

= ‖(xk, 1)‖2,∥∥∥∥∥∥∂f
(k)
θk

∂xk

∥∥∥∥∥∥
2

=

∥∥∥∥∂(W>k xk +Bk)

∂xk

∥∥∥∥
2

= ‖Wk‖2.

(7)

Convolutional layers. There are many types of convolutional layers, e.g., depending on the data
type (strings, 2D images, 3D images . . . ), shape of the filter (rectangles, diamonds . . . ). Here we
provide as an example only a derivation for convolutional layers for 2D images with rectangular filter. In
that case, the input layer consists of nk = cinhw nodes and the output layer consists of nk+1 = couthw
nodes with cin input channels, cout output channels, h the height of the image and w the width. Then,
θk ∈ Rcin×cout×h′×w′ with h′ the height of the filter and w′ the width of the filter. Indexing input and
output with channel and coordinates, i.e., xk ∈ Rcin×h×w and xk+1 ∈ Rcout×h×w we can then write

xk+1,c,i,j =

cin∑
d=1

h′∑
r=1

w′∑
s=1

xk,d,i+r,j+sθk,c,d,r,s

where components out of range are zero. We can derive (see Appendix B.1 for details) that ∥∥∥∥∥∥∂f
(k)
θk

∂xk

∥∥∥∥∥∥
2

≤
√
h′w′‖θk‖2 (8)

∥∥∥∥∥∥∂f
(k)
θk

∂θk

∥∥∥∥∥∥
2

≤
√
h′w′‖xk‖2 (9)
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We summarize the upper bounds of the Lipschitz values, either on the input or on the parameters,

for each layer type in the Appendix Table 2. We can conclude that networks for which the norms of the

parameter vectors θk are bounded, are Lipschitz networks as introduced in Miyato et al. (2018), i.e.,

they are FNN for which each layer function f
(k)
θk

is Lipschitz. We will denote by Θ≤C and by Θ=C the

sets of all paremeter vectors θ for fθ such that ‖θk‖ ≤ C and ‖θk‖ = C respectively, for k = 1 . . .K.

Computing sensitivty. We will denote by Lθk an upper bound for

∥∥∥∥∂f (k)θk
∂θk

∥∥∥∥ and by Lxk an upper

bound for

∥∥∥∥∂f (k)θk
∂xk

∥∥∥∥. We can now introduce Algorithm 1 to compute the sensitivity ∆k of layer k.

Here we denote by Xk the maximal possible norm of xk, i.e., for all possible inputs xk, ‖xk‖ = ∥∥∥(f
(k−1)
θk−1

◦ . . . ◦ f (1)
θ1

)(x1)
∥∥∥ ≤ Xk, with X1 the norm on which we scale every input x1. It capitalizes on

a forward pass to compute the maximal input norms Xk — which depends on the previous layer range,

in the case of normalization or activation layers, or on uθk−1 = min(C, ‖θ̃k−1‖) (see Algorithm 2), in

the case of linear or convolutional layers (one can verify for each type of layer that uθk−1 is an upper

bound for ‖xk‖/‖xk−1‖) — and a backward pass applying Equation 4.

Algorithm 1 LayerSensitivity(f, θ, u(θ))

1: Input: K layer feed-forward model f , parameters θ, parameter norm u(θ), max input norm X1,
upper bound of loss Lipschitz value lK+1.

2: for k = 1 to K do . Forward pass
3: if θk = ∅ then
4: if k-th layer is a normalization layer then
5: Xk+1 ← min(|xk+1|

1
2 , Xkα )

6: else . e.g., activation layer
7: Xk+1 ← XkLxk
8: end if
9: else

10: Xk+1 ← Xku
(θ)
k

11: end if
12: end for
13: for k = K to 1 do . Backward pass
14: lk ← lk+1Lxk
15: ∆k ← lk+1Lθk
16: end for
17: Output: (∆1, . . . ,∆K−1,∆K).

3.3 Lip-DP-SGD

We introduce a novel differentially private stochastic gradient descent algorithm, called Lip-DP-SGD,

that leverages the estimation of the per-layer sensitivity of the model to provide differential privacy

without gradient clipping.

Theorem 7. Given a feed-forward model fθ composed of Lipschitz constrained operators, a Lipschitz

loss ` and a bounded input norm X1, Lip-DP-SGD is differentially private.

Indeed, Lip-DP-SGD utilizes the Gaussian mechanism. The gradient’s sensitivity is determined

without any privacy costs, as it depends only on the current parameter values (which are privatized in

the previous step, and post-processing privatized values doesn’t take additional privacy budget) and

not on the data.
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Algorithm 2 Lip-DP-SGD: Differentially Private Stochastic Gradient Descent with Lipschitz con-
strains.

