
HAL Id: hal-04614496
https://hal.science/hal-04614496

Submitted on 17 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards the Certification of Hybrid Architectures:
Analysing Interference on Hardware Accelerators

through PML
Benjamin Lesage, Frédéric Boniol, Kevin Delmas, Adrien Gauffriau, Alfonso

Mascarenas Gonzalez, Claire Pagetti

To cite this version:
Benjamin Lesage, Frédéric Boniol, Kevin Delmas, Adrien Gauffriau, Alfonso Mascarenas Gonzalez, et
al.. Towards the Certification of Hybrid Architectures: Analysing Interference on Hardware Acceler-
ators through PML. 12th European Congress on Embedded Real Time Software and Systems (ERTS
2024), Jun 2024, Toulouse, France. �hal-04614496�

https://hal.science/hal-04614496
https://hal.archives-ouvertes.fr


Towards the Certification of Hybrid Architectures:
Analysing Interference on Hardware Accelerators

through PML

Benjamin Lesage1, Frederic Boniol1, Kevin Delmas1, Adrien Gauffriau2, Alfonso Mascarenas-Gonzalez1, Claire Pagetti1
1 ONERA, Toulouse, France, 2 Airbus, Toulouse, France

Abstract—The emergence of Deep Neural Network (DNN) and
machine learning-based applications paved the way for a new
generation of hybrid hardware platforms. Hybrid platforms em-
bed several cores and accelerators in a small package. However, in
order to satisfy the Size, Weight and Power (SWaP) constraints,
limited and shared resources are integrated. This paper presents
an overview of the standards applicable to the certification of
hybrid platforms and an early mapping of their objectives to
said platforms. In particular, we consider how the classification of
AMC20-152A for airborne electronic hardware applies to hybrid
platforms. We also consider AMC20-193 for multi-core platforms,
and how this standard fits different types of accelerators.

I. INTRODUCTION

New software paradigms and capabilities drive the demand
for additional computing power in avionic systems. Hybrid
architectures can, in a small SWaP package, support this
demand. They embed on the same platform general-purpose
cores, and specialised accelerators which can support some of
the additional workload. However, like any other hardware
platform, they need to go through a stringent certification
process before they are deployed in avionic system.

The European Union Aviation Safety Agency (EASA) and
Federal Aviation Administration (FAA) respectively define Ac-
ceptable Means of Compliance (AMC) and Advisory Circulars
(AC), setting down objectives applicants to the certification
process satisfy. The joint A(M)C AMC20-152A and AMC20-
193 in particular define objectives for the respective certifica-
tion of hardware platforms and multi-core processors.

The PHYLOG methodology [1] was proposed as mean of
supporting applicants, especially regarding AMC20-193 on
multi-core processors. PHYLOG is based on the definition
of argumentation patterns for the certification objectives in
AMC20-193, with each objective decomposed in supporting
claims, strategies, or evidences. At the core of the methodol-
ogy, the PHYLOG Modelling Language (PML) [2] captures
knowledge about a platform, both hardware and software
aspects, and their configuration. PML supports analyses to
fulfil claims in the certification patterns instantiated for the
platform.

The contributions of this paper are to present an overview
of the objectives applicable to hybrid platforms. We also
identify the issues related to modelling the accelerators in
such platforms and propose related PML model templates.
This paper is organised as follows. Section II briefly recaps

the PHYLOG methodology, with Section III providing an
introduction to PML. An example of accelerator and its hybrid
platform is introduced in Section IV to support further discus-
sions and examples. In the context of hybrid platforms, we
identified two relevant AMC: AMC20-152A [3] and AMC20-
193 [4] discussed respectively in Section V and Section VI.
Section VII briefly discusses related work, before Section VIII
recaps the discussion and outlines perspectives.

II. PHYLOG METHODOLOGY

Platform
Description

Platform
Modelling

Safety Analysis Capacity
Analysis

Validation of
Mitigation

Means

Configuration
Settings

Rationale

Implementation

Interference
Analysis

Fig. 1. Overview of PHYLOG methodology

The PHYLOG methodology [1] describes the activities to
produce the elements for instantiating the PHYLOG argumen-
tation patterns. These patterns were derived from the objectives
defined in AMC20-193, on multi-core processors, to build an
argumentation strategy for certification. They decompose the
top-level AMC objectives into supporting claims, strategies,
evidence, and warrants. An overview of the methodology is
presented in Figure 1. It is composed of eight main activities:

• Platform description captures the knowledge about the
platform characteristics based on the available documents
and the applicant’s assessments. It also captures the
target configuration, including hardware and software
settings such as the mapping of applications hosted on
the platform to cores.



• Platform modelling formalises the platform description
knowledge in order to support further analyses. It is
based on PML. While not an objective of AMC20-193, it
allows running the supporting automatic safety, capacity
and interference analyses in order to contribute to said
objectives.

• Safety analysis identifies and evaluates the failures and
alterations which can affect the platform and hosted
applications.

• Interference analysis enables the identification of inter-
ferences via interference calculus and the classification
of their effects.

• Capacity analysis enables the verification of shared
resources’ usage, ensuring the demand for resources of
the platform never exceeds their capacity.

• Validation of mitigation means encompasses the design
and validation of mitigation means for failure, interfer-
ence, and other alterations identified in earlier activities.

• Configuration settings rationale justifies that all config-
uration settings support the requirements on the platform,
or are harmless to them.

• Implementation concerns the certification of the system
implementation on the platform. It is associated with the
DO-178C standard and out of the context of PHYLOG.

Note that the activities form an inherently iterative process.
As an example, the interference analysis may highlight a
misunderstood interference channel, feeding back into the
platform description and its model.

We focus in the following on the platform aspects (de-
scription and modelling), as they are the most relevant to
hybrid platforms. We consider specifically the use of PML,
and its limitations, to model accelerators. The use of PML
would thus allow for the application of existing PHYLOG-
based analyses [1], discussed in other work for interference
or safety, to instantiate the PHYLOG certification patterns for
hybrid platforms. PML is introduced in the next section.

