N

HAL

open science

DP-SGD with weight clipping

Antoine Barczewski, Jan Ramon

» To cite this version:

Antoine Barczewski, Jan Ramon. DP-SGD with weight clipping. CAp (Conférence sur I’Apprentissage
automatique) 2024, SSFAM (Société Savante Frangaise d’Apprentissage Machine); AFRIF (Associa-
tion Frangaise pour la Reconnaissance et 'Interprétation des Formes), Jul 2024, Lille (France), France.

10.48550/arXiv.2310.18001 . hal-04614505

HAL Id: hal-04614505
https://hal.science/hal-04614505

Submitted on 17 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-04614505
https://hal.archives-ouvertes.fr

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

DP-SGD with weight clipping

Antoine Barczewski! and Jan Ramon?

I[Jniversité Lille, Inria
)
2Inria

June 17, 2024

Abstract

Recently, due to the popularity of deep neural networks and other methods whose training
typically relies on the optimization of an objective function, and due to concerns for data privacy,
there is a lot of interest in differentially private gradient descent methods. To achieve differential
privacy guarantees with a minimum amount of noise, it is important to be able to bound precisely
the sensitivity of the information which the participants will observe. In this study, we present a
novel approach that mitigates the bias arising from traditional gradient clipping. By leveraging a
public upper bound of the Lipschitz value of the current model and its current location within the
search domain, we can achieve refined noise level adjustments. We present a new algorithm with
improved differential privacy guarantees and a systematic empirical evaluation, showing that our
new approach outperforms existing approaches also in practice.

Keywords: Machine Learning, Differential Privacy, Optimization.

1 Introduction

While machine learning allows for extracting statistical information from data with both high economical
and societal value, there is a growing awareness of the risks for data privacy and confidentiality.
Differential privacy [Dwork and Roth| (2013) has emerged as an important metric for studying statistical
privacy.

Due to the popularity of deep neural networks (DNNs) and similar models, one of the recently
most trending algorithmic techniques in machine learning has been stochastic gradient descent (SGD),
which is a technique allowing for iteratively improving a candidate model using the gradient of the
objective function on the data.

A popular class of algorithms to realize differential privacy while performing SGD is the DP-SGD
algorithm Abadi et al.| (2016) and its variants. Essentially, these algorithms iteratively compute
gradients, add differential privacy noise, and use the noisy gradient to update the model. To determine
the level of differential privacy achieved, one uses an appropriate composition rule to bound the total
information leaked in the several iterations.

To achieve differential privacy with a minimum amount of noise, it is important to be able to bound
precisely the sensitivity of the information which the participants will observe. One approach is to
bound the sensitivity of the gradient by assuming the objective function is Lipschitz continuous Bassily
et al.| (2014). Various improvements exist in the case one can make additional assumptions about
the objective function. For example, if the objective function is strongly convex, one can bound the
number of iterations needed and in that way avoid to have to distribute the available privacy budget
over too many iterations Bassily et al.| (2019). In the case of DNN, the objective function is not convex
and typically not even Lipschitz continuous. Therefore, a common method is to ’clip’ contributed

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

gradients |/Abadi et al.| (2016)), i.e., to divide gradients by the maximum possible norm they may get.
These normalized gradients have bounded norm and hence bounded sensitivity.

In this paper, we argue that gradient clipping may not lead to optimal statistical results (see
Section , and we propose instead to use weight clipping, an idea suggested in |Ziller et al.| (2021]) but
to the best of our knowledge not investigated yet in depth. Moreover, we also propose to consider
the maximum gradient norm given the current position in the search space rather than the global
maximum gradient norm, as this leads to additional advantages. In particular, our contributions are as
follows:

e We introduce an novel approach, applicable to any feed-forward neural network, to compute
gradient sensitivity that when applied in DP-SGD eliminates the need for gradient clipping. This
strategy bridges the gap between Lipschitz-constrained neural networks and DP.

e We present a new algorithm, Lip-DP-SGD, that enforces bounded sensitivity of the gradients We
argue that our approach, based on weight clipping, doesn’t suffer from the bias which the classic
gradient clipping can cause.

e We present an empirical evaluation, confirming that on a range of popular datasets our proposed
method outperforms existing ones.

The remainder of this paper is organized as follows. First, we review a number of basic concepts,
definitions and notations in Section [2| Next, we present our new method in Section [3| and present an
empirical evaluation in Section [d] We discuss related work in Section [5l Finally, we provide conclusions
and directions for future work in Section [6l

2 Preliminaries and background

In this section, we briefly review differential privacy, empirical risk minimization (ERM) and differentially
private stochastic gradient descent (DP-SGD).

We will denote the space of all possible instances by Z and the space of all possible datasets by Z*.
We will denote by [N] = {1... N} the set of the N smallest positive integers.

2.1 Differential Privacy

An algorithm is differentially private if even an adversary who knows all but one instances of a dataset
can’t distinguish from the output of the algorithm the last instance in the dataset. More formally:

Definition 1 (adjacent datasets). We say two datasets Zy,Zo € Z* are adjacent, denoted Zy ~ Zo,
if they differ in at most one element. We denote by Z* the space of all pairs of adjacent datasets.

Definition 2 (differential privacy |Dwork and Roth| (2013)). Let ¢ > 0 and 6 > 0. Let
A Z* — O be a randomized algorithm taking as input datasets from Z*. The algorithm A is
(e, 0)-differentially private ((e,d)-DP) if for every pair of adjacent datasets (Z1,Z2) € Z¥, and for

every subset S C O of possible outputs of A, P(A(Z1) CS) < e“P(A(Z2) CS)+0. If 6 =0 we also
say that A is e-DP.

If the output of an algorithm A is a real number or a vector, it can be privately released thanks to
differential privacy mechanisms such as the Laplace mechanism or the Gaussian mechanism [Dwork
et al. (2006)). While our ideas are more generally applicable, in this paper we will focus on the Gaussian
mechanism as it leads to simplier derivations. In particular, the Gaussian mechanism adds Gaussian
noise to a number or vector which depends on its sensitivity on the input.

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

Definition 3 (sensitivity). The (3-sensitivity of a function f: Z — RP is
F(Z1) = f(Z)]]2

K <f) - Z1,r22a€XZi

Lemma 4 (Gaussian mechanism). Let f : Z — RP be a function. The Gaussian mechanism
transforms f into f with f(Z) = f(Z) + b where b ~ N(0,0%1,) € RP is Gaussian distributed noise. If
the variance satisfies 0® > 21n(1.25/8)(s2(f))?/€, then f is (e,8)-DP.

2.2 Empirical risk minimization

Unless made explicit otherwise we will consider databases Z = {z;}!' ; containing n instances z; =
(x4,yi) € X x Y with X =RP and) = {0, 1} sampled identically and independently (i.i.d.) from an
unknown distribution on Z. We are trying to build a model fy : X — J> (with 37 C R) parameterized
by # € © C RP, so it minimizes the expected loss £(0) = E.[L(6;2)], where L(0;2) = {(fp(x),y) is the
loss of the model fy on data point z. One can approximate L£(6) by

RO:2) =~ S L0m) = - S folxi),v0),
=1 =1

the empirical risk of model fy. Empirical Risk Minimization (ERM) then minimizes an objective
function F'(0, Z) which adds to this empirical risk a regularization term () to find an estimate 6 of
the model parameters:

0 € arg min F0;,7):= R(O; Z) + ()
0cO

where v > 0 is a trade-off hyperparameter.

Feed forward neural networks An important and easy to analyze class of neural networks are
the feed forward networks (FNN). A FNN is a direct acyclic graph where connections between nodes
don’t form cycles.

Definition 5. A FNN fy : R™ — R™ is a function which can be expressed as
K 1
fo=fio. o fi)

where fa(;:) : R — R™k+1, fe(f:) is the k-th layer function parameterized by 0 for 1 < k < K. We
denote the input of f(gf) by xi and its output by xp41. Here, 0 = (01...0k), n=mn1 and m = ng41.

Common layers include fully connected layers, convolutional layers and activation layers. Parameters
of the first two correspond to weight and bias matrices, 0 = (W, By), while activation layers have no
parameter, 0 = ().