1: Input: Data set Z ∈ Z∗, feed-forward model fθ, loss function L, hypothesis space Θ ⊆ Rk, number
of epochs T , noise multiplier σ, batch size s ≥ 1, learning rate η, max gradient norm C

2: Initialize θ̃ randomly from Θ
3: (u(θ), θ̃)← ClipWeights(θ̃,C)
4: for t ∈ [T ] do
5: (∆k)

K
k=1 ← LayerSensitivity(f, θ̃, u(θ))

6: V ← ∅ . Poisson sampling
7: while V = ∅ do
8: for z ∈ Z do
9: With probability s/|Z|: V ← V ∪ {z}

10: end for
11: end while
12: for k = 1 . . .K do . gradient per layer
13: Draw bk ∼ N (0, σ2∆2

kI)

14: g̃k ← 1
|V |

(∑|V |
i=1∇θ̃k`(fθ̃(xi), yi) + bk

)
15: θ̃k ← θ̃k − η(t)g̃k
16: end for
17: (u(θ), θ̃)← ClipWeights(θ̃,C)
18: end for
19: Output: θ̃ and compute (ε, δ) with privacy accountant.
20: function ClipWeights(θ̃, C)
21: for k = 1 . . .K do
22: if θk 6= ∅ then

23: u
(θ)
k ← min(C, ‖θ̃k‖)

24: θ̃k ← u
(θ)
k θ̃k/‖θ̃k‖

25: end if
26: end for
27: return (u(θ), θ̃)
28: end function

Privacy accounting. Lip-DP-SGD adopts the same privacy accounting as DP-SGD. Specifically,

the accountant draws upon the privacy amplification Kasiviswanathan et al. (2011) brought about

by Poisson sampling and the Gaussian moment accountant Abadi et al. (2016). It’s worth noting

that while we utilized the Renyi Differential Privacy (RDP) accountant Abadi et al. (2016); Mironov

et al. (2019) in our experiments, Lip-DP-SGD is versatile enough to be compatible with alternative

accountants.

Requirements. As detailed in Section 3.2, the loss and the model operators need to be Lipschitz and

the norm of the input needs to be bounded. We’ve enumerated several losses and operators that meet

these criteria in the Appendix Table 2. While we use the spectral norm to characterize Lipschitzness

Yoshida and Miyato (2017); Miyato et al. (2018) in our study 3.2, other methods are also available, as

discussed in Arjovsky et al. (2017).

ClipWeights. The ClipWeights function is essential to the algorithm, ensuring Lipschitzness,

which facilitates model sensitivity estimation. As opposed to standard Lipschitz-constrained networks

Yoshida and Miyato (2017); Miyato et al. (2018) which increase or decrease the norms of parameters
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to make them equal to a pre-definied value, our approach normalizes weights only when their current

norm exceeds a threshold. This results in adding less DP noise for smaller norms. Importantly, as θ is

already made private in the previous iteration, its norm is private too.

Computation techniques. For both Algorithm 1 and ClipWeights it’s crucial to compute the

greatest singular matrix values efficiently. A renowned technique is the power method von Mises and

Pollaczek-Geiringer (1929). If this isn’t sufficiently fast, the power method can be enhanced using

AutoGrad Scaman and Virmaux (2019). Another idea is to use the Frobenius norm, which is faster

to compute but may have drawbacks in terms of tightly bounding the norm. As computing spectral

norms is relatively costly, we avoid to recompute them by storing them in u(θ) in Algorithm 2.

3.4 Avoiding the bias of gradient clipping

Our Lip-DP-SGD algorithm finds a local optimum (for θ) of F (θ, Z) in Θ≤C while DP-SGD doesn’t

necessarily find a local optimum of F (θ, Z) in Θ. In particular, we prove in Appendix E the following

Theorem 8. Let F be an objective function as defined in Section 2.2, and Z, fθ, L, Θ = Θ≤C ,

T , σ = 0, s, η and C be input parameters of Lip-DP-SGD satisfying the requirements specified in

Section 3.3. Assume that for these inputs Lip-DP-SGD converges to a point θ∗ (in the sense that

limk,T→∞ θk = θ∗). Then, θ∗ is a local optimum of F (θ, Z) in Θ≤C .

Essentially, making abstraction of the unbiased DP noise, the effect of scaling weight vectors to

have bounded norm after a gradient step is equivalent to projecting the gradient on the boundary of

the feasible space if the gradient brings the parameter vector out of Θ≤C .

Furthermore, Chen et al. (2020) shows an example showing that gradient clipping can introduce

bias. We add a more detailed discussion in Appendix E. Hence, DP-SGD does not necessarily converge

to a local optimum of F (θ, Z), even when sufficient data is available to estimate θ. While Lip-DP-SGD

can only find models in Θ≤C and this may introduce another suboptimality, as our experiments will

show this is only a minor drawback in practice, while also others observed that Lipschitz networks have

good properties Béthune et al. (2023). Moreover, it is easy to check whether Lip-DP-SGD outputs

parameters on the boundary of Θ≤C and hence the model could potentially improve by relaxing the

weight norm constraint. In contrast, it may not be feasible to detect that DP-SGD is outputting

potentially suboptimal parameters. Indeed, consider a federated learning setting (e.g., Bonawitz et al.

(2017)) where data owners collaborate to compute a model without revealing their data. Each data

owner locally computes a gradient and clips it, and then the data owners securely aggregate their

gradients and send the average gradient to a central party updating the model. In such setting, for

privacy reasons no party would be able to evaluate that gradient clipping introduces a strong bias in

some direction. Still, our experiments show that in practice at the time of convergence for the best

hyperparameter values clipping is still active for a significant fraction of gradients (See Appendix C.5)

4 Experimental results

In this section, we conduct an empirical evaluation of our approach.