III. PML

PML, the PHYLOG Modelling Language [2], is a Domain
Specific Language embedded with the SCALA language to
capture the description of a platform. A hardware platform is
modelled in PML as a collection of components, capturing the
functional blocks of a multi-core processor, e.g. a core, cache,
memory, or bus, and links between components. Composite
components encapsulate one or more components, composite
or atomic, to allow for the hierarchical specification of a
model. Atomic components provide generic services to the
software hosted by the platform, such as a load from the main
memory or a store to a configuration register.

The relationship between a component and other services
of the platform defines its role in the model. Initiator com-
ponents, such as a core, call services from other components
on the platform, most often as a result of software running
on the initiator, be it a user application or platform-embedded
micro-code. Target components, such as the main memory,
expose services to satisfy transactions from other components.

Transporter components, such as an interconnect, process
transactions between an initiator and its target.

A transaction is a footprint of a use of the platform by a
software component. A transaction more formally captures the
set of components, and their services, used by a request from
an initiator to a target. A transaction must follow a valid path
in the platform, through the links between its components.
Services thus model the dependencies between the software
and the hardware.

Example 1. To exemplify the use of PML, we consider a
representation of the KEYSTONE TCI6630K2L from Texas
Instruments. An overview of the KEYSTONE is presented in
Figure 2. It is composed of a four C66 DSP pack where
cores are characterised by dedicated L1 and L2 caches, and a
memory extension and protection unit (MPAX). The platform
also comprises a 2 ARM A15 pack where cores are charac-
terised by dedicated L1 caches, memory management units
(MMU), and a shared L2. In addition, it includes a central
memory system giving access to SRAM and external DDR.
Memory accesses are managed by a Multicore Shared Memory
Controller (MSMC). A set of I/O and utility peripherals (e.g.
GPIO, UART, boot) is also present on the platform and
an ultra speed bus (TeraNet) connects the peripherals, the
memories, and the cores altogether.

Fig. 2. Overview of the TI KEYSTONE TCI6630K2L

Figure 3 illustrates a PML model for a simplified version
of the KEYSTONE1. This basic model includes:

• Cores as initiators: 4 C66 DSP, and 2 ARM A15 cores;
• Memories as targets: DDR, SRAM, and all caches;
• Peripherals as targets: GPIO, I2C, SPI port, PCIe, etc.;

1For the sake of brevity, coprocessors have been omitted, as well as implicit
links between stacked components. Peripherals have been simply classified as
targets.

2



• Buses and Memory protection units as transporters: the
TeraNet bus connected to the Memory Shared Multicore
Controller (MSMC), memory and cache controllers, etc.

Pe
rip

he
ra

ls

Memory Subsystem

MSMC
Controller

64-bit DDR3 
EMIF

MSMC
SRAM

DDR
Memory

Boot ROM

Semaphores

Power Mgmt

PLL

EDMA

G
PI

O

I2
C

U
SB

 3
.0

U
AR

T

SP
I

PC
Ie

SR
IO

L2
L2 Ctrl

MPAX

C66X
CorePac

L2SRAM

SRAM
L1P

SRAM
L1D

TeraNet

L1P L1D

A15
ARM

MMU

L1P L1D

A15
ARM

MMU

Legend

Initiator

Transporter

Target

Composite

Fig. 3. Simplified PML model for the KEYSTONE platform

IV. HYBRID ARCHITECTURES - THE GPU EXAMPLE

To support the discussion around hybrid platforms, we
introduce an example of accelerator: Graphical Processing
Units (GPU). Compared to traditional CPUs, GPUs feature
numerous cores with simpler control flow but efficient data
ones. GPU cores tend to work in a lockstep-like fashion called
Single Instruction Multiple Threads (SIMT) in reference to
SIMD (Single Instruction Multiple Data). Internal scheduling
policies on the GPU aim to maximise core occupancy and
throughput. With their focus on high-throughput floating point
computation, GPU are well suited to the acceleration of neural
network workloads. Their reuse has been facilitated by the
advent of General Purpose GPU programming frameworks
(GPGPU).

There has been considerable effort to characterise the be-
haviour of GPU accelerators, in particular work on NVIDIA
GPU [5], [6], [7], [8] and the assorted GPGPU CUDA software
stack [9], [7], [10], [8]. These efforts highlight the difficulty
of characterising complex, multi-core, COTS (Commercially
available Off-the-Shelf) platforms. To the best of our knowl-
edge, PasTiS [6] and the hybrid analysis in [11] are some
of the few efforts to build a GPU model respectively for
static and hybrid WCET analysis. The inherent parallelism
at the application-level, as opposed to instruction-level like
vectorised arithmetic units [12], [13], can also pose problems
for WCET and interference analyses [14].

Example 2. The NVIDIA Jetson AGX Xavier [15] is a high-
performance SoC designed for embedded systems. The Xavier
uses an 8-core “Carmel” ARM processor, organised in clusters
of 2 cores. The “Carmel” processor complies the ARM v8.2A

specification, but it is unclear if it is based off an existing ARM
design (e.g. the Cortex-A78) and the level of customisation
introduced by NVIDIA. The Xavier features amongst other
accelerators a GPU using the Volta architecture, highlighted
in Figure 4. The GPU is composed of 512 cores, grouped
in 8 Streaming Multiprocessors (SM). The Volta GPU shares
a memory fabric with other accelerators, and the memory
controller with the CPU.

Fig. 4. Overview of the NVIDIA Jetson AGX Xavier

We present in Figure 5 a high-level PML model of the
NVIDIA AGX Xavier SoC. Fabrics and backbones act as
transporters for the components of the system. The main
memory is a target shared by the CPU and the GPU. The cores
of the “Carmel” ARM processor act as multiple initiators.
As for the KEYSTONE, we currently omit coprocessors and
peripherals from the classification. A key question is: How to
model a complex accelerator like the Volta GPU? It acts as
an initiator, causing interference on the main memory and the
controller fabric, and as a target for commands from the CPU.

Jetson AGX Xavier

Volta GPU

Main Memory

Peripherals

Accelerators

Control Backbone

Memory Controller Fabric

Data Backbone

Boot/Power
Management

Carmel CPU
Cluster

Fig. 5. Simplified PML model for the NVIDIA AGX Xavier

V. AMC20-152A ON HYBRID ARCHITECTURES

AMC20-152A discusses the certification of existing (COTS)
or newly-developed platforms, the distinction between the two,
and the objectives relevant to each.