2.3 Stochastic gradient descent

To minimize F(, Z), one can use gradient descent, i.e., iteratively for a number of time steps t =1...T
one computes a gradient ¢g(*) = VF(é(t), Z) on the current model 6®) and updates the model setting
00+ = 9 —(£)g® where n(t) is a learning rate. Stochastic gradient descent (SGD) introduces some
randomness and avoids the need to recompute all gradients in each iteration by sampling in each iteration
a batch V C Z and computing an approximate gradient §; = ﬁ <ZLZ|1 VLEOD v;) + b(t)> +yV(6).

To avoid leaking sensitive information, |Abadi et al. (2016 proposes to add noise to the gradients.
Determining good values for the scale of this noise has been the topic of several studies. One simple
strategy starts by assuming an upper bound for the norm of the gradient. Let us first define Lipschitz
functions:

106

107

108

109

110

111

112

113

114

115

116

117

118

119

Definition 6 (Lipschitz function). Let LY > 0. A function f is L9-Lipschitz with respect to some
norm || - || if for all 6,0" € © there holds ||f(0) — f(8")|| < L9||0 —0'||. If [is differentiable and

-1l =1 - ll2, the above property is equivalent to:
V@)l <L, VocO
We call the smallest value LY for which f is L9-Lipschitz the Lipschitz value of f.

Then, from the model one can derive a constant LY such that the objective function is L9-Lipschitz,
while knowing bounds on the data next allows for computing a bound on the sensitivity of the gradient.
Once one knows the sensitivity, one can determine the noise to be added from the privacy parameters
as in Lemma 4| The classic DP-SGD algorithm |Abadi et al.| (2016), which we recall in Algorithm [3[in
Appendix [A] for completeness, clips the gradient of each instance to a maximum value C' (i.e., scales
down the gradient if its norm is above C') and then adds noise based on this maximal norm C.

G = ’é’ lEV:chpC (véz (é@),ui)) b | +yV(0)
=1

where b; is appropriate noise and where

C
clipg (v) = v. min (1,).
o) ol

2.4 Regularization

Several papers [loffe and Szegedy| (2015); [Wu and He| (2018]) have pointed out that regularization can
help to improve the performance of stochastic gradient descent. Although batch normalization [offe
and Szegedy| (2015)) does not provide protection against privacy leakage, group normalization |Wu and
He (2018) has the potential to do so De et al.| (2022)). De et al.| (2022) combines group normalization
with DP-SGD, the algorithm to which we propose an improvement in the current paper. Group
normalization is a technique adding specific layers, called group normalization layers, to the network.
Making abstraction of some elements specific to image datasets, we can formalize it as follows.

For a vector v, we will denote the dimension of v by |v|, i.e., v € R".

If the k-th layer is a normalization layer, then there holds |zy| = |zx11]|. Moreover, the structure of

the normalization layer defines a partitioning I'y = {I'x1 ...y g} of [[zx]], i.e., a partitioning of the

components of ;. The components of zj and x1 are then grouped, and we define x,(c Q) (xkd)gerk

ie. x,(c 9 is a subvector containing a group of components. Similarly, xlgil) = (kaFlJ)jeFk . Then,
»q

the k-th layer performs the following operation:

(ki) L (ko) _ (k)
o = 1) @) = — (a0 —) (1)

(but note we will adapt this in Eq (5])) where

N |Fk q‘
,U(:q) — |Fk7q| Z k,j»
‘Fk q| 2 1/2
gka) — ’Fm Z (x,w (k:q)> +k :

with x a small constant.
Various feature normalization methods primarily vary in their definitions of the partition of features
L q-

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

3 Owur approach

In this work, we constrain the objective function to be Lipschitz, and exploit this to determine sensitivity.
An important advantage is that while traditional DP-SGD controls sensitivity via gradient clipping
of each sample separately, our new method estimates gradient sensitivity based on only the model
in a data-independent way. This is grounded in Lipschitz-constrained model literature (Section ,
highlighting the connection between the Lipschitz value for input and parameter. Subsection
demonstrates the use of backpropagation for gradient sensitivity estimation. Subsection [3.2] delves
into determining an upper Lipschitz bound, and in we introduce Lip-DP-SGD, a novel algorithm
ensuring privacy without gradient clipping.

3.1 Backpropagation

Consider a feed-forward network fy. We define L (0, (zx,y)) = ¢ ((fo(fj) 0...0 fé?) (azk),y>. For
feed-forward networks, backpropagation relies on the subsequent recursive equations:

k
Lk _ OLupr dwiyr _ OLiys Off)
Oxr, Oxpy1 Oxg Oxpy1 Oxy

k
Ly _ OLpy1 Orp1 _ 0Lpa 8f9(k)
89k 8xk+1 8(9k 8xk+1 (‘)Hk ’

f<k> 5k
and ag: are

8£k 8£k 8Lkle
Note that 6, and x; are vectors, so also s oo and Dok i1

Jacobian matrices. In terms of 2-norms there holds

k
Hack <‘az:k+1 oty
Ok ||g || OTky1 |9 || Ok
2
3
e (3)
0Ly, < OLk11 0y,
00, 9 0Tk 0y,
2

Bﬁk 0 mk,y ||

We will use [to denote an upper bound of maxg, . || and Ay to denote the upper

bound of max,, [6= |l2- In particular, we will ensure that lK+1 > maXg ., y |2 (zx41,9)|2 and

SEK+1 (

ofy"
oxy

lg < k41 max
Ty

o1
a0y,

Ak < lk+1 max
Tk

2

By definition |3| and the triangle inequality, the sensitivity of the gradient 88%: is upper bounded by
twice maxg, H%%:H, so Ag > s9 (8&“) /2.

Note that we can easily provide such upper bounds [, and Ay if the layers fék) and the loss £ are
Lipschitz. If so, since all fe(k) and £ are differentiable on any xx, per Rademacher’s theorem |Rademacher

(1919), % ’ is bounded by the Lipschitz value of L. We only need to find a tight upper bound of
this Lipschitz value.

136

137

138

139

140

141

142

143

3.2 Estimating lipschitz values

In this section we bound Lipschitz values of different types of layers. We treat linear operations (e.g.,
linear transformations, convolutions) and activation functions as different layers.

Loss function and activation layer. Examples of Lipschitz losses encompass Softmax Cross-
entropy, Cosine Similarity, and Multiclass Hinge. When it comes to activation layers, layers composed
of an activation function, several prevalent ones, such as ReLLU, tanh, and Sigmoid are 1-Lipschitz. We
provide a detailed list in the Appendix Table

Normalization layer. To be able to easily bound sensitivity, we define the operation of a
normalization layer fe(:) slightly differently than Eq :

k: .
20—) (k) 2 — pla) 5
k1 = o, Tk max(a, 000"

with « an hyperparameter. It is easy to see that the sensitivity is bounded by

af

oz || — qgh%};ju max (o, o(k9)
2

< 1l/a. (6)

Note that a group normalization layer has no trainable parameters.

Linear layers. If fe(,l:) is a linear layer, then

(k)
) =Xz O
0y, OWk, Br) ||y B
7
a3 ow B v
Do | _ Wzt B gy
axk 8a:k 2 kli2:

2

Convolutional layers. There are many types of convolutional layers, e.g., depending on the data
type (strings, 2D images, 3D images ...), shape of the filter (rectangles, diamonds ...). Here we
provide as an example only a derivation for convolutional layers for 2D images with rectangular filter. In
that case, the input layer consists of ny = ¢;nhw nodes and the output layer consists of ngy1 = courhw
nodes with ¢;;, input channels, ¢yt output channels, h the height of the image and w the width. Then,
0, € Rein*courxh’xw" with b/ the height of the filter and w’ the width of the filter. Indexing input and
output with channel and coordinates, i.e., xj, € Rén*"*®W and z; 1 € Reut XX wwe can then write

cin R

w/
Tk+1,c,i,j — § § § xk,d,i—i—r,j—i—sek,c,d,r,s

d=1r=1 s=1

s where components out of range are zero. We can derive (see Appendix for details) that

o
8; < VR W'||0k2 (8)
k
2
ok
fo |\ < iyl ©)
00,
2

145

146

147

148

149

150

151

152

153

154

156

157

158

159

160

161

162

163

164

165

166

167

We summarize the upper bounds of the Lipschitz values, either on the input or on the parameters,
for each layer type in the Appendix Table 2l We can conclude that networks for which the norms of the
parameter vectors 6y are bounded, are Lipschitz networks as introduced in Miyato et al. (2018]), i.e.,
they are FNN for which each layer function fg(;:) is Lipschitz. We will denote by ©<¢ and by ©_¢ the
sets of all paremeter vectors 0 for fy such that ||0x|| < C and ||0x|| = C respectively, for k =1... K.

o)

Computing sensitivty. We will denote by Ly, an upper bound for TZ: and by L;, an upper
af)

bound for Rr We can now introduce Algorithm (1| to compute the sensitivity Ay of layer k.