4.1 Experimental setup

We consider the following experimental questions:

Q1 How does Lip-DP-SGD, our proposed technique, compare against the conventional DP-SGD as

introduced by Abadi et al. (2016)?
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Q2 What is the effect of allowing ‖θk‖ < C rather than normalizing ‖θk‖ to C? This question seems

relevant given that some authors (e.g., Béthune et al. (2023)) also suggest to consider networks

which constant gradient norm rather than maximal gradient norm, i.e., roughly with θ in Θ=C

rather than Θ≤C .

Implementation. We implemented both the DP-SGD and Lip-DP-SGD methods to ensure that

comparisons were made under consistent model structures and preprocessing conditions.

To answer question Q2, we also implemented Fix-Lip-DP-SGD, a version of Lip-DP-SGD limited to

networks whose weight norms are fixed, i.e., ∀k : ‖θk‖ = C, obtained by setting u
(θ)
k ← C in Line 23 in

Algorithm 2.

Hyperparameters. We selected a number of hyperparameters to tune for our experiments, aiming

at making a fair comparison between the studied techniques while minimizing the distractions of

potential orthogonal improvements. To optimize these hyperparameters, we used Bayesian optimization

Balandat et al. (2020). Appendix C.1 provides a detailed discussion.

Datasets and models. We carried out experiments on both tabular datasets and datasets with

image data. First, we consider a collection of 7 real-world tabular datasets (names and citations in

Table 1). For these, we trained multi-layer perceptrons (MLP). A comprehensive list of model-dataset

combinations is available in the Appendix Table 4.

Second, the image datasets include MNIST Deng (2012), Fashion-MNIST Xiao et al. (2017) and

CIFAR-10 Krizhevsky et al. (2009). For these, we trained convolutional neural networks (CNN). We

consider both networks with and without group normalization (see Section 3.2 or Wu and He (2018)).

The networks using group normalization have normalization layers added after every convolutional

layer. We opted for the accuracy to facilitate easy comparisons with prior research.

Infrastructure. All experiments were orchestrated across dual Tesla P100 GPU platforms (12GB

capacity), operating under CUDA version 10, with a 62GB RAM provision for Fashion-MNIST and

CIFAR-10. Remaining experiments were performed on an E5-2696V2 Processor setup, equipped with

8 vCPUs and a 52GB RAM cache. The total runtime of the experiments was approximately 50 hours,

which corresponds to an estimated carbon emission of 1.96 kg Lacoste et al. (2019). More details on

the experimental setup and an analysis of the runtime can be found in Appendix C.

(a) MNIST (b) Fashion-MNIST (c) CIFAR-10

Figure 1: Accuracy results, with a fixed δ = 10−5, for the MNIST (1(a)), Fashion-MNIST (1(b)), and
CIFAR-10 (1(c)) datasets, comparing Lip-DP-SGD (in red) and DP-SGD (in blue), lines are dashed
when the underlying model is implemented without group normalization. Vertical lines represent the
standard error of the mean. See Appendix C.1 for details on model specifications and hyperparameters.
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Table 1: Accuracy and ε per dataset and method at δ = 1/n, in bold the best result and underlined
when the difference with the best result is not statistically significant at a level of confidence of 5%.

Methods DP-SGD Lip-DP-SGD Fix-Lip-DP-SGD
Datasets (#instances n × #features p) ε

Adult Income (48842x14) Becker et al. (1996) 0.414 0.824 0.831 0.804
Android (29333x87) Mathur et al. (2022) 1.273 0.951 0.959 0.945
Breast Cancer (569x32) Wolberg et al. (1995) 1.672 0.773 0.798 0.7
Default Credit (30000x24) Yeh (2016) 1.442 0.809 0.816 0.792
Dropout (4424x36) Realinho et al. (2021) 1.326 0.763 0.819 0.736
German Credit (1000x20) Hofmann (1994) 3.852 0.735 0.746 0.768
Nursery (12960x8) Rajkovic (1997) 1.432 0.919 0.931 0.89

4.2 Results

Image datasets. In Figure 1, Lip-DP-SGD demonstrates comparable or superior performance to

DP-SGD for MNIST, Fashion-MNIST, and CIFAR-10 when not combined with group normalization.

The inclusion of the normalization technique enhances the accuracy of DP-SGD, as discovered by De

et al. (2022), and Lip-DP-SGD, with the latter experiencing a more significant improvement, except for

CIFAR-10. It is noteworthy that other explored regularization techniques by De et al. (2022) enhance

our method but to a similar extent as DP-SGD, see Appendix C.6

Tabular datasets. In Table 1, we perform a Wilcoxon Signed-rank test, at a confidence level of 5%,

on 10 measures of accuracy for each dataset between the DP-SGD based on the gradient clipping and

the Lip-DP-SGD based on our method. Lip-DP-SGD consistently outperforms DP-SGD in terms of

accuracy. This trend holds across datasets with varying numbers of instances and features, including

tasks with imbalanced datasets like Dropout or Default Credit datasets. While highly impactful

for convolutional layers, group normalization does not yield improvements for either DP-SGD or

Lip-DP-SGD in the case of tabular datasets. See Appendix C.4 for complete results.