3



A. Overview of the AMC20-152A

The ED-80/DO-254, both dated from the year 2000, define
guidance for the design of airborne electronic hardware. The
AMC20-152A aims to provide additional guidance and clarifi-
cation. It is thus complementary to the AMC20-193 on multi-
core platforms. The clarifications proposed by the AMC20-
152A are important, as devices, especially COTS, become
more complex and integrate in a single chip more functions
than older ones. The AMC20-152A objectives are classified
according to whether they apply to complex custom devices,
COTS IP (design functions used to design and implement a
custom device, be it a PLD, a FPGA or an ASIC), or COTS
devices2. Applicants for certification must address them as part
of the Plan for Hardware Aspects of Certification (PHAC), or
related planning documents.

The first distinction in the AMC20-152A is between COTS
and custom functions. COTS functions (IP or devices) are,
as the name implies, commercially available, off-the-shelf.
The AMC20-152A recognises the risks inherent to the use of
COTS, and incomplete or incorrect documentation. COTS may
not have been developed within the ED-80/DO-254 standard
or avionic applications, nor have sufficient service experience.
The development assurance for COTS items (hardware or
software components ED-80/DO-254) thus follows different
objectives from custom devices. Items developed and fully
controlled by the applicant cannot classify as COTS. Those
items may however be previously developed hardware, which
may take credit from prior deployment and in-service expe-
rience provided their new function, usage and environment
conditions do not invalidate the original design assurance.

The key objectives of the process for COTS items are
1) identifying used functions, and 2) assessing correct use
of the COTS item. The used functions need to support the
system requirements on the device. Unused functions, such
as unused cores on a MCP (as per AMC20-193), need to be
properly deactivated, with means of mitigation to prevent their
inadvertent activation. Correct use of a COTS item requires
to assess its integration against the operation conditions,
such as temperature or input parameter ranges, defined by
the manufacturer. This may preclude the use of undefined
or undocumented configurations, unless their reliability can
be established. The identification of failure modes3 and the
item configuration also need to be considered. This includes
identifying if any microcode may contribute to a used function.
Microcode is a hardware-level set of instructions, typically
stored in the COTS item. It may be qualified by the man-
ufacturer, if left unmodified, or require a separate mean of
compliance.

Devices are further classified into simple or complex ones
as defined by the ED-80/DO-254. The classification captures
whether a comprehensive verification of the device is realistic.

2We omit circuit boards assemblies (CBA), as the AMC20-152A in practice
redirects to ED-80/DO-254.

3Single Event Effects (SEE) are explicitly omitted from the AMC20-152A
scope.

It must be explicit, and justified for simple devices (custom or
COTS). The simplicity of a device relies on the simplicity and
independence of all its functions, interfaces, building blocks,
etc. The composition of simple items may therefore be a
complex item.

B. Considerations for accelerator-related objectives

As per the AMC20-152A, most hybrid or multi-core archi-
tectures should fall under the definition of complex devices
with multiple processing elements interacting. The Platform
description and modelling phase for custom models, including
any accelerator, will directly benefit from the AMC20-152A
objectives’ outcome, notably the conceptual and detail designs,
and the device verification. For COTS functions, as prescribed
by the AMC20-152A objectives, a PML model should be built
from the manufacturer specification supplemented by char-
acterisation and verification activities. COTS IP specifically
may provide detailed information on the function based on
the stage of the design where they are instantiated, from Hard
IP, embedded in the silicon by the manufacturer, to Soft ones,
captured by a hardware description language. Microcode, if
present on used functions, needs to be considered as part of
the platform model, as transactions between components.

We identified 4 activities for hybrid platforms and accelera-
tors, per AMC20-152A objectives: Activity 1: An assessment
should be performed for each device or its integration, as they
may fall under different classifications: COTS, custom, soft
IP, hard IP, multi-core processor... In particular, one should
consider how the device is configured and accessed through
hardware and software means, how it interacts with the rest
of the system, and whether or not existing analysis techniques
and tools apply.
Activity 2: It is necessary to master complex core architec-
tures. More specifically stressing benchmarks would be needed
in addition to documentation reviews.
Activity 3: The utilisation of COTS must be within the limit
of the device manufacturer specification. This means that we
need a specification of the COTS and its limits to check the
compliance of usage.
Activity 4: It is mandatory to qualify the COTS behaviour and
all micro-code, as defined in AMC20-152A (Section V-A).

VI. AMC20-193 ON HYBRID ARCHITECTURES

The AMC20-193 was extensively studied in PHYLOG to
define a certification methodology specifically for multi-core
platforms [1]. We provide a brief summary of AMC20-193 in
the following.

A. Overview of the AMC20-193

The AMC20-193 defines a Multi-Core Processor (multi-
core processor) as a device with two or more activated process-
ing cores, with a core being a device that executes software.
The AMC20-193 recognises two exceptions to the definition
of active cores, cores in lockstep executing the same software
and inputs to compare their output; and cores connected solely
through data buses typically used in avionics systems.

4



The AMC identifies both temporal and functional interfer-
ence. Interference occur when the behaviour of an application
varies over its behaviour in isolation when running in parallel
with others. Interference occur as a result of shared hardware
or software resources of the multi-core processor. As an
example, interference may cause additional delays due to the
arbitration of accesses to the resource or control flow variations
due to external modifications of a shared variable. Interference
may cause a loss of deterministic behaviour for the application.

All software components should exhibit correct functional
and timing behaviours in the presence of interference. The
AMC thus defines an interference channel as “a platform
property that may cause interference between software ap-
plications or tasks”. The impact of interference channels on
applications in the system should be assessed. The planning
objectives in AMC20-193 require the identification of shared
resources, their use by, and their allocation to software ap-
plications, where applicable. This aims to first ensure the
overall demand for resources at any given time does not
exceed the available resources’ capacity, and second to avoid
or mitigate interference. Mitigations should be deployed and
verified for impactful interference channels. The definition
of an interference channel in the PHYLOG methodology is
a conservative one, in line with the AMC objectives.