Here we denote by X} the maximal possible norm of xy, i.e., for all possible inputs xg, ||zx| =

o
k—1
a forward pass to compute the maximal input norms X; — which depends on the previous layer range,

in the case of normalization or activation layers, or on u!_; = min(C, ||@s_1]|) (see Algorithm [2f), in
k—1

H(fe(k_l) ...0 fe(ll))(:cl)H < X}, with X7 the norm on which we scale every input z;. It capitalizes on

the case of linear or convolutional layers (one can verify for each type of layer that uz_l is an upper
bound for ||zk||/||zr-1]]) — and a backward pass applying Equation

Algorithm 1 LAYERSENSITIVITY(f, 6, u®))

1: Input: K layer feed-forward model f, parameters ¢, parameter norm u?), max input norm X7,
upper bound of loss Lipschitz value [g 1.

2: for k=1 to K do > Forward pass
3: if 0, = () then

4: if k-th layer is a normalization layer then

5: Xpy1 min(|zy]2, 25)

6: else > e.g., activation layer
7 Xk+1 — XkLa:k

8: end if

9: else

10: Xk+1 — Xkugf)

11: end if

12: end for

13: for k= K to 1 do > Backward pass
14: I, + lk—f—lek

15: Ak — lk+1L9k

16: end for

17: Output: (Al,...,AK_l,AK).

3.3 Lip-DP-SGD

We introduce a novel differentially private stochastic gradient descent algorithm, called Lip-DP-SGD,
that leverages the estimation of the per-layer sensitivity of the model to provide differential privacy
without gradient clipping.

Theorem 7. Given a feed-forward model fy composed of Lipschitz constrained operators, a Lipschitz
loss £ and a bounded input norm X1, LiIP-DP-SGD is differentially private.

Indeed, Lip-DP-SGD utilizes the Gaussian mechanism. The gradient’s sensitivity is determined
without any privacy costs, as it depends only on the current parameter values (which are privatized in
the previous step, and post-processing privatized values doesn’t take additional privacy budget) and
not on the data.

168

169

170

171

172

173

174

175

176

177

178

179

180

181

Algorithm 2 Lir-DP-SGD: Differentially Private Stochastic Gradient Descent with Lipschitz con-
strains.
1: Input: Data set Z € Z*, feed-forward model fy, loss function £, hypothesis space © C R* number
of epochs T, noise multiplier o, batch size s > 1, learning rate 7, max gradient norm C

2: Initialize 6 randomly from ©

3. (u?,0) « CLIPWEIGHTS(6,C)

4: for t € [T] do

5: (AR)E |+ LAYERSENSITIVITY(f, 0, u(®)

6: V0 > Poisson sampling
7: while V = () do

8: for z € Z do

9: With probability s/|Z|: V <+ V U{z}

10: end for

11: end while

12: for k=1...K do > gradient per layer
13: Draw by, ~ N(0,02AZ1)

1 g < 11 (S V5, 05w + b

15: O < Ok — n(t)gr

16: end for

17 (u?,0) « CLiPWEIGHTS(6,0)

18: end for

19: Output: 6 and compute (e,0) with privacy accountant.
20: function CLIPWEIGHTS(6, C)

21: for k=1...K do

22: if 0y # () then

23: ul? min(C, |16;]))

24: O < u"0:/ 61|

25: end if

26: end for

27 return (u(?),9)

28: end function

Privacy accounting. Lip-DP-SGD adopts the same privacy accounting as DP-SGD. Specifically,
the accountant draws upon the privacy amplification Kasiviswanathan et al.| (2011) brought about
by Poisson sampling and the Gaussian moment accountant Abadi et al.| (2016). It’s worth noting
that while we utilized the Renyi Differential Privacy (RDP) accountant Abadi et al. (2016]); Mironov
et al. (2019) in our experiments, Lip-DP-SGD is versatile enough to be compatible with alternative
accountants.

Requirements. As detailed in Section [3.2] the loss and the model operators need to be Lipschitz and
the norm of the input needs to be bounded. We’ve enumerated several losses and operators that meet
these criteria in the Appendix Table 2l While we use the spectral norm to characterize Lipschitzness
Yoshida and Miyato| (2017)); Miyato et al.| (2018]) in our study other methods are also available, as
discussed in |Arjovsky et al.| (2017)).

ClipWeights. The CLIPWEIGHTS function is essential to the algorithm, ensuring Lipschitzness,
which facilitates model sensitivity estimation. As opposed to standard Lipschitz-constrained networks
Yoshida and Miyato (2017)); Miyato et al. (2018) which increase or decrease the norms of parameters

182

184

185

186

187

188

189

190

191

192

194

195

196

197

199

200

201

202

203

204

205

206

207

208

210

211

212

213

214

215

216

217

218

219

220

221

to make them equal to a pre-definied value, our approach normalizes weights only when their current
norm exceeds a threshold. This results in adding less DP noise for smaller norms. Importantly, as 6 is
already made private in the previous iteration, its norm is private too.

Computation techniques. For both Algorithm [I] and CLIPWEIGHTS it’s crucial to compute the
greatest singular matrix values efficiently. A renowned technique is the power method von Mises and
Pollaczek-Geiringer| (1929). If this isn’t sufficiently fast, the power method can be enhanced using
AutoGrad Scaman and Virmaux (2019). Another idea is to use the Frobenius norm, which is faster
to compute but may have drawbacks in terms of tightly bounding the norm. As computing spectral
norms is relatively costly, we avoid to recompute them by storing them in «(?) in Algorithm

3.4 Avoiding the bias of gradient clipping

Our Lip-DP-SGD algorithm finds a local optimum (for #) of F'(0, Z) in ©<¢ while DP-SGD doesn’t
necessarily find a local optimum of F'(,Z) in ©. In particular, we prove in Appendix [E| the following

Theorem 8. Let F' be an objective function as defined in Section [2.2, and Z, fo, L, © = O<c,
T, 0 =0,s,n and C be input parameters of Lip-DP-SGD satisfying the requirements specified in
Section . Assume that for these inputs Lip-DP-SGD converges to a point 6* (in the sense that
limy, 7—y00 O = 0%). Then, 0* is a local optimum of F(0,Z) in O<c.

Essentially, making abstraction of the unbiased DP noise, the effect of scaling weight vectors to
have bounded norm after a gradient step is equivalent to projecting the gradient on the boundary of
the feasible space if the gradient brings the parameter vector out of ©<¢.

Furthermore, |Chen et al.| (2020) shows an example showing that gradient clipping can introduce
bias. We add a more detailed discussion in Appendix [E] Hence, DP-SGD does not necessarily converge
to a local optimum of F(, Z), even when sufficient data is available to estimate #. While Lip-DP-SGD
can only find models in ©<¢ and this may introduce another suboptimality, as our experiments will
show this is only a minor drawback in practice, while also others observed that Lipschitz networks have
good properties Béthune et al.| (2023). Moreover, it is easy to check whether Lip-DP-SGD outputs
parameters on the boundary of ©<¢ and hence the model could potentially improve by relaxing the
weight norm constraint. In contrast, it may not be feasible to detect that DP-SGD is outputting
potentially suboptimal parameters. Indeed, consider a federated learning setting (e.g., Bonawitz et al.
(2017))) where data owners collaborate to compute a model without revealing their data. Each data
owner locally computes a gradient and clips it, and then the data owners securely aggregate their
gradients and send the average gradient to a central party updating the model. In such setting, for
privacy reasons no party would be able to evaluate that gradient clipping introduces a strong bias in
some direction. Still, our experiments show that in practice at the time of convergence for the best
hyperparameter values clipping is still active for a significant fraction of gradients (See Appendix

4 Experimental results

In this section, we conduct an empirical evaluation of our approach.