Additionally, Table 1 presents the performance achieved by constraining networks to Lipschitz

networks, where the norm of weights is set to a constant, denoted as Fix-Lip-DP-SGD. The results

from this approach are inferior, even when compared to DP-SGD.

Conclusion. In summary, we can conclude that we can answer to our experimental questions that

Lip-DP-SGD outperforms DP-SGD on both tabular data sets with MLP and image data sets with

CNN. Moreover, it is beneficial to not normalize the norm of the weight vector θ to a fixed value but

to exploit cases where it becomes smaller.

5 Related Work

DP-SGD. DP-SGD algorithms have been developped to guarantee privacy on the final output

Chaudhuri et al. (2011), on the loss function Kifer et al. (2012) or on the publishing of each gradient

used in the descent Bassily et al. (2014); Abadi et al. (2016).

To keep track of the privacy budget consumption, Bassily et al. (2014) relies on the strong

composition theorem Dwork et al. (2010) while Abadi et al. (2016) is based on the moment accountant

and gives much tighter bounds on the privacy loss than Bassily et al. (2014).

This has opened an active field of research that builds upon Abadi et al. (2016) in order to provide

better estimation of the hyperparameters e.g., the clipping norm McMahan et al. (2017); Andrew

et al. (2022), the learning rate Koskela and Honkela (2020), or the step size of the privacy budget
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consumption Lee and Kifer (2018); Chen and Lee (2020); Yu et al. (2019); or to enhance performance

with regularization techniques De et al. (2022). Gradient clipping remains the standard approach, and

most of these ideas can be combined with our improvements, the most beneficial combination being

the use of group normalization (Section 4.2).

Lipschitz continuity. Lipschitz continuity is an essential requirement for differential privacy in

some private SGD algorithms Bassily et al. (2014). However, since deep neural networks (DNNs) have

an unbounded Lipschitz value Scaman and Virmaux (2019), it is not possible to use it to scale the

added noise. Several techniques have been proposed to enforce Lipschitz continuity to DNNs, especially

in the context of generative adversarial networks (GANs) Miyato et al. (2018); Gouk et al. (2020).

These techniques, which mainly rely on weight spectral normalization, can be applied to build DP-SGD

instead of the gradient clipping method, as described in Section 3. Bethune et al. (2023) suggests

a number of ideas in the direction of our Fix-Lip-DP-SGD variant, but has only limited empirical

evaluation. Our paper shows that Lip-DP-SGD outperforms Fix-Lip-DP-SGD (Table 1), and highlights

the great synergy between weight normalization and group normalization (Figure 1).

6 Conclusion and discussion

In this paper we proposed a new differentially private stochastic gradient descent algorithm without

gradient clipping. We derived a methodology to estimate the gradient sensitivity to scale the noise. An

important advantage of weight clipping over gradient clipping is that it avoids the bias introduced by

gradient clipping and the algorithm converges to a local optimum of the objective function. We showed

empirically that this yields a significant improvement in practice and we argued that this approach

circumvent the bias induced by classical gradient clipping.

Several opportunities for future work remain. First, it would be interesting to better integrate

and improve ideas such as in Scaman and Virmaux (2019) to find improved bounds on gradients of

Lipschitz-constrained neural networks, as this may allow to further reduce the amount of noise needed.

Second, various optimizations of the computational efficiency are possible. Currently one of the

most important computational tasks is the computation of the spectral norm. Other approaches to

more efficiently compute or upper bound it can be explored. One alternative direction would be to

investigate the Frobenius norm which is less costly to compute but may have other disadvantages.

Our current work is limited to the application of our proposed method on feed-forward models for

classification tasks and regression tasks with Lipschitz loss function. Although our method can be

easily applied to some other tasks, the field remains open to extend it to other classes of models.

Finally, while our experiments have shown promising results, further theoretical analysis of Lip-DP-

SGD, especially the interaction between sensitivity, learning rate and number of iterations, remains

an interesting area of research, similar to the work of Song et al. (2020) on DP-SGD. An analysis on

the interactions between hyperparameters would provide valuable insights into the optimal use of our

method and its potential combination with other regularization techniques.
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Mironov, I., Talwar, K., and Zhang, L. (2019). Rényi Differential Privacy of the Sampled Gaussian

Mechanism. arXiv e-prints, page arXiv:1908.10530.

14

10.24432/C5NC77


Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. (2018). Spectral normalization for generative

adversarial networks. In Advances in Neural Information Processing Systems.

Papernot, N. and Steinke, T. (2022). Hyperparameter Tuning with Renyi Differential Privacy. In

International Conference on Learning Representations. arXiv. arXiv:2110.03620 [cs].

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,

N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy,

S., Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019). Pytorch: An imperative style, high-

performance deep learning library. In Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F.,
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A Gradient clipping based DP-SGD

For comparison with Algorithm 2, Algorithm 3 shows the classic DP-SGD algorithm based on gradient

clipping.

Algorithm 3 DP-SGD: Differentially Private Stochastic Gradient Descent with gradient clipping.