The objectives require all software hosted on the multi-core
processor to be identified, including applications, operating
systems, hypervisors, as well as libraries and runtime. The
AMC20-193 prescribes that any component for which inter-
ference is mitigated, possibly at the platform-level through
robust partitioning, may be separately analysed and verified.
Otherwise, they should be tested on target with all other soft-
ware components under the final configuration. The PHYLOG
methodology, and in particular interference calculus, can help
assessing whether a modelled accelerator or a platform sup-
ports robust partitioning, by identifying interference channels,
their impact, and that of any deployed mitigation (through
benchmarking).

The question in the context of accelerators, is whether or not
the PML model is suitable to model them, and whether and
how it should be extended. Let us now characterize what type
of resource is an accelerator. We have identified 3 dimensions
to take into account.

B. Dimension 1

The first dimension concerns the number of applications
that can simultaneously access the accelerator. We define two
categories within that dimension:

• those that can be accessed solely by one application at
any given time are called unitary accelerators;

• those that can be accessed by multiple applications si-
multaneously are called parallel accelerators.

Note that the classification of an accelerator as unitary may
be inherent to the accelerator itself, e.g. if it cannot support
multiple applications by design, or enforced by the platform,
e.g. through application design or partitioning mechanisms.

C. Dimension 2

The second dimension concerns how the accelerators are
connected to the core and how the workload is launched.
In that dimension, we have identified four categories. The
simplest case concerns tightly coupled accelerators.

Category 1. Tightly coupled accelerator. The accelerator, as
an example a vectorised functional unit, operates in the context
of a complex core; all transactions effectively originate from
the core operations and transit through the core interfaces.
Modelling impact on PML. The core is still modelled as
the sole initiator. Such an accelerator can only be unitary,
as a core executes only one application at any given time4.
However transactions caused by an application using the
accelerator may present a different profile.

Example 3 (of category 1). The ARM A15 [16] cores can
include a NEON VAU and floating point execution unit. SIMD
Load/Store instructions allow for transfers between NEON
registers and the memory. Vector accesses target one or
more lanes of the same or of consecutive vector registers.
The architecture thus does not guarantee the atomicity of
the access to the memory even for scalar accesses. Each
instruction can generate multiple transactions depending on
the access size, the alignment of the address and the memory
segment. Served by the private or shared caches, or the main
memory, SIMD Load/Store may be subject to high timing
variability and interference.

The A15 cores in the KEYSTONE presented in Example 1 do
feature a NEON VAU. As discussed, the core is still modelled
as a single initiator and the model in Figure 3 remains valid
even when the NEON is in use.

The second case concerns passive accelerators that are
controlled by a remote core, e.g. via configuration registers. A
passive accelerator cannot generate any transaction to access
any shared resource and is thus a target that can be shared by
several cores.

Category 2. Passive accelerator. The accelerator is a resource
used by the core(s). It behaves from a high level point of view
like a DDR that receives requests for load and store.
Modelling impact on PML. It can be abstracted as a target.
Two or more applications using the accelerator concurrently
would be assumed to interfere. Thus it could be unitary or
parallel, but in both cases it will be modelled in the same way.
The transactions caused by the controlling core may present
a different profile.

Example 4 (of category 2). The NVIDIA Deep Learning
Accelerator (NVDLA) outlined in Figure 6 is an accelerator
developed by NVIDIA, with both open-source hardware and
software. The NVDLA is a complex COTS device. Tailored
to neural network applications, it features functional blocks
dedicated to convolution, activation functions, pooling, nor-
malisation, or reshaping operations. The blocks can operate

4AMC20-193 explicitly excludes hyperthreading.

5



independently, performing memory-to-memory operations, or
pipelined, passing data to each other to avoid the memory
round-trip. The memory (DBBIF), interrupt (IRQ), and config-
uration (CSB) interface can be connected to various protocols
such as ARM AXI.

Fig. 6. Integration of the NVIDIA NVDLA in a passive configuration [17]

As a soft IP, the NVDLA exposes all information regarding
its internal behaviour which eases the development of a
model for timing or interference analysis. The DBBIF, CSB,
and target memory subsystem are obviously shared resources
between functional blocks. The scope and mitigation of any
resulting interference however require more information about
the NVDLA integration. The device can be included as part
of custom devices or available in future COTS platforms.

CPU

NVDLA In
te
rc
on
ne
ct

Sys
DRAM

Fig. 7. Simplified PML model for the NVDLA in a passive configuration

Figure 7 presents a PML model for a NVDLA in a passive
configuration. The accelerator and all its resources are ab-
stracted as a single target, accessed through the interconnect.
Transactions initiated within the NVDLA remain within the
device, e.g. from its functional blocks to the CSB or SRAM.
As such they would not need to be captured by the model.
They are thus implicitly assumed to be non-interfering with
external transactions, e.g. from the CPU to the CSB. Such an
assumption must be verified during interference analysis.

The third case concerns semi-active accelerators. In that
situation, the accelerator is triggered by a remote core but
it accesses shared resources (e.g. DDR) to load/store its data.
Thus it generates interferences within the hybrid architecture.

Category 3. Semi-active accelerator. The accelerator oper-
ates under the control of a core and it behaves from a high

level point of view as a DMA that generates requests for load
and store under the impulse of another core. However the
precise role of the core needs to be clarified, as well as the
interface between the accelerator and the hybrid platform.
Modelling impact on PML. A unitary semi-active accelerator
is thus modelled as a single initiator and the profile of the
remote core must contain all the transactions needed to con-
figure the accelerator. Parallel accelerators would need more
refined analyses to check whether they will be decomposed
into one or multiple initiators.

Example 5 (of category 3). An example is the NVDLA in a
”Small” configuration as depicted in Figure 8. Compared to
the passive configuration of Example 4, the NVDLA accesses
resources shared with other initiators in the system. The
NVDLA [17] could be modelled, as depicted in Figure 9,
using a single initiator with interfaces to the system, as no
interface or resource between the NVDLA and the controller
is shared with other devices. This model assumes a pipelined
configuration of execution on the NVDLA, where a single
application may use the NVDLA and components do not
interfere on the DBBIF. (Example 9 considers a configuration
where each functional block is a separate initiator.)