4.1 Experimental setup

We consider the following experimental questions:
Q1 How does Lip-DP-SGD, our proposed technique, compare against the conventional DP-SGD as
introduced by [Abadi et al. (2016)7

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

Q2 What is the effect of allowing ||0x|| < C rather than normalizing ||6x|| to C7 This question seems
relevant given that some authors (e.g., Béthune et al.| (2023))) also suggest to consider networks
which constant gradient norm rather than maximal gradient norm, i.e., roughly with 6 in ©_¢
rather than O<¢.

Implementation. We implemented both the DP-SGD and Lip-DP-SGD methods to ensure that
comparisons were made under consistent model structures and preprocessing conditions.
To answer question Q2, we also implemented Fix-Lip-DP-SGD, a version of Lip-DP-SGD limited to

networks whose weight norms are fixed, i.e., Vk : ||0x|| = C, obtained by setting u,(f) <+ C in Line [23|in
Algorithm

Hyperparameters. We selected a number of hyperparameters to tune for our experiments, aiming
at making a fair comparison between the studied techniques while minimizing the distractions of
potential orthogonal improvements. To optimize these hyperparameters, we used Bayesian optimization
Balandat et al.| (2020)). Appendix provides a detailed discussion.

Datasets and models. We carried out experiments on both tabular datasets and datasets with
image data. First, we consider a collection of 7 real-world tabular datasets (names and citations in
Table . For these, we trained multi-layer perceptrons (MLP). A comprehensive list of model-dataset
combinations is available in the Appendix Table

Second, the image datasets include MNIST |Deng| (2012), Fashion-MNIST Xiao et al.| (2017) and
CIFAR-10 Krizhevsky et al.| (2009). For these, we trained convolutional neural networks (CNN). We
consider both networks with and without group normalization (see Section or (Wu and He (2018])).
The networks using group normalization have normalization layers added after every convolutional
layer. We opted for the accuracy to facilitate easy comparisons with prior research.

Infrastructure. All experiments were orchestrated across dual Tesla P100 GPU platforms (12GB
capacity), operating under CUDA version 10, with a 62GB RAM provision for Fashion-MNIST and
CIFAR-10. Remaining experiments were performed on an E5-2696V2 Processor setup, equipped with
8 vCPUs and a 52GB RAM cache. The total runtime of the experiments was approximately 50 hours,
which corresponds to an estimated carbon emission of 1.96 kg Lacoste et al.| (2019). More details on
the experimental setup and an analysis of the runtime can be found in Appendix [C]

—4— DP-5GD w/ GroupNorm 2 +’ —4— DP-SGD w/ GroupNorm
~# DP-5GD w/o GroupNorm / =4 DPSGD wJo GroupNorm
—k— Lip-DP-SGD w/ GroupNorm * —— Lip-DP-SGD w/ GroupNorm
090 065 ~k Lip-DP-SGD wlo GroupNorm = k- Lip-DP-SGD wfo GroupNorm
10° 10t 10° 10t 10° 10!
Epsilon Epsilon Epsilon
(a) MNIST (b) Fashion-MNIST (c) CIFAR-10

Figure 1: Accuracy results, with a fixed § = 107°, for the MNIST , Fashion-MNIST ([1(b))), and
CIFAR-10 datasets, comparing Lip-DP-SGD (in red) and DP-SGD (in blue), lines are dashed
when the underlying model is implemented without group normalization. Vertical lines represent the
standard error of the mean. See Appendix for details on model specifications and hyperparameters.

10

250

251

252

253

254

255

256

257

259

260

261

262

263

264

265

266

267

268

269

271

272

273

274

275

276

277

278

279

280

Table 1: Accuracy and e per dataset and method at 6 = 1/n, in bold the best result and underlined
when the difference with the best result is not statistically significant at a level of confidence of 5%.

Methods DP-SGD Lip-DP-SGD Fix-Lip-DP-SGD
Datasets (#instances n x #features p) €

Adult Income (48842x14) Becker et al. (1996 0.414 0.824 0.831 0.804
Android (29333x87) [Mathur et al.| (2022) 1.273 0.951 0.959 0.945
Breast Cancer (569x32) Wolberg et al|(1995) 1.672 0.773 0.798 0.7
Default Credit (30000x24) [Yeh (2016)) 1.442 0.809 0.816 0.792
Dropout (4424x36) Realinho et al.| (2021) 1.326 0.763 0.819 0.736
German Credit (1000x20) Hofmann (1994)) 3.852 0.735 0.746 0.768
Nursery (12960x8) Rajkovic| ((1997) 1.432 0.919 0.931 0.89

4.2 Results

Image datasets. In Figure[l] Lip-DP-SGD demonstrates comparable or superior performance to
DP-SGD for MNIST, Fashion-MNIST, and CIFAR-10 when not combined with group normalization.
The inclusion of the normalization technique enhances the accuracy of DP-SGD, as discovered by [De
et al.| (2022)), and Lip-DP-SGD, with the latter experiencing a more significant improvement, except for
CIFAR-10. It is noteworthy that other explored regularization techniques by De et al. (2022)) enhance
our method but to a similar extent as DP-SGD, see Appendix

Tabular datasets. In Table |l we perform a Wilcoxon Signed-rank test, at a confidence level of 5%,
on 10 measures of accuracy for each dataset between the DP-SGD based on the gradient clipping and
the Lip-DP-SGD based on our method. Lip-DP-SGD consistently outperforms DP-SGD in terms of
accuracy. This trend holds across datasets with varying numbers of instances and features, including
tasks with imbalanced datasets like Dropout or Default Credit datasets. While highly impactful
for convolutional layers, group normalization does not yield improvements for either DP-SGD or
Lip-DP-SGD in the case of tabular datasets. See Appendix [C.4] for complete results.

Additionally, Table [I| presents the performance achieved by constraining networks to Lipschitz
networks, where the norm of weights is set to a constant, denoted as Fix-Lip-DP-SGD. The results
from this approach are inferior, even when compared to DP-SGD.

Conclusion. In summary, we can conclude that we can answer to our experimental questions that
Lip-DP-SGD outperforms DP-SGD on both tabular data sets with MLP and image data sets with
CNN. Moreover, it is beneficial to not normalize the norm of the weight vector 6 to a fixed value but
to exploit cases where it becomes smaller.

5 Related Work

DP-SGD. DP-SGD algorithms have been developped to guarantee privacy on the final output
Chaudhuri et al.| (2011, on the loss function Kifer et al. (2012) or on the publishing of each gradient
used in the descent Bassily et al.| (2014); |Abadi et al.| (2016).

To keep track of the privacy budget consumption, |Bassily et al.| (2014) relies on the strong
composition theorem Dwork et al.| (2010) while |Abadi et al.| (2016]) is based on the moment accountant
and gives much tighter bounds on the privacy loss than Bassily et al.| (2014)).

This has opened an active field of research that builds upon |Abadi et al.|(2016) in order to provide
better estimation of the hyperparameters e.g., the clipping norm McMahan et al.| (2017); Andrew:
et al. (2022), the learning rate |Koskela and Honkela (2020)), or the step size of the privacy budget

11

281

282

283

284

285

286

287

289

290

201

292

294

295

296

297

208

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

consumption [Lee and Kifer (2018); |Chen and Lee, (2020); Yu et al.| (2019); or to enhance performance
with regularization techniques De et al.| (2022). Gradient clipping remains the standard approach, and
most of these ideas can be combined with our improvements, the most beneficial combination being
the use of group normalization (Section [4.2)).

Lipschitz continuity. Lipschitz continuity is an essential requirement for differential privacy in
some private SGD algorithms Bassily et al.| (2014). However, since deep neural networks (DNNs) have
an unbounded Lipschitz value Scaman and Virmaux (2019), it is not possible to use it to scale the
added noise. Several techniques have been proposed to enforce Lipschitz continuity to DNNs, especially
in the context of generative adversarial networks (GANs) Miyato et al,| (2018); |Gouk et al.| (2020).
These techniques, which mainly rely on weight spectral normalization, can be applied to build DP-SGD
instead of the gradient clipping method, as described in Section [3| Bethune et al.| (2023) suggests
a number of ideas in the direction of our Fix-Lip-DP-SGD variant, but has only limited empirical
evaluation. Our paper shows that Lip-DP-SGD outperforms Fix-Lip-DP-SGD (Table [1]), and highlights
the great synergy between weight normalization and group normalization (Figure [1)).