Input: Data set Z ∈ Z∗, model fθ, loss function L, hypothesis space Θ ⊆ Rk, privacy parameters ε
and δ, noise multiplier σ, batch size s ≥ 1, learning rate η, max gradient norm C
Initialize θ̃ randomly from Θ
for t ∈ [T ] do

V ← ∅ . Poisson sampling
while S = ∅ do

for z ∈ Z do
With probability s/|Z|: V ← V ∪ {z}

end for
end while
Draw bk ∼ N (0, σ2C2

I)
for i = 1 . . . |V | do . Gradient clipping per sample

g̃k,i ← ∇θ̃k`(fθ̃(xi)) min(1, C/‖∇θ̃kL(f(xi; θ̃))‖)
end for
g̃k ← 1

|V |

(∑|V |
i=1 g̃k,i + bk

)
θ̃k ← θ̃k − η(t)g̃k

end for
Output: θ̃ and compute privacy cost (ε, δ) with privacy accountant.

B Estimating Lipschitz values

We summarize the upper bounds of the Lipschitz values, either on the input or on the parameters, for

each layer type in Table 2. It’s important to mention that for the loss, the Lipschitz value is solely

dependent on the output xK+1.

Layer Definition Lip. value on input xk Lip. value on parameter θk
Dense θ>k xk ‖θk‖ ‖xk‖

Convolutional θk ∗ xk
√
h′w′‖θk‖

√
h′w′‖xk‖

Normalization
x
(k:q)
k −µ(k:q)

max(α,σ(k:q))
1/α -

ReLU max(xk, 0) 1 -

Sigmoid 1
1+e−xk

1/2 -

Softmax Cross-entropy y log softmax(xK+1)/τ
√

2/τ -

Cosine Similarity
x>K+1y

‖xK+1‖2‖y‖2 1/min ‖xK+1‖ -

Multiclass Hinge
{

max
(
0, m2 − xiK+1 · yi

)}
1 -

Table 2: Summary table of Lipschitz values with respect to the layer.

with Softmax(xi) = exp(xi)∑c
j=1 exp(xj)

, c the number of classes. For cross-entropy, τ an hyperparameter

on the Softmax Cross-entropy loss also known as the temperature. For convolutional layers, h′ and w′

are the height and width of the filter. For multiclass hinge, m is a hyperparameter known as ’margin’.
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B.1 Details for the convolutional layer

Theorem 9. The convolved feature map (θ ∗ ·) : Rnk×|xk| → Rnk+1×n×n, with zero or circular padding,
is Lipschitz and

‖∇θk(θk ∗ xk)‖2 ≤
√
h′w′‖xk‖2 and ‖∇xk(θk ∗ xk)‖2 ≤

√
h′w′‖θk‖2 (10)

with w′ and h′ the width and the height of the filter.

Proof. The output xk+1 ∈ Rcout×n×n of the convolution operation is given by:

xk+1,c,r,s =

cin−1∑
d=0

h′−1∑
i=0

w′−1∑
j=0

xk,d,r+i,s+jθk,c,d,i,j

There follows:

‖xk+1‖22 =

cout−1∑
c=0

n∑
r=1

n∑
s=1

cin−1∑
d=0

h′−1∑
i=0

w′−1∑
j=0

xk,d,r+i,s+jθk,c,d,i,j

2

≤
cout−1∑
c=0

n∑
r=1

n∑
s=1

cin−1∑
d=0

h′−1∑
i=0

w′−1∑
j=0

x2
k,d,r+i,s+j

cin−1∑
d=0

h′−1∑
i=0

w′−1∑
j=0

θ2
k,c,d,i,j


=

cin−1∑
d=0

h′−1∑
i=0

w′−1∑
j=0

n∑
r=1

n∑
s=1

x2
k,d,r+i,s+j

cout−1∑
c=0

cin−1∑
d=0

h′−1∑
i=0

w′−1∑
j=0

θ2
k,c,d,i,j


≤ h′w′

(
cin−1∑
d=0

n∑
r=1

n∑
s=1

x2
k,d,r,s

)cout−1∑
c=0

cin−1∑
d=0

h′−1∑
i=0

w′−1∑
j=0

θ2
k,c,d,i,j


= h′w′‖xk‖2‖θk‖2

Since θk ∗ · is a linear operator:

‖(θk ∗ xk)− (θ′k ∗ xk)‖2 = ‖(θk − θ′k) ∗ xk‖2 ≤ ‖θk − θ′k‖2
√
h′w′‖xk‖2

Finally, the convolved feature map is differentiable so the spectral norm of its Jacobian is bounded
by its Lipschitz value:

‖∇θk(θk ∗ xk)‖2 ≤
√
h′w′‖xk‖2

Analogously,
‖∇xk(θk ∗ xk)‖2 ≤

√
h′w′‖θk‖2



C Experiments

Optimization. For both tabular and image datasets, we employed Bayesian optimization Balandat

et al. (2020). Configured as a multi-objective optimization program Daulton et al. (2020), our focus

was to cover the Pareto front between model utility (accuracy) and privacy (ε values at a constant level

of δ, set to 1/n as has become common in this type of experiments). To get to finally reported values,

we select the point on the pareto front given by the Python librairy BoTorch Balandat et al. (2020).
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C.1 Hyperparameters

Hyperparameter selection. In the literature, there are a wide range of improvements possible over

a direct application of SGD to supervised learning, including general strategies such as pre-training,

data augmentation and feature engineering, and DP-SGD specific optimizations such as adaptive

maximum gradient norm thresholds. All of these can be applied in a similar way to both Lip-DP-SGD

and DP-SGD and to keep our comparison sufficiently simple, fair and understandable we didn’t consider

the optimization of these choices.