Fig. 8. Integration of the NVIDIA NVDLA in a small configuration [17]

CPU

N
VD

LA

In
te
rc
on
ne
ct

Sys
DRAM

CSB

DBBIF

NVDLA
Core

Fig. 9. Simplified PML model for the small NVDLA

Example 6 (of category 3). The i.MX 8M Plus processor from
NXP [18] features, amongst other accelerators, a NPU, e.g.
a VIP8000 hard IP from VeriSilicon. The NPU is a complex
COTS device. The processor reference manual unfortunately

6



provides little information about the NPU, except for the high-
level functional description in Figure 10. It probably features
VAU and systolic-like blocks as it supports hundreds of mul-
tiply and accumulate operations every cycle. The interface
with the processor uses ARM AXI and AHB bus interfaces
which might help bound the demand of the NPU on the shared
memory, and the interference it generates.

Fig. 10. NPU High-level Block Diagram in the i.MX 8M Plus processor [18]

It is difficult to model such a COTS device with no further
information on its functional blocks, or without a characterisa-
tion by evaluation. It could be abstracted as a single initiator.
This abstraction would need to be supported by limiting the
use of the NPU as a unitary accelerator, e.g. through platform
configuration. Furthermore, the abstraction will still require
an assessment of the nature and volume of transactions the
NPU generates.

The fourth case concerns active accelerators. An example
of such accelerators are GPU.

Category 4. Active accelerator. The accelerator operates
independently and generates many load and store transactions.
Modelling impact on PML. A unitary accelerator is thus
modelled as a single initiator where, as for semi-active
accelerators, parallel accelerators would need more refined
analyses to check whether they will be decomposed into one
or more initiators.

Example 7 (of category 4). When the accelerator is a GPU
used by a unique application at a time, it can be modelled as
an initiator and single transaction forking to multiple targets
should capture the combinations of behaviours of multiple
threads running concurrently on the accelerator. Threads from
the same application may not be considered as interfering
with each other but with other applications in the system.
The GPU scheduler decides upon execution of a computation
kernel of the allocation of different blocks of threads to cores.

The scheduling policy on most COTS platforms is subject to
speculation, and the allocation of threads to cores is dynamic.

In PML, the initiator of a transaction from a given thread
would thus be uncertain as well as for AMC20-193. Modelling
the GPU as a single initiator abstracts away this uncertainty.
This should be a conservative, but sound abstraction for
interference analysis between applications. It needs to be
backed by the platform to ensure only one task accesses the
GPU at any given time.

Example 8 (of category 4). When the GPU is used simul-
taneously by several applications, the GPU cannot probably
be modelled as a single unit. Different threads from different
applications may share the GPU cores, interfering on the
GPU internal resources and the shared platform resources.
Uncertainty may arise in the mapping of threads to cores,
and thus the generated interference by an application.

Volta GPU

SMSM

SMSM SM

SM

SM

L2

M
em

or
y 

C
on

tro
lle

r F
ab

ric
Host

Host
PB

C
ontrol Bacbone

SM

CUDA
Cores

L1

CUDA
Cores

L1

CUDA
Cores

L1

CUDA
Cores

L1

CUDA
Cores

L1

CUDA
Cores

L1

CUDA
Cores

L1

CUDA
Cores

L1

Fig. 11. Simplified PML model for the Volta GPU

However, the exact group of cores where an application is
scheduled may not be relevant, provided said group is equiv-
alent to the other groups of core on the platform. Capturing
such platform symmetries in the PML models would allow
for some level of uncertainty. As illustrated in Figure 11, SM
are symmetrical groups of cores on the Volta GPU (Example
2). Each SM has the same number of cores and private
resources. Thus a group of threads should exhibit the same
behaviour running in isolation in either SM. All SM can access
the same shared resources through the same paths on the
Volta; the interference suffered and generated by a group of
threads is thus independent of the SM where they run. Isolating
different applications to separate SM does however rely on
undocumented support from the platform [19] (causing issues
for Activity 3 in Section V-B).

Example 9 (of category 4). A NVDLA in a ”Large” con-
figuration features its own separate microcontroller, depicted
in Figure 12, tightly coupled with the accelerator. Where the
CPU was in charge in the small configuration of Example 5,
the microcontroller drives the accelerator. Modelling the whole
as a single accelerator would fail to distinguish transactions
originating from the microcontroller and ones originating from
the NVDLA functional blocks. Each functional block of the

7



Fig. 12. Integration of the NVIDIA NVDLA in a large configuration [17]

N
VD

LA
N

VD
LA

 C
or

e

CPU

In
te

rc
on

ne
ct

Sys
DRAM

CSB

DBBIF

NVDLA Ctrl

NVDLA Ctrl Registers

SRAMIF

NVDLA
SRAM

M
em

or
y 

In
te

rfa
ce

 B
lo

ck

CONV

SDP

PDP

CDP

RUBIK

DMA

Fig. 13. Simplified PML model for the Large NVDLA

NVDLA can be mapped to its own initiator, as depicted in
Figure 13. This abstraction, compared to the one in Example 5,
would allow transactions where one or more applications use
the different functional blocks without interfering. However
each component (CONV, SDP, PDP...) may operate indepen-
dently and interfere on the DBBIF.

Example 10. The Xilinx ZYNQ-7000 AP [20], outlined in
Figure 14, is a FPGA SoC with both Programmable Logic (PL)
and Processing System (PS). The PS features a 2-core A9
processor, with a NEON VAU, memory resources, and input-
s/outputs. The processor offers multiple ports to connect PL
devices to resources on the PS. Different ports may reach
different or the same resources, through different protocols.
Depending on if and how PL devices use said ports, the ports
themselves or devices on the PL side may become shared
resources and be classified as interference channels.

The PL features three types of ports: 4 general-purpose
AXI ports (2 master and 2 slaves), 4 high-performance AXI
master ports, and 1 AXI ACP port. The different ports first
exhibit functional differences: as master ports cannot be used
for the A9 processor to initiate reads from the PL. The AXI
ACP port offers a high throughput and limited hardware
coherency, as its accesses traverse the processor. However,
it may result in serious cache trashing on the processor (as a
result of invalidations), and interference on the A9 processor
interconnect. The general-purpose ports allow access to most
of the SoC interfaces, but share the interconnect with all
input/output devices. The high performance ports only support
high-throughput accesses from the PL to the main memory.