6 Conclusion and discussion

In this paper we proposed a new differentially private stochastic gradient descent algorithm without
gradient clipping. We derived a methodology to estimate the gradient sensitivity to scale the noise. An
important advantage of weight clipping over gradient clipping is that it avoids the bias introduced by
gradient clipping and the algorithm converges to a local optimum of the objective function. We showed
empirically that this yields a significant improvement in practice and we argued that this approach
circumvent the bias induced by classical gradient clipping.

Several opportunities for future work remain. First, it would be interesting to better integrate
and improve ideas such as in Scaman and Virmaux| (2019) to find improved bounds on gradients of
Lipschitz-constrained neural networks, as this may allow to further reduce the amount of noise needed.

Second, various optimizations of the computational efficiency are possible. Currently one of the
most important computational tasks is the computation of the spectral norm. Other approaches to
more efficiently compute or upper bound it can be explored. One alternative direction would be to
investigate the Frobenius norm which is less costly to compute but may have other disadvantages.

Our current work is limited to the application of our proposed method on feed-forward models for
classification tasks and regression tasks with Lipschitz loss function. Although our method can be
easily applied to some other tasks, the field remains open to extend it to other classes of models.

Finally, while our experiments have shown promising results, further theoretical analysis of Lip-DP-
SGD, especially the interaction between sensitivity, learning rate and number of iterations, remains
an interesting area of research, similar to the work of [Song et al.| (2020) on DP-SGD. An analysis on
the interactions between hyperparameters would provide valuable insights into the optimal use of our
method and its potential combination with other regularization techniques.

Acknowledgements

This work was partially supported by the Horizon Europe TRUMPET project grant no 101070038 and
the ANR PMR project grant no ANR-20-CE23-0013.
References

Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K., and Zhang, L. (2016).
Deep Learning with Differential Privacy. Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 308-318. arXiv: 1607.00133.

12

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

Andrew, G., Thakkar, O., McMahan, H. B., and Ramaswamy, S. (2022). Differentially Private
Learning with Adaptive Clipping. In Advances in Neural Information Processing Systems. arXiv.
arXiv:1905.03871 [cs, stat].

Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein generative adversarial networks. In
Proceedings of the 34th International Conference on Machine Learning - Volume 70, ICML’17, page
214-223. JMLR.org.

Balandat, M., Karrer, B., Jiang, D. R., Daulton, S., Letham, B., Wilson, A. G., and Bakshy, E. (2020).
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization. arXiv:1910.06403 [cs,
math, stat].

Bassily, R., Feldman, V., Talwar, K., and Guha Thakurta, A. (2019). Private Stochastic Convex
Optimization with Optimal Rates. In Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc.

Bassily, R., Smith, A., and Thakurta, A. (2014). Private empirical risk minimization: Efficient
algorithms and tight error bounds. In 2014 IEEE 55th Annual Symposium on Foundations of
Computer Science, pages 464-473.

Becker, Barry, Kohavi, and Ronny (1996). Adult. UCI Machine Learning Repository. DOI: 10.24432/
C5XW20.

Bethune, L., Massena, T., Boissin, T., Prudent, Y., Friedrich, C., Mamalet, F., Bellet, A., Serrurier,
M., and Vigouroux, D. (2023). Dp-sgd without clipping: The lipschitz neural network way.

Béthune, L., Novello, P., Coiffier, G., Boissin, T., Serrurier, M., Vincenot, Q., and Troya-Galvis, A.
(2023). Robust one-class classification with signed distance function using 1-lipschitz neural networks.
In Proceedings of the 40th International Conference on Machine Learning, ICML’23. JMLR.org.

Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan, H. B., Patel, S., Ramage, D., Segal,
A., and Seth, K. (2017). Practical secure aggregation for privacy-preserving machine learning. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS
17, page 1175-1191, New York, NY, USA. Association for Computing Machinery.

Chaudhuri, K., Monteleoni, C., and Sarwate, A. D. (2011). Differentially Private Empirical Risk
Minimization. Journal of Machine Learning Research, page 41.

Chen, C. and Lee, J. (2020). Stochastic adaptive line search for differentially private optimization. In
2020 IEEE International Conference on Big Data (Big Data), pages 1011-1020.

Chen, X., Wu, S. Z., and Hong, M. (2020). Understanding gradient clipping in private sgd: A geometric
perspective. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H., editors, Advances
in Neural Information Processing Systems, volume 33, pages 13773-13782. Curran Associates, Inc.

Daulton, S., Balandat, M., and Bakshy, E. (2020). Differentiable Expected Hypervolume Improvement
for Parallel Multi-Objective Bayesian Optimization. arXiv:2006.05078 [cs, math, stat].

De, S., Berrada, L., Hayes, J., Smith, S. L., and Balle, B. (2022). Unlocking High-Accuracy Differentially
Private Image Classification through Scale. arXiv preprint arXiv:2204.13650.

Deng, L. (2012). The mnist database of handwritten digit images for machine learning research. IEFE
Signal Processing Magazine, 29(6):141-142.

13

10.24432/C5XW20
10.24432/C5XW20
10.24432/C5XW20

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

Dwork, C., McSherry, F., Nissim, K., and Smith, A. (2006). Calibrating Noise to Sensitivity in Private
Data Analysis. In Halevi, S. and Rabin, T., editors, Theory of Cryptography, pages 265—284, Berlin,
Heidelberg. Springer Berlin Heidelberg.

Dwork, C. and Roth, A. (2013). The Algorithmic Foundations of Differential Privacy. Foundations
and Trends®) in Theoretical Computer Science, 9(3-4):211-407.

Dwork, C., Rothblum, G. N.; and Vadhan, S. (2010). Boosting and Differential Privacy. In 2010 IEEE
51st Annual Symposium on Foundations of Computer Science, pages 51-60, Las Vegas, NV, USA.
IEEE.

Gouk, H., Frank, E., Pfahringer, B., and Cree, M. J. (2020). Regularisation of neural networks by
enforcing lipschitz continuity.

Hofmann, H. (1994). Statlog (German Credit Data). UCI Machine Learning Repository. DOI:
10.24432/C5NC77.

Toffe, S. and Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift. ICML.

Kasiviswanathan, S. P., Lee, H. K., Nissim, K., Raskhodnikova, S., and Smith, A. (2011). What can
we learn privately? SIAM Journal on Computing, 40(3):793-826.

Kifer, D., Smith, A., and Thakurta, A. (2012). Private Convex Empirical Risk Minimization and
High-dimensional Regression. In Proceedings of the 25th Annual Conference on Learning Theory,
pages 25.1-25.40. JMLR Workshop and Conference Proceedings. ISSN: 1938-7228.

Kingma, D. and Ba, J. (2014). Adam: A method for stochastic optimization. International Conference
on Learning Representations.

Koskela, A. and Honkela, A. (2020). Learning Rate Adaptation for Differentially Private Learning. In
Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics,
pages 2465-2475. PMLR. ISSN: 2640-3498.

Krizhevsky, A., Nair, V., and Hinton, G. (2009). Cifar-10 (canadian institute for advanced research).
URL hitp://www. cs. toronto. edu/kriz/cifar. html.

Lacoste, A., Luccioni, A., Schmidt, V., and Dandres, T. (2019). Quantifying the carbon emissions of
machine learning.

Lee, J. and Kifer, D. (2018). Concentrated differentially private gradient descent with adaptive
per-iteration privacy budget. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, KDD ’18, page 1656-1665, New York, NY, USA. Association
for Computing Machinery.

Mathur, Akshay, Mathur, and Akshay (2022). NATICUSdroid (Android Permissions) Dataset. UCI
Machine Learning Repository.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and Arcas, B. A. y. (2017). Communication-
Efficient Learning of Deep Networks from Decentralized Data. In Singh, A. and Zhu, J., editors,
Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, volume 54
of Proceedings of Machine Learning Research, pages 1273-1282. PMLR.

Mironov, I., Talwar, K., and Zhang, L. (2019). Rényi Differential Privacy of the Sampled Gaussian
Mechanism. arXiv e-prints, page arXiv:1908.10530.