We did tune hyperparameters inherent to specific model categories, in particular the initial learning

rate η(0) (to start the adaptive learning rate strategy η(t)) and (for image datasets) the number of

groups, and hyperparameters related to the learning algorithm, in particular the (expected) batch size

s, the Lipschitz upper bound of the normalization layer α and the threshold C on the gradient norm

respectively weight norm.

The initial learning rate η(0) is tuned while the following η(t) are set adaptively. Specifically, we

use the strategy of the Adam algorithm Kingma and Ba (2014), which update each parameter using

the ratio between the moving average of the gradient (first moment) and the square root of the moving

average of its squared value (second moment), ensuring fast convergence.

We also investigated varying the maximum norm of input vectors X0 and the hyperparameter

τ of the cross entropy objective function, but the effect of these hyperparameters turned out to be

insignificant.

Both the clipping threshold C for gradients in DP-SGD and the clipping threshold C for weights

in Lip-DP-SGD can be tuned for each layer separately. While this offers improved performance, it

does come with the cost of consuming more of the privacy budget, and substantially increasing the

dimensionality of the hyperparameter search space. In a few experiments we didn’t see significant

improvements in allowing per-layer varying of Ck, so we didn’t further pursue this avenue.

Table 3 summarizes the search space of hyperparameters. It’s important to note that we did

not account for potential (small) privacy losses caused by hyperparameter search, a limitation also

acknowledged in other recent works such as Papernot and Steinke (2022).

Hyperparameter Range

Noise multiplier σ [0.4, 5]

Weight clipping threshold C [1, 15]

Gradient clipping threshold C [1, 15]

Batch size s [32, 512]

η(0) [0.0001, 0.01]

Number of groups (group normalization) [8, 32]

α (group normalization) [0.1/(|x(k:q)
k |), 1/(|x(k:q)

k |)]

Table 3: Summary of hyperparameter space.

C.2 Models

Table 4 shows details of the models we used to train on tabular and image datasets. We consider 7

tabular datasets: adult income Becker et al. (1996), android permissions Mathur et al. (2022), breast

cancer Wolberg et al. (1995), default credit Yeh (2016), dropout Realinho et al. (2021), German credit

Hofmann (1994) and nursery Rajkovic (1997). See Table 1 for the number of instances and features for

each tabular dataset.
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Dataset Image size Model Number of layers Loss No. of Parameters

Tabular Datasets - MLP 2 CE 140 to 2,120

MNIST 28x28x1 ConvNet 3 CE 83,154

FashionMNIST 28x28x1 ConvNet 6 CE 132,746

CIFAR-10 32x32x3 ShallowVGG 6 CE 131,466

Table 4: Summary table of datasets with respective models architectures details.

(a) Default Credit (b) MNIST

Figure 2: Mean runtime in seconds per batch size on one epoch over the Default Credit dataset 2(a)
and the MNIST dataset 2(b) comparing DP-SGD (in blue) and Lip-DP-SGD (in red).

C.3 Runtime

Our experiments didn’t show significant deviations from the normal runtime behavior one can expect

for neural network training. As an illustration, we compared on the Default Credit dataset and on the

MNIST dataset the mean epoch runtime of DP-SGD with Lip-DP-SGD. We measure runtime against

the logical batch size, limiting the physical batch size to prevent memory errors as recommended by the

PyTorch documentation Paszke et al. (2019). Figure 2 shows how Lip-DP-SGD is slightly inefficient in

terms of runtime compared to DP-SGD, especially on image datasets. It may be possible to further

improve Lip-DP-SGD runtime as it currently heavily relies on the data sampler provided by Opacus,

which processes data per instance, while applying batch processing techniques inspired on PyTorch

would be more efficient. The staircase shape of the plot seems to be a result of PyTorch and Python

memory management strategies.

C.4 Detailed results

Table 5 provides a summary of accuracy performances for tabular datasets with and without group

normalization. It’s worth noting that while epsilon values may not be identical across algorithms, we

present the epsilon value of DP-SGD and report performances corresponding to lower epsilon values

for the other two algorithms, consistent with Table 1.
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Table 5: Accuracy per dataset and method at ε = 1 and δ = 1/n, in bold the best result and underlined
when the difference with the best result is not statistically significant at a level of confidence of 5%.