As a programmable logic device, the model for an FPGA is
dependent on the devices and functions that have been config-
ured, and on their use of the available platform resources. As
an example, a DMA configured on the PL may solely read
memory from the flash controller using a general purpose

Fig. 14. Overview of the Xilinx ZYNQ-A7000 AP

port. It initiates transactions, contributing to and suffering
from interference on shared resources. As such, it should be
included as an initiator in the PML platform model. Unless its
interference is mitigated, it should further be included as part
of the final system configuration during analyses and tests.

Care is thus required upon integrating devices on the PL
side. Each configured device should be considered and mod-
elled per the aforementioned cases. The PS can be modelled

8



as any platform. Existing interfaces to the PL or between the
PS and PL should also be considered as part of the model
most likely as transporters, based on their use by configured
devices.

D. Dimension 3

The third dimension concerns the applicative layers that
necessarily come with the accelerator, e.g. a runtime used to
offload work from the CPU to an accelerator. They contribute
to the interference generated on a platform. As an example the
scheduling queue for a device may be shared between different
applications, causing delays depending on the scheduler. The
transactions generated by an applicative layer also need to be
characterised, by assessing their documentation and their use
of resources on the platform. The identification and verification
must include all software running on accelerators as well as
software interfaces or libraries used to program them. Some
accelerators may indeed only be addressed through vendor-
specific software interfaces.

Example 11. The definition and execution of kernels, func-
tions running on the Volta GPU, use the CUDA toolkit, or use
higher-level libraries and runtimes which themselves offload
computation on the GPU through CUDA. CUDA Kernels are
written using a superset of a subset of C/C++. That is kernel
code supports most of the C language, and the toolkit provides
additional syntax for mapping code and data to the GPU,
or calling kernels. As such CUDA-enabled code cannot be
analysed through existing tools as it may not parse as valid
C/C++.

As part of the CUDA toolkit are the compiler (nvcc) and
assembler (ptxas) . The compiler is based on the mature
LLVM compiler. The open-source nature of LLVM supports
the verification of the generated code, and the development
of compiler passes to support further analyses [21]. The
assembler, which converts NVIDIA virtual assembly format
into an executable binary, is closed. Information relevant for
timing or coverage analysis may thus be lost at compilation.

Example 12. NEON instructions can be exploited through
compiler optimisations, intrinsics, or assembly code. Intrinsics
are compiler- or vendor-provided functions often used to
expose optimisations or vectorisation in languages without
such constructs such as C. Compiler optimisations may jeop-
ardize the traceability of the generated binary to the original
source [21], and ARM recommends the use of intrinsics
over manual assembly code. Intrinsics explicit the use of
vectorisation and of the NEON VAU. The added benefit is
that the source code only exposes function calls, amenable to
analysis.

Example 13. The software stack for the NVDLA comprises
at its core the User-mode driver (UMD) and the Kernel-mode
driver (KMD). The UMD loads a representation of a neural
network, maps its inputs and outputs in memory, and informs
the KMD that an inference job is ready. The KMD schedules
available jobs, allocating DNN layers to function blocks,

configuring the NVDLA registers, and collecting completed
jobs. The KMD (and UMD) can run on the main CPU
(”Small” system in Figure 8) or through a dedicated core
(”Large” system).

Similarly the open source software stack clearly identifies all
required software, and opens the source code for analyses such
as coverage or timing. Note that the NVDLA itself does not
feature a core which executes user- or vendor-defined software.
A NVDLA-enabled platform, depending on the integration,
may not fall under the multi-core processor classification.
Nonetheless, it still counts as one or more initiators as,
once configured through the CSB, each block may initiate
transactions to the memory.

Example 14. The NPU is accessed through an OpenVX
Driver. OpenVX [22] is a standard and API which defines
reusable computer vision and neural network functions. An
OpenVX computation is expressed as a graph. Each node in
the graph refers to its parameters and a kernel, the underlying
function. The standard defines a number of vision and neural
network functions. OpenVX is supported as a backend for nu-
merous neural network runtimes through the Neural Network
Runtime middleware [23].

Nevertheless, the use of such runtimes raises several con-
cerns. The transition from a model (computation graph) to
software items is not explicit, and controlled by the runtime
itself. This is not in line with the identification of software
running on the platform as per AMC20-193. As the NPU
supports only a subset of the OpenVX functions, runtimes may
further elect to fallback to the CPU to run some software items.
Using the NPU through the lower-level OpenVX driver would
provide control over software items allocation between cores
and the NPU. However, additional characterisation effort is
still required to clarify the transactions the NPU might initiate.

VII. RELATED WORK

Worst-Case Execution Time (WCET) analysis methods [24],
[25], [26], [27] rely on accurate processor models to produce
conservative timing estimates of the execution of applications
on a processor. As such, the underlying processor models
do often capture a more concrete and precise representation
of the processor, e.g. accounting for the internal state of a
core. Those are finer-grained models than our transaction-
based approach, but validating the underlying models may
be a complex process [28]. To the best of our knowledge,
PasTiS [6] is one of the few efforts to build a GPU model.

PML takes inspiration from Initiator-Target modelling ap-
proaches found as an example in in [29], where paths to
shared resources are paramount to the interference analysis.
The computation of interfering paths exponentially grows as a
function of the number of initiators and targets. To cope with
this issue, they propose to introduce reduction criteria (e.g.,
symmetries).

(Memory) interference analysis approaches fall in two main
categories: (1) Request-driven, which is based on a per-
(memory) request analysis of an application [30], (2) job-
driven, which focuses on the number of (memory) requests

9



of an application as a whole. Hybrid approaches blend the
request-driven and job-driven [30], i.e. considering both ap-
proaches jointly in a analysis [31].

Model checking can be used to identify the interference of
a platform as done in [32]. To do so, the approach uses formal
languages for describing the behaviour of the application and
multicore platform and introducing the interference concept
and CADP toolbox to evaluate the model.