14

10.24432/C5NC77

403

404

405

406

407

408

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. (2018). Spectral normalization for generative
adversarial networks. In Advances in Neural Information Processing Systems.

Papernot, N. and Steinke, T. (2022). Hyperparameter Tuning with Renyi Differential Privacy. In
International Conference on Learning Representations. arXiv. arXiv:2110.03620 [cs].

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy,
S., Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019). Pytorch: An imperative style, high-
performance deep learning library. In Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F.,
Fox, E., and Garnett, R., editors, Advances in Neural Information Processing Systems 32, pages
8024-8035. Curran Associates, Inc.

Rademacher, H. (1919). Uber partielle und totale differenzierbarkeit von funktionen mehrerer variabeln
und iiber die transformation der doppelintegrale. Mathematische Annalen, 79:340-359.

Rajkovic, V. (1997). Nursery. UCI Machine Learning Repository. DOI: |10.24432/C5P88W.

Realinho, V., Vieira Martins, M., Machado, J., and Baptista, L. (2021). Predict students’ dropout and
academic success. UCI Machine Learning Repository. DOI: [1.

Scaman, K. and Virmaux, A. (2019). Lipschitz regularity of deep neural networks: analysis and efficient
estimation. In Advances in Neural Information Processing Systems. arXiv. arXiv:1805.10965 [cs,
stat].

Song, S., Steinke, T., Thakkar, O., and Thakurta, A. G. (2020). Evading the curse of dimensionality
in unconstrained private generalized linear problems. In Proceedings of the 23th International
Conference on Artificial Intelligence and Statistics.

von Mises, R. and Pollaczek-Geiringer, H. (1929). Praktische verfahren der gleichungsauflésung .
Zamme-zeitschrift Fur Angewandte Mathematik Und Mechanik, 9:58-77.

Wolberg, William, Mangasarian, Olvi, Street, Nick, and Street, W. (1995). Breast Cancer Wisconsin
(Diagnostic). UCI Machine Learning Repository. DOI: 10.24432/C5DW2B.

Wu, Y. and He, K. (2018). Group normalization. International Journal of Computer Vision, 128:742 —
755.

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-MNIST: a Novel Image Dataset for Benchmarking
Machine Learning Algorithms. arXiv:1708.07747 [cs, stat].

Yeh, I.-C. (2016). default of credit card clients. UCI Machine Learning Repository. DOI: 10.24432/
C55S3H.

Yoshida, Y. and Miyato, T. (2017). Spectral Norm Regularization for Improving the Generalizability
of Deep Learning. arXiv:1705.10941 [cs, stat].

Yu, L., Liu, L., Pu, C., Gursoy, M. E., and Truex, S. (2019). Differentially Private Model Publishing
for Deep Learning. In 2019 IEEE Symposium on Security and Privacy (SP), pages 332-349.
arXiv:1904.02200 [cs].

Ziller, A., Usynin, D., Knolle, M., Prakash, K., Trask, A., Braren, R., Makowski, M., Rueckert, D.,
and Kaissis, G. (2021). Sensitivity analysis in differentially private machine learning using hybrid
automatic differentiation. arXiv:2107.04265 [cs].

15

10.24432/C5P88W
1
10.24432/C5DW2B
10.24432/C55S3H
10.24432/C55S3H
10.24432/C55S3H

« A Gradient clipping based DP-SGD

a3 For comparison with Algorithm [2] Algorithm [3] shows the classic DP-SGD algorithm based on gradient

444

445

446

447

448

449

clipping.

Algorithm 3 DP-SGD: Differentially Private Stochastic Gradient Descent with gradient clipping.

Input: Data set Z € Z*, model fy, loss function £, hypothesis space © C R¥, privacy parameters e
and ¢, noise multiplier o, batch size s > 1, learning rate 7, max gradient norm C

Initialize 6 randomly from ©
for t € [T] do
V0
while S = do
for z € Z do

With probability s/|Z|: V «+ V U{z}

end for
end while
Draw by, ~ N(0,02C?I)
fori=1...]V|do

> Poisson sampling

> Gradient clipping per sample

Gk < Vg 0(f5(x:) min(1,C/ (Vg L(f(:;0))])

end for ;
Gk ﬁ (ZLZQ Ok + bk)
O < O — n(t) gk

end for

Output: 6 and compute privacy cost (e,0) with privacy accountant.

B Estimating Lipschitz values

We summarize the upper bounds of the Lipschitz values, either on the input or on the parameters, for
each layer type in Table 2| It’s important to mention that for the loss, the Lipschitz value is solely

dependent on the output g 1.

Layer Definition Lip. value on input z;, Lip. value on parameter 6
Dense 0] i, [0k [
Convolutional Oy * xp, VW |6 VR W || x|
o 2D _ (ki)
Normalization (e D) 1/ -
ReLU max(z, 0) 1 -
Sigmoid H_e%zk 1/2 -

Softmax Cross-entropy ylog SOFTMAX(xf41)/T

V2/T

T
Tri1Y

COSlne Slmllarlty m

1/ min [41|

Multiclass Hinge {max (O, = Tige, yl)}

1

Table 2: Summary table of Lipschitz values with respect to the layer.

exp(x;)

with SOFTMAX(z;) = S ep(@) € the number of classes. For cross-entropy, 7 an hyperparameter
j=1 J

s0 on the Softmax Cross-entropy loss also known as the temperature. For convolutional layers, h’ and w’
are the height and width of the filter. For multiclass hinge, m is a hyperparameter known as 'margin’.

451

16

52 B.1 Details for the convolutional layer

Theorem 9. The convolved feature map (0 % -) : R ¥Iokl — Rok1X0X0 it zero or circular padding,
1s Lipschitz and

Vo, (O * zk)ll2 < VIW [wk]l2 and [|Vay, (Or * zi)ll2 < VAW 0k 2 (10)
i3 with w' and h' the width and the height of the filter.

Proof. The output z;,q € ReuwX™™ of the convolution operation is given by:

cin—1h'—1w'—1

Tk+1,cr,8 = Z E E xk,d,r+z‘,s+j9k,c,d,i,j

d=0 i=0 j=0

assa There follows:

2
cin—1h'—1w'—1

2
||$k+1||2 = E E E l‘kdr—i—zs—&—] k,c,d,i,j
c=0 r=1s=1 d=0 =0 ;=0
Cout—1 m n cin—1h' —1w'—1 cin—1h' —1w'—1
2 2
< Z xk,d,r+i,s+_y Z Z Z ek,c d,i,j
r=1s=1 =0 =0 j=0 d=0 =0 35=0

2
D2 Tharrisns | | 2 2 20 D hedi

c=
cmflh’ lw'—-1 n n Cout—1 Cin—1h —1w'—1
d 0 i= 0 j=0 r=1s=1 c=0 d=0 =0 j=

=0
cin—1 n n Ccout—1cin—1h' —1w'—1
< () (% »
d=

0 r=1s=1 c=0 d=0 i=0 j=0

= Bw'|lzg2l|0kl2
Since 0, * - is a linear operator:
1Ok * zk) — (O * zi)ll2 = [|(O — O) * zill2 < [0k — Oll2V AW |2k 2

Finally, the convolved feature map is differentiable so the spectral norm of its Jacobian is bounded
by its Lipschitz value:

IV, (61 % i) |2 < VI'W |lag|2

Analogously,

[V, (O * z)l|2 < VAW ||0k]]2
455]

« C Experiments

57 Optimization. For both tabular and image datasets, we employed Bayesian optimization |Balandat
s |et al.| (2020). Configured as a multi-objective optimization program Daulton et al.| (2020), our focus
559 was to cover the Pareto front between model utility (accuracy) and privacy (e values at a constant level
w0 of 0, set to 1/n as has become common in this type of experiments). To get to finally reported values,
w61 we select the point on the pareto front given by the Python librairy BoTorch Balandat et al.| (2020).

17

462

463

464

465

466

467

469

470

471

472

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

C.1 Hyperparameters

Hyperparameter selection. In the literature, there are a wide range of improvements possible over
a direct application of SGD to supervised learning, including general strategies such as pre-training,
data augmentation and feature engineering, and DP-SGD specific optimizations such as adaptive
maximum gradient norm thresholds. All of these can be applied in a similar way to both Lip-DP-SGD
and DP-SGD and to keep our comparison sufficiently simple, fair and understandable we didn’t consider
the optimization of these choices.