Methods DP-SGD Lip-DP-SGD Fix-Lip-DP-SGD
Datasets (#instances n × #features p) ε w/ GN w/o GN w/ GN w/o GN w/ GN w/o GN

Adult Income (48842x14) Becker et al. (1996) 0.414 0.822 0.824 0.829 0.831 0.713 0.804
Android (29333x87) Mathur et al. (2022) 1.273 0.947 0.951 0.952 0.959 0.701 0.945
Breast Cancer (569x32) Wolberg et al. (1995) 1.672 0.813 0.773 0.924 0.798 0.519 0.7
Default Credit (30000x24) Yeh (2016) 1.442 0.804 0.809 0.815 0.816 0.774 0.792
Dropout (4424x36) Realinho et al. (2021) 1.326 0.755 0.763 0.816 0.819 0.573 0.736
German Credit (1000x20) Hofmann (1994) 3.852 0.735 0.735 0.722 0.746 0.493 0.68
Nursery (12960x8) Rajkovic (1997) 1.432 0.916 0.919 0.912 0.931 0.487 0.89

C.5 Gradient clipping behavior

In Section 3.4 we argued that DP-SGD introduces bias. There are several ways to demonstrate this.
For illustration we show here the error between the true average gradient

gLip−DP−SGDk =
1

|V |

|V |∑
i=1

∇θ̃k`(fθ̃(xi))

i.e., the model update of Algorithm 2 without noise, and the average clipped gradient

gDP−SGDk =
1

|V |

|V |∑
i=1

clipC

(
∇θ̃k`(fθ̃(xi))

)
,

i.e., the model update of Algorithm 3 without noise.

Figure 3 shows the error
∥∥∥gLip−DP−SGDk − gDP−SGDk

∥∥∥ together with the norm of the DP-SGD

model update
∥∥∥gDP−SGDk

∥∥∥.

One can observe for both considered datasets that while the model converges and the average

clipped gradient decreases, the error between DP-SGD’s average clipped gradient and the true average

gradient increases. At the end, the error in the gradient caused by clipping is significant, and hence

the model converges to a different point than the real optimum.

C.6 Regularization techniques.

In De et al. (2022) multiple other regularization/optimization techniques are proposed. In our

experiments, we found that while these techniques sometimes help, there is no significant or systematic

difference in the effect on the results of DP-SGD and Lip-DP-SGD. For example, Figure 4 illustrates

how parameter averaging on Fashion-MNIST, as indicated by De et al. (2022), has a similar impact

observed for both DP-SGD and Lip-DP-SGD. To keep our experiments simple and interpretable, in

all other experiments in this paper we don’t consider the optimizations proposed by De et al. (2022),

except for the group normalization.

D Lip-DP-SGD library

We offer an open-source toolkit for implementing LipDP-SGD on any FNN model structure. This

toolkit builds on the Opacus and PyTorch libraries. Drawing inspiration from Opacus, our library

is based on two main components: the ‘DataLoader‘, which utilizes Poisson sampling to harness the
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(a) Dropout (b) Adult Income

Figure 3: Norm of the average error g − clip(g) (in blue) and norm of the average of clip(g) (in red)
across training iterations on the Dropout dataset 3(a) (averaged over 500 instances) and the Adult
Income dataset 3(b) (averaged over 500 instances).

(a) Fashion-MNIST

Figure 4: Accuracy results for the Fashion-MNIST, comparing DP-SGD (in blue) and Lip-DP-SGD (in
red), lines are dashed when the underlying model is implemented without parameter averaging.
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advantages of privacy amplification Kasiviswanathan et al. (2011), and the ‘Optimizer‘, responsible for

sensitivity calculation, differential privacy noise addition, and parameter normalization during each

iteration.

‘README.md‘, provided in the supplementary materials, details how to run the library and how

to reproduce the experiments.

E Avoiding the bias of gradient clipping

We show that Lip-DP-SGD converges to a local minimum in Θ≤C while DP-SGD suffers from bias and

may converge to a point which is not a local minimum of Θ.

We use the word ’converge’ here somewhat informally, as in each iteration independent noise

is added the objective function slightly varies between iterations and hence none of the mentioned

algorithms converges to an exact point. We here informally mean approximate convergence to a

small region, assuming a sufficiently large data set Z and/or larger ε such that privacy noise doesn’t

significantly alter the shape of the objective function. Our argument below hence makes abstraction

of the noise for simplicity, but in the presence of small amounts of noise a similar argument holds

approximately, i.e., after sufficient iterations Lip-DP-SGD will produce θ values close to a locally

optimal θ∗ while DP-SGD may produce θ values in a region not containing the relevant local minimum.

First, let us consider convergence.

Theorem 8. Let F be an objective function as defined in Section 2.2, and Z, fθ, L, Θ = Θ≤C ,

T , σ = 0, s, η and C be input parameters of Lip-DP-SGD satisfying the requirements specified in

Section 3.3. Assume that for these inputs Lip-DP-SGD converges to a point θ∗ (in the sense that

limk,T→∞ θk = θ∗). Then, θ∗ is a local optimum of F (θ, Z) in Θ≤C .

Proof sketch. We consider the problem of finding a local optimum in Θ≤C :

minimize F (θ, Z)
subject to ‖θ‖2 ≤ C

We introduce a slack variable ζ:

minimize F (θ, Z)
subject to ‖θ‖2 + ζ2 = C

Using Lagrange multipliers, we should minimize

F (θ, Z)− λ(‖θ‖2 + ζ2 − C)

An optimum in θ, λ and ζ satisfies

∇θF (θ, Z)− λθ = 0 (11)

‖θ‖2 + ζ2 − C = 0 (12)

2λζ = 0 (13)

From Eq 13, either λ = 0 or ζ = 0 If ζ > 0, θ is in the interior of Θ≤C and there follows λ = 0 and

from Eq 11 that ∇θF (θ, Z) = 0. For such θ, Lip-DP-SGD does not perform weight clipping. If the

learning rate is sufficiently small, and if it converges to a θ with norm ‖θ‖2 < C it is a local optimum.