Interference mitigation techniques are used for minimizing,
or even eliminating, the resource contention impact between
processing cores. These techniques either make use of space
(e.g., cache partitioning, bank parittioning) or time (e.g.,
scheduling, bandwidth reservation) partitioning to reduce the
impact that interference entails. Survey [33] summarizes many
of the techniques employed to this end.

VIII. CONCLUSION AND PERSPECTIVES

We discussed the impact hybrid platforms on certification
objectives for avionic systems. Hybrid platforms embed sev-
eral cores and accelerator devices in a small package, to
provide high computational power while satisfying strict SWaP
constraints. We considered in particular two AMC: AMC20-
152A for airborne electronic hardware, and AMC20-193 for
multi-core platforms. Both require careful consideration about
how devices are used and integrated in the system.

Most accelerators support highly parallel workloads and as
such fall into the AMC20-152A complex device category, and
in scope of the AMC20-193. As such, they require a thorough
assessment of their behaviour and their integration in the
platform. We thus considered the use of PML to capture and
model knowledge about said devcices. We identified 3 main
dimensions relating to the hardware and software integration
of the device in the platform, and proposed a related taxonomy.

We introduced a number of examples of COTS and Soft
IP devices to illustrate the proposed taxonomy with PML
modelling templates. COTS devices expose little information
about their behaviour, and sometimes very limited control on
said behaviour. They thus require conservative assumptions
and abstractions to comply with certification requirements.
Said abstractions have an impact on the performance of the
accelerator and they do require backing by the platform
configuration, e.g. a single GPU user.

On the other hand, Soft IP (or custom devices), such as
the NVDLA, do provide extensive information about their
behaviour. They also tend to offer higher configurability than
COTS devices. However, they do require separate objectives
per AMC20-152A. There might also be a vast amount of
implementation and configuration choices to compare to select
the most suitable integration w.r.t. to certification and perfor-
mance objectives.

We did highlight that PML is generic enough to model
complex accelerators. However, we also identified venues for
improvements. Accelerators such as GPUs cause uncertainty
about the allocation of applications (threads) to initiators
(cores), and thus the source of transactions. The highly parallel
nature of accelerators does also imply a high number of

initiators in the system. This raises concerns about the required
granularity of the platform model, the scalability of related
analyses, and that of their output.

ACKNOWLEDGEMENT

The work presented in this paper is part of the PHYLOG 2
project supported by the Directorate General of Civil Aviation
(DGAC). It is funded by the French government through
the France Relance program, based on the funding from the
European Union through the NextGenerationEU program.

The work presented in this paper has been funded in part by
the Agence Nationale de la Recherche (ANR) under project
“ANR-22-CE92-0066-01”.

REFERENCES

[1] F. Boniol, Y. Bouchebaba, J. Brunel, K. Delmas, T. Loquen, A. Mas-
carenas Gonzalez, C. Pagetti, T. Polacsek, and N. Sensfelder, “PHYLOG
certification methodology: a sane way to embed multi-core processors,”
in 10th European Congress on Embedded Real Time Software and
Systems (ERTS 2020), 2020.

[2] F. Boniol, J. Brunel, K. Delmas, C. Pagetti, and V. Jegu, “Modelling and
analyzing multi-core COTS processors,” in 11th European Congress on
Embedded Real Time Software and Systems (ERTS 2022), 2022.

[3] EASA, “AMC (Acceptable Means of Compliance) 20-152A Develop-
ment Assurance for Airborne Electronic Hardware (AEH),” 2021.

[4] ——, “AMC (Acceptable Means of Compliance) 20-193 on the use of
multi-core processors (MCPs),” 2020.

[5] Z. Jia, M. Maggioni, B. Staiger, and D. P. Scarpazza, “Dissecting the
NVIDIA volta GPU architecture via microbenchmarking,” CoRR, vol.
abs/1804.06826, 2018. [Online]. Available: http://arxiv.org/abs/1804.
06826

[6] M. Adalbert, T. Carle, and C. Rochange, “PasTiS: building an
NVIDIA Pascal GPU simulator for embedded AI applications,”
in 11th European Congress on Embedded Real-Time Systems
(ERTS 2022), Toulouse, France, Jun. 2022. [Online]. Available:
https://ut3-toulouseinp.hal.science/hal-03684680

[7] N. M. Otterness, “Developing Real-Time GPU-Sharing Platforms for
Artificial-Intelligence Applications,” Ph.D. dissertation, 2022.

[8] I. S. Olmedo, N. Capodieci, J. L. Martinez, A. Marongiu, and
M. Bertogna, “Dissecting the CUDA scheduling hierarchy: a Perfor-
mance and Predictability Perspective,” in 2020 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2020, pp.
213–225.

[9] M. Yang, N. Otterness, T. Amert, J. Bakita, J. H. Anderson, and F. D.
Smith, “Avoiding Pitfalls when Using NVIDIA GPUs for Real-Time
Tasks in Autonomous Systems,” in ECRTS, 2018.

[10] T. Amert, “Enabling Real-Time Certification of Autonomous Driving
Applications,” Ph.D. dissertation, 2021, aAI28650154.

[11] A. Betts and A. Donaldson, “Estimating the wcet of gpu-accelerated
applications using hybrid analysis,” in 2013 25th Euromicro Conference
on Real-Time Systems, 2013, pp. 193–202.

[12] R. Pujol, J. Jorba, H. Tabani, L. Kosmidis, E. Mezzetti, J. Abella,
and F. Cazorla, “Vector Extensions in COTS Processors to Increase
Guaranteed Performance in Real-Time Systems,” ACM Trans. Embed.
Comput. Syst., vol. 22, no. 2, jan 2023. [Online]. Available:
https://doi.org/10.1145/3561054

[13] I. De Albuquerque Silva, T. Carle, A. Gauffriau, V. Jegu, and C. Pagetti,
“A Predictable SIMD Library for GEMM Routines,” in 2024 IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS),
2024.