We did tune hyperparameters inherent to specific model categories, in particular the initial learning
rate 1(0) (to start the adaptive learning rate strategy 7(t)) and (for image datasets) the number of
groups, and hyperparameters related to the learning algorithm, in particular the (expected) batch size
s, the Lipschitz upper bound of the normalization layer o and the threshold C on the gradient norm
respectively weight norm.

The initial learning rate 1(0) is tuned while the following 7(t) are set adaptively. Specifically, we
use the strategy of the Adam algorithm [Kingma and Ba/ (2014), which update each parameter using
the ratio between the moving average of the gradient (first moment) and the square root of the moving
average of its squared value (second moment), ensuring fast convergence.

We also investigated varying the maximum norm of input vectors Xy and the hyperparameter
7 of the cross entropy objective function, but the effect of these hyperparameters turned out to be
insignificant.

Both the clipping threshold C for gradients in DP-SGD and the clipping threshold C for weights
in Lip-DP-SGD can be tuned for each layer separately. While this offers improved performance, it
does come with the cost of consuming more of the privacy budget, and substantially increasing the
dimensionality of the hyperparameter search space. In a few experiments we didn’t see significant
improvements in allowing per-layer varying of Cj, so we didn’t further pursue this avenue.

Table [3| summarizes the search space of hyperparameters. It’s important to note that we did
not account for potential (small) privacy losses caused by hyperparameter search, a limitation also
acknowledged in other recent works such as Papernot and Steinke| (2022).

Hyperparameter Range

Noise multiplier o (0.4, 5]

Weight clipping threshold C [1, 15]
Gradient clipping threshold C (1, 15]
Batch size s (32, 512]

(0) [0.0001, 0.01]
Number of groups (group normalization) 8, 32
a (group normalization) 0.1/(z5)), 1/

Table 3: Summary of hyperparameter space.

C.2 Models

Table (] shows details of the models we used to train on tabular and image datasets. We consider 7
tabular datasets: adult income [Becker et al.| (1996), android permissions [Mathur et al. (2022]), breast
cancer \Wolberg et al. (1995), default credit |Yeh (2016), dropout Realinho et al.| (2021), German credit
Hofmann| (1994) and nursery Rajkovic (1997). See Table [1| for the number of instances and features for
each tabular dataset.

18

496

497

498

500

501

502

503

504

505

506

507

508

509

510

Dataset Image size Model Number of layers Loss No. of Parameters
Tabular Datasets - MLP 2 CE 140 to 2,120
MNIST 28x28x1 ConvNet 3 CE 83,154
FashionMNIST 28x28x1 ConvNet 6 CE 132,746
CIFAR-10 32x32x3 ShallowVGG 6 CE 131,466

Table 4: Summary table of datasets with respective models architectures details.

200
—8— DP-5GD —e— DP-SGD

20 7 == Lip-DP-5GD —d— Lip-DP-SGD
175

150 A
15 1

125 A

=
=)
=]

1.0 1

Runtime (s)
Runtime (s)

05 A

0.0 1

T T T T T T T T T T T T T T T T T T
o 2500 5000 7500 10000 12500 15000 17500 20000 0 2500 5000 7500 10000 12500 15000 17500 20000
Batch size Batch size

(a) Default Credit (b) MNIST

Figure 2: Mean runtime in seconds per batch size on one epoch over the Default Credit dataset
and the MNIST dataset comparing DP-SGD (in blue) and Lip-DP-SGD (in red).

C.3 Runtime

Our experiments didn’t show significant deviations from the normal runtime behavior one can expect
for neural network training. As an illustration, we compared on the Default Credit dataset and on the
MNIST dataset the mean epoch runtime of DP-SGD with Lip-DP-SGD. We measure runtime against
the logical batch size, limiting the physical batch size to prevent memory errors as recommended by the
PyTorch documentation [Paszke et al. (2019)). Figure |2 shows how Lip-DP-SGD is slightly inefficient in
terms of runtime compared to DP-SGD, especially on image datasets. It may be possible to further
improve Lip-DP-SGD runtime as it currently heavily relies on the data sampler provided by Opacus,
which processes data per instance, while applying batch processing techniques inspired on PyTorch
would be more efficient. The staircase shape of the plot seems to be a result of PyTorch and Python
memory management strategies.

C.4 Detailed results

Table [5] provides a summary of accuracy performances for tabular datasets with and without group
normalization. It’s worth noting that while epsilon values may not be identical across algorithms, we
present the epsilon value of DP-SGD and report performances corresponding to lower epsilon values
for the other two algorithms, consistent with Table

19

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

Table 5: Accuracy per dataset and method at € = 1 and § = 1/n, in bold the best result and underlined
when the difference with the best result is not statistically significant at a level of confidence of 5%.

Methods DP-SGD Lip-DP-SGD Fix-Lip-DP-S(
Datasets (#instances n x #features p) e w/GN w/oGN w/GN w/oGN w/GN w/o(
Adult Income (48842x14) Becker et al. (1996) 0.414 0.822 0.824 0.829 0.831 0.713 0.¢
Android (29333x87) [Mathur et al.| (2022) 1.273 0.947 0.951 0.952 0.959 0.701 0.¢
Breast Cancer (569x32) Wolberg et al|(1995) 1.672 0.813 0.773 0.924 0.798 0.519 |
Default Credit (30000x24) [Yeh (2016)) 1.442 0.804 0.809 0.815 0.816 0.774 0.
Dropout (4424x36) Realinho et al.| (2021) 1.326 0.755 0.763 0.816 0.819 0.573 0.1
German Credit (1000x20) Hofmann (1994)) 3.852 0.735 0.735 0.722 0.746 0.493 0
Nursery (12960x8) Rajkovic| ((1997) 1.432 0.916 0.919 0.912 0.931 0.487 0

C.5 Gradient clipping behavior

In Section we argued that DP-SGD introduces bias. There are several ways to demonstrate this.
For illustration we show here the error between the true average gradient

V]
. 1
gLiv=DP=SGD _ mE:Vg,f(fé(wz’))
=1

i.e., the model update of Algorithm [2] without noise, and the average clipped gradient

[V]
1
DP—-SGD __ E : V5 (-
9y, - ‘V‘ pa ChpC(Gkg(fg(xl))) 3

i.e., the model update of Algorithm [3] without noise.

Figure |3| shows the error g,fip*DP*SGD — g,?PiSGDH together with the norm of the DP-SGD

model update Hg,?PiSGD

One can observe for both considered datasets that while the model converges and the average
clipped gradient decreases, the error between DP-SGD’s average clipped gradient and the true average
gradient increases. At the end, the error in the gradient caused by clipping is significant, and hence
the model converges to a different point than the real optimum.

C.6 Regularization techniques.

In De et al| (2022) multiple other regularization/optimization techniques are proposed. In our
experiments, we found that while these techniques sometimes help, there is no significant or systematic
difference in the effect on the results of DP-SGD and Lip-DP-SGD. For example, Figure (4] illustrates
how parameter averaging on Fashion-MNIST, as indicated by De et al.| (2022)), has a similar impact
observed for both DP-SGD and Lip-DP-SGD. To keep our experiments simple and interpretable, in
all other experiments in this paper we don’t consider the optimizations proposed by |De et al.| (2022),
except for the group normalization.

D Lip-DP-SGD library

We offer an open-source toolkit for implementing LipDP-SGD on any FNN model structure. This
toolkit builds on the Opacus and PyTorch libraries. Drawing inspiration from Opacus, our library
is based on two main components: the ‘Datal.oader‘, which utilizes Poisson sampling to harness the

20

- -
—= Jlg - cliplghll Ilg - <clin(@)|]
=& ||clip(g}|| —*— ||clip(g)||

0.30 o

12 4

025 1

10 4

0.20 o

£ E /
g S 08
015 06 -
010 A 04 4
T T T T T T T T T T T T T T
0 2 4 B 8 10 12 14 o 2 4 6 8 10
Iteration [teration
(a) Dropout (b) Adult Income

Figure 3: Norm of the average error g — clip(g) (in blue) and norm of the average of clip(g) (in red)
across training iterations on the Dropout dataset (averaged over 500 instances) and the Adult
Income dataset (averaged over 500 instances).