On the other hand, if ζ = 0, there follows from Eq 12 that ‖θ‖2 = C, i.e., θ is on the boundary of Θ≤C .

If θ is a local optimum in Θ≤C , then ∇θF (θ, Z) is perpendicular on the ball of vectors θ with norm

C, and for such θ Lip-DP-SGD will add the multiple η(t).∇θF (θ, Z) to θ and will next scale θ back

to norm C, leaving θ unchanged. For a θ which is not a local optimum in Θ≤C , ∇θF (θ, Z) will not

be perpendicular to the ball of C-norm parameter vectors, and adding the gradient and brining the
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norm back to C will move θ closer to a local optimum on this boundary of Θ≤C . This is consistent

with Eq 11 which shows the gradient with respect to θ for the constrained problem to be of the form

∇θF (θ, Z)− λθ.

Theorem 8 shows that in a noiseless setting, if Lip-DP-SGD converges to a stable point that point

will be a local optimum in Θ≤C . In the presence of noise and/or stochastic batch selection, algorithms

of course don’t converge to a specific point but move around close to the optimal point due to the noise

in each iteration, and advanced methods exist to examine such kind of convergence. The conclusion

remains the same: Lip-DP-SGDwill converge to a neighborhood of the real local optimum, while as we

argue DP-SGD will often converge to a neighborhood of a different point.

Second, we argue that DP-SGD introduces bias. This was already pointed out in Chen et al.

(2020)’s examples 1 and 2. In Section C.5 we also showed experiments demonstrating this phenomenon.

Below, we provide a simple example which we can handle (almost) analytically.

A simple situation where bias occurs and DP-SGD does not converge to an optimum of F is when

errors aren’t symmetrically distributed, e.g., positive errors are less frequent but larger than negative

errors.

Consider the scenario of simple linear regression. A common assumption of linear regression is that
instances are of the form (xi, yi) where xi is drawn from some distribution Px and yi = axi + b+ ei
where ei is drawn from some zero-mean distribution Pe. When no other evidence is available, one
often assume Pe to be Gaussian, but this is not necessarily the case. Suppose for our example that Px
is the uniform distribution over [0, 1] and Pe only has two possible values, in particular Pe(9) = 0.1,
Pe(−1) = 0.9 and Pe(e) = 0 for e 6∈ {9,−1}. So with high probability there is a small negative error
ei while with small probability there is a large positive error, while the average ei is still 0. Consider
a dataset Z = {(xi, yi)}ni=1. Let us consider a model f(x) = θ1xθ2 and let us use the square loss
L(θ, Z) =

∑n
i=1 `(xi, yi)/n with `(θ, x, y) = (θ1x+ θ2 − y)2. Then, the gradient is

∇θ`(θ, x, y) = (2(θ1x+ θ2 − y)x, 2(θ1x+ θ2 − y))

For an instance (xi, yi) with yi = axi + b+ ei, this implies

∇θ`(θ, xi, yi) = (2((θ1 − a)xi + (θ2 − b)− ei)xi, 2((θ1 − a)xi + (θ2 − b)− ei))

For sufficiently large datasets Z where empirical loss approximates population loss, the gradient

considered by Lip-DP-SGD will approximate

∇θL(θ, Z) ≈
∑

e∈{10,}

Pe(e)

∫ 1

0
∇θ`(θ, x, ax+ b+ e)dx

=
∑

e∈{10,}

Pe(e)

∫ 1

0
(2((θ1 − a)x+ (θ2 − b)− e)x, 2((θ1 − a)x+ (θ2 − b)− e)) dx

=

∫ 1

0

(
2((θ1 − a)x2 + (θ2 − b)x− xE[e]), 2((θ1 − a)x+ (θ2 − b)− E[e])

)
dx

= (2((θ1 − a)/3 + (θ2 − b)/2), 2((θ1 − a)/2 + (θ2 − b)))

This gradient becomes zero if θ1 = a and θ2 = b as intended.

However, if we use gradient clipping with threshold C = 1 as in DP-SGD, we get:

g̃ ≈
∑

e∈{10,}

Pe(e)

∫ 1

0
clip1 (∇θ`(θ, x, ax+ b+ e)) dx

=
∑

e∈{10,}

Pe(e)

∫ 1

0
clip1 ((2((θ1 − a)x+ (θ2 − b)− e)x, 2((θ1 − a)x+ (θ2 − b)− e))) dx
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While for a given e for part of the population (θ1 − a)x+ θ2 − b may be small, for a fraction of the

instances the gradients are clipped. For the instances with e = 9 this effect is stronger. The result is

that for θ1 = a and θ2 = b the average clipped gradient g̃ doesn’t become zero anymore, in particular

‖g̃‖ = 0.7791. In fact, g̃ becomes zero for θ1 = a+ 0.01765 and θ2 = b+ 0.94221. Figure E illustrates

this situation.

Figure 5: An example of gradient clipping causing bias, here the average gradient becomes zero at
(0, 0) while the average clipped gradient is 0 at another point, causing convergence of DP-SGD to that
point rather than the correct one.
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