[14] B. Lisper, “Towards Parallel Programming Models for Predictability,”
in 12th International Workshop on Worst-Case Execution Time
Analysis, vol. 23, 2012, pp. 48–58. [Online]. Available: http:
//drops.dagstuhl.de/opus/volltexte/2012/3556

[15] NVIDIA, NVIDIA Xavier Series System-on-Chip: Technical Reference
Manual, NVIDIA Corporation, Santa Clara, California, Apr. 2020.

[16] ARM, ARM Cortex-A15 Technical Reference Manual, 2011.
[17] “NVDLA Primer,” http://nvdla.org/primer.html, accessed: 2023-06-28.
[18] NXP, i.MX 8M Plus Applications Processor Reference Manual, 2021.

10

http://arxiv.org/abs/1804.06826
http://arxiv.org/abs/1804.06826
https://ut3-toulouseinp.hal.science/hal-03684680
https://doi.org/10.1145/3561054
http://drops.dagstuhl.de/opus/volltexte/2012/3556
http://drops.dagstuhl.de/opus/volltexte/2012/3556
http://nvdla.org/primer.html


[19] J. Bakita and J. H. Anderson, “Hardware Compute Partitioning on
NVIDIA GPUs,” 2023 IEEE 29th Real-Time and Embedded Technology
and Applications Symposium (RTAS), pp. 54–66, 2023. [Online].
Available: https://api.semanticscholar.org/CorpusID:259235797

[20] S. Ramagond, S. Yellampalli, and C. Kanagasabapathi, “A review and
analysis of communication logic between pl and ps in zynq ap soc,” in
2017 International Conference On Smart Technologies For Smart Nation
(SmartTechCon), 2017, pp. 946–951.

[21] H. Li, I. Puaut, and E. Rohou, “Tracing Flow Information for Tighter
WCET Estimation: Application to Vectorization,” in 2015 IEEE 21st In-
ternational Conference on Embedded and Real-Time Computing Systems
and Applications, 2015, pp. 217–226.

[22] Khronos Group, “The OpenVX Specification v1.3.1,”
https://registry.khronos.org/OpenVX/specs/1.3.1/html/OpenVX
Specification 1 3 1.html, accessed: 2023-06-28.

[23] NXP, i.MX Machine Learning User’s Guide, 2020.
[24] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-

ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenström, “The Worst-case
Execution-time Problem - Overview of Methods and Survey of Tools,”
ACM Transactions Embedded Computing Systems, vol. 7, no. 3, pp.
36:1–36:53, May 2008.

[25] C. Ferdinand and R. Heckmann, “aiT: Worst-case execution time pre-
diction by static program analysis,” in Building the Information Society:
IFIP 18th World Computer Congress Topical Sessions 22–27 August
2004 Toulouse, France. Springer, 2004, pp. 377–383.

[26] C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat, “OTAWA: An
Open Toolbox for Adaptive WCET Analysis,” in Software Technologies
for Embedded and Ubiquitous Systems - 8th IFIP, ser. Lecture Notes in
Computer Science, S. L. Min, R. G. P. IV, P. P. Puschner, and T. Ungerer,
Eds., vol. 6399. Springer, 2010, pp. 35–46.

[27] D. Hardy, B. Rouxel, and I. Puaut, “The Heptane Static Worst-Case
Execution Time Estimation Tool,” in 17th International Workshop on
Worst-Case Execution Time Analysis (WCET 2017), vol. 57, 2017, pp.
8:1–8:12. [Online]. Available: http://drops.dagstuhl.de/opus/volltexte/
2017/7303

[28] W.-T. Sun, E. Jenn, and H. Cassé, “Validating Static WCET Analysis:
A Method and Its Application,” in 19th International Workshop on
Worst-Case Execution Time Analysis (WCET 2019), Jul. 2019, pp.
6:1–6:10. [Online]. Available: https://hal.science/hal-02924072

[29] X. Jean, L. Mutuel, and V. Brindejonc, “Assurance methods for COTS
multi-cores in avionics,” in 2016 IEEE/AIAA 35th Digital Avionics
Systems Conference (DASC), 2016, pp. 1–7.

[30] H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. Rajku-
mar, “Bounding memory interference delay in COTS-based multi-core
systems,” in 2014 IEEE 19th Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2014, pp. 145–154.

[31] M. Hassan and R. Pellizzoni, “Analysis of Memory-Contention
in Heterogeneous COTS MPSoCs,” in 32nd Euromicro Conference
on Real-Time Systems (ECRTS 2020), ser. Leibniz International
Proceedings in Informatics (LIPIcs), vol. 165, 2020, pp. 23:1–23:24.
[Online]. Available: https://drops-dev.dagstuhl.de/entities/document/10.
4230/LIPIcs.ECRTS.2020.23

[32] V. A. Nguyen, E. Jenn, W. Serwe, F. Lang, and R. Mateescu,
“Using Model Checking to Identify Timing Interferences on Multicore
Processors,” in ERTS 2020 - 10th European Congress on Embedded
Real Time Software and Systems, Toulouse, France, Jan. 2020, pp.
1–10. [Online]. Available: https://inria.hal.science/hal-02462085

[33] T. Lugo, S. Lozano, J. Fernández, and J. Carretero, “A Survey of
Techniques for Reducing Interference in Real-Time Applications on
Multicore Platforms,” IEEE Access, vol. 10, pp. 21 853–21 882, 2022.

11

https://api.semanticscholar.org/CorpusID:259235797
https://registry.khronos.org/OpenVX/specs/1.3.1/html/OpenVX_Specification_1_3_1.html
https://registry.khronos.org/OpenVX/specs/1.3.1/html/OpenVX_Specification_1_3_1.html
http://drops.dagstuhl.de/opus/volltexte/2017/7303
http://drops.dagstuhl.de/opus/volltexte/2017/7303
https://hal.science/hal-02924072
https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2020.23
https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2020.23
https://inria.hal.science/hal-02462085

	Introduction
	PHYLOG Methodology
	PML
	Hybrid architectures - The GPU Example
	AMC20-152A on hybrid architectures
	Overview of the AMC20-152A
	Considerations for accelerator-related objectives

	AMC20-193 on hybrid architectures
	Overview of the AMC20-193
	Dimension 1
	Dimension 2
	Dimension 3

	Related Work
	Conclusion and perspectives
	References