0.825 1

0.800

0775 1

0.750 1

0.725 1

Accuracy

0.700

0675 1

—b— DP-5GD w/ Parameter averaging
—# DP-5GD w/o Parameter averaging
0.650 - =k~ Lip-DP-5GD w/ Parameter averaging
=k Lip-DP-SGD w/o Parameter averaging

T T
10° 10t
Epsilon

(a) Fashion-MNIST

Figure 4: Accuracy results for the Fashion-MNIST, comparing DP-SGD (in blue) and Lip-DP-SGD (in
red), lines are dashed when the underlying model is implemented without parameter averaging.

21

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

advantages of privacy amplification |Kasiviswanathan et al. (2011)), and the ‘Optimizer‘, responsible for
sensitivity calculation, differential privacy noise addition, and parameter normalization during each
iteration.

‘README.md‘, provided in the supplementary materials, details how to run the library and how
to reproduce the experiments.

E Avoiding the bias of gradient clipping

We show that Lip-DP-SGD converges to a local minimum in ©<¢ while DP-SGD suffers from bias and
may converge to a point which is not a local minimum of ©.

We use the word ’converge’ here somewhat informally, as in each iteration independent noise
is added the objective function slightly varies between iterations and hence none of the mentioned
algorithms converges to an exact point. We here informally mean approximate convergence to a
small region, assuming a sufficiently large data set Z and/or larger e such that privacy noise doesn’t
significantly alter the shape of the objective function. Our argument below hence makes abstraction
of the noise for simplicity, but in the presence of small amounts of noise a similar argument holds
approximately, i.e., after sufficient iterations Lip-DP-SGD will produce 6 values close to a locally
optimal 6* while DP-SGD may produce 6 values in a region not containing the relevant local minimum.

First, let us consider convergence.

Theorem Let F be an objective function as defined in Section and Z, fy, L, © = O,
T,0=0,s,nand C be input parameters of Lip-DP-SGD satisfying the requirements specified in
Section . Assume that for these inputs Lip-DP-SGD converges to a point 8* (in the sense that
limy, 7500 O = 6). Then, 6* is a local optimum of F'(§,7) in O<c.

Proof sketch. We consider the problem of finding a local optimum in O<¢:

minimize F(0,Z)
subject to |02 < C

We introduce a slack variable (:

minimize F(0,2)
subject to [|0]|2 + (% =C

Using Lagrange multipliers, we should minimize
F(0,2) = A(|0]2 +¢* =)

An optimum in 0, \ and (satisfies

VoF(0,Z) -\ = 0 (11)
10l +¢*—C = 0 (12)
2 = 0 (13)

From Eq , either A=0or (=0 If (> 0, 6 is in the interior of ©<¢ and there follows A = 0 and
from Eq (11 that Vo F (0, Z) = 0. For such 6, Lip-DP-SGD does not perform weight clipping. If the
learning rate is sufficiently small, and if it converges to a 6 with norm [|f]|2 < C' it is a local optimum.
On the other hand, if { = 0, there follows from eqhat 10]l2 = C, i.e., 0 is on the boundary of ©<c.
If 6 is a local optimum in ©<¢, then VyF(0, Z) is perpendicular on the ball of vectors # with norm
C, and for such 0 Lip-DP-SGD will add the multiple n(t).VyF(0, Z) to # and will next scale 6 back
to norm C, leaving 6 unchanged. For a 6 which is not a local optimum in ©<¢, VoF(0, Z) will not
be perpendicular to the ball of C-norm parameter vectors, and adding the gradient and brining the

22

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

norm back to C' will move 6 closer to a local optimum on this boundary of ©<¢. This is consistent
with Eq[11] which shows the gradient with respect to 6 for the constrained problem to be of the form
VoF(0,7) — . O

Theorem |8 shows that in a noiseless setting, if Lip-DP-SGD converges to a stable point that point
will be a local optimum in O<¢. In the presence of noise and/or stochastic batch selection, algorithms
of course don’t converge to a specific point but move around close to the optimal point due to the noise
in each iteration, and advanced methods exist to examine such kind of convergence. The conclusion
remains the same: Lip-DP-SGDwill converge to a neighborhood of the real local optimum, while as we
argue DP-SGD will often converge to a neighborhood of a different point.

Second, we argue that DP-SGD introduces bias. This was already pointed out in |Chen et al.
(2020))’s examples 1 and 2. In Section we also showed experiments demonstrating this phenomenon.
Below, we provide a simple example which we can handle (almost) analytically.

A simple situation where bias occurs and DP-SGD does not converge to an optimum of F' is when
errors aren’t symmetrically distributed, e.g., positive errors are less frequent but larger than negative
erTors.

Consider the scenario of simple linear regression. A common assumption of linear regression is that
instances are of the form (z;,y;) where x; is drawn from some distribution P, and y; = az; + b+ ¢;
where ¢; is drawn from some zero-mean distribution P.. When no other evidence is available, one
often assume P, to be Gaussian, but this is not necessarily the case. Suppose for our example that P,
is the uniform distribution over [0, 1] and P, only has two possible values, in particular P.(9) = 0.1,
P.(—1) =0.9 and P.(e) =0 for e ¢ {9, —1}. So with high probability there is a small negative error
e; while with small probability there is a large positive error, while the average e; is still 0. Consider
a dataset Z = {(z;,y;)}"_,. Let us consider a model f(z) = 612602 and let us use the square loss
L£(0,Z) =" Uz, y;)/n with £(0,z,y) = (612 + 02 — y)?. Then, the gradient is

Vol(0,z,y) = (2(6hz + 02 — y)z,2(bhx + 02 — y))
For an instance (x;,y;) with y; = ax; + b+ e;, this implies
Vol(0, i, yi) = (2((6h — a)z; + (02 — b) — €i)w,2((01 — a)x; + (62 — b) — ;)

For sufficiently large datasets Z where empirical loss approximates population loss, the gradient
considered by Lip-DP-SGD will approximate

1
VoL(0,7) =~ Z Pe(e)/ Vol(0,z,ax + b+ e)dx
ec{10,} 0

. Pe(e)/o (2((61 — a)z + (05— b) — €), 2((6r — @) + (6 — b) — €)) d

ec{10,}
_ /O (2((61 —)2 + (B2 — b)x — 2E[e]), 2((61 — a)z + (65 — b) — Ele])) dr
= (2((1 —a)/3+ (02 —)/2),2((01 — a)/2 + (62 — D)))

This gradient becomes zero if #; = a and 65 = b as intended.
However, if we use gradient clipping with threshold C =1 as in DP-SGD, we get:

Q
Q

1
g Z P.(e) / clipy (Vol(0,z,ax + b+ e))dx
ec{10,} 0

1
= Z Pe(e)/0 cip1 ((2((61 — a)x + (62 — b) —e)z,2((6h —a)x + (f2 — b) —€))) dx

ec{10,}

23

580

581

582

583

584

While for a given e for part of the population (1 — a)z + 62 — b may be small, for a fraction of the
instances the gradients are clipped. For the instances with e = 9 this effect is stronger. The result is
that for 61 = a and 65 = b the average clipped gradient g doesn’t become zero anymore, in particular
||l = 0.7791. In fact, § becomes zero for 61 = a + 0.01765 and 02 = b+ 0.94221. Figure [E]illustrates
this situation.

Figure 5: An example of gradient clipping causing bias, here the average gradient becomes zero at
(0,0) while the average clipped gradient is 0 at another point, causing convergence of DP-SGD to that
point rather than the correct one.

24

	Introduction
	Preliminaries and background
	Differential Privacy
	Empirical risk minimization
	Stochastic gradient descent
	Regularization

	Our approach
	Backpropagation
	Estimating lipschitz values
	Lip-DP-SGD
	Avoiding the bias of gradient clipping

	Experimental results
	Experimental setup
	Results

	Related Work
	Conclusion and discussion
	Gradient clipping based DP-SGD
	Estimating Lipschitz values
	Details for the convolutional layer

	Experiments
	Hyperparameters
	Models
	Runtime
	Detailed results
	Gradient clipping behavior
	Regularization techniques.

	Lip-DP-SGD library
	Avoiding the bias of gradient clipping

