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We formulate a short-time expansion for one-dimensional Fokker-Planck equations with spatially dependent
diffusion coefficients, derived from stochastic processes with Gaussian white noise, for general values of the
discretization parameter 0 ⩽ α ⩽ 1 of the stochastic integral. The kernel of the Fokker-Planck equation (the
propagator) can be expressed as a product of a singular and a regular term. While the singular term can be
given in closed form, the regular term can be computed from a Taylor expansion whose coefficients obey simple
ordinary differential equations. We illustrate the application of our approach with examples taken from statistical
physics and biophysics. Further, we show how our formalism allows to define a class of stochastic equations
which can be treated exactly. The convergence of the expansion cannot be guaranteed independently from the
discretization parameter α .

I. INTRODUCTION

The Fokker-Planck (FP) equation is one of the most im-
portant computational tools in statistical mechanics to obtain
an approximation of the probability distribution in time and
space of a generic system including a stochastic driving force.
As such, the FP equation has found numerous applications
in widely disparate domains, ranging from plasma physics,
biophysics, physical chemistry, finance, and others [1–3]. In-
terestingly, the underlying theory of this linear parabolic par-
tial differential equation is still not yet fully developed, and
continues to hold surprises of physical relevance. Recent de-
velopments e.g. concern spatially varying diffusivity adopted
to describe anomalous diffusion [4–12]. Among the many sta-
tistical properties of heterogeneous diffusion processes stu-
died are in particular non-stationarity and non-ergodicity ; see
e.g. results on the non-existence of normalizable stationary so-
lutions, or equilibrium probability distributions, which can be
tackled by the methods of infinite ergodicity theory [13–16].
In particular these latter results show a sensitive dependence
on the discretization parameter α of the stochastic integrals in
the Langevin equation underlying the FP equation. The two
most commonly chosen discretizations are the Itô and Fisk-
Stratonovich, using values of α=0 or 1/2, respectively.

These recent results raise the question whether a similar de-
pendence on the discretization parameter α exists when consi-
dering the short-time behaviour of the FP equation, as it can
be deduced from systematic expansions in this limit. Short-
time expansions have been considered before in the literature
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[17–25], however, to the best of our knowledge, not with this
specific question in mind.

Apart from this important formal aspect, our work was
also originally motivated by a specific biophysical problem,
namely statistical physics models for molecular motors, in
which FP equations with heterogeneous diffusion terms arise
[26, 27]. In this context we are particularly interested in chro-
matin remodelers, molecular motors and enzymes that move
and remove nucleosomes in eukaryotic DNA [28]. We will
treat this problem as one of our applications of our approach
in this paper.

It is interesting to point out that multiplicative noise has
played an essential role in modeling a number of physical
and biological phenomena among which we can mention the
transmission of signals in neuron models [29, 30], the pheno-
typic variability and gene expression [31, 32], the stochastic
thermodynamics of holonomic systems [33–35], the ballistic-
to-diffusive transition of the heat propagation [36, 37], and
the statistical theory of turbulence [38, 39]. Given the wides-
pread use of models based on multiplicative noise and hetero-
geneous diffusion, it is important to have exact or approximate
techniques to solve the corresponding Langevin and Fokker-
Planck equations and thus trace the statistical properties of the
stochastic processes involved. The approach proposed in this
paper, concerning a development of the propagator for short
timescales, thus fits into this context and is complementary to
all other solution techniques proposed in the literature.

Our paper is organized as follows. We group our material
into three sections. Section II begins with a precise formu-
lation of the mathematical problem we discuss and the sub-
sequent derivation of the equations of our formal method.
Section III presents the explicit discussion of four exemplary
stochastic processes, which illustrates the application of our
method with concrete examples. In Section IV we turn our
discussion around by exploiting the properties of our expan-
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sion in order to find stochastic processes that are explicitly
solvable. We conclude in Section V with an outlook on fur-
ther possible developments.

II. THE SHORT-RANGE EXPANSION OF THE
FOKKER-PLANCK EQUATION WITH HETEROGENEOUS

DIFFUSION

In this Section, will develop the formalism to study the
short-time behavior of the one-dimensional Fokker-Planck
equation. We initially state the problem under investigation
and then we subdivide the development into two steps : (i)
firstly, we obtain the singular short-time part of the propaga-
tor, and (ii) secondly we get the differential equations for the
regular larger-time part. Finally, we obtain the formal solution
of the hierarchy of differential equations describing the Taylor
coefficients of the regular part of the propagator, particularly
useful for the applications.

A. Mathematical formulation of the problem

The starting point of our study is the Langevin equation, a
stochastic differential equation of the form

dx
dt

= h(x, t)+g(x, t)ξ (t), (1)

where x(t) is the stochastic process under investigation, and
h and g are regular functions. Without limiting generality, we
can always assume that g(x, t)≥ 0 for any x ∈ R and t ≥ t0.

Moreover, ξ (t) in Eq. (1) is a Gaussian white noise with
average value E(ξ (t)) = 0, and correlation E(ξ (t)ξ (τ)) =
2δ (t − τ), where δ (t) is the Dirac delta function. Throughout
this work, we always consider processes defined on the entire
real axis, without any reflecting or absorbing boundary condi-
tions.

For the process x(t), we can introduce the probability den-
sity W (x, t). It means that for any real numbers x and y (such
that y ⩽ x) we determine the probability that y ⩽ x(t) ⩽ x

as P(y ⩽ x(t) ⩽ x) =
∫ x

y
W (z, t)dz, or equivalently, W (x, t) =

∂P(x(t)⩽ x)
∂x

.
In order to completely define the meaning of Eq. (1), we

must introduce a parameter α ∈ [0,1], identifying the integral
stochastic interpretation adopted [1–3, 40, 41]. Indeed, the va-
lue of α defines the position of the point at which we calculate
any integrated function in the small intervals of the adopted
Riemann sum. This integration rule includes α = 0 (Itô in-
tegral) [42], α = 1

2 (Fisk-Stratonovich integral) [43, 44], and
α = 1 (Hänggi-Klimontovich integral) [45, 46] (see also Ref.
[47] for some comparison of these different choices).

The probability density W (x, t) is the solution of the
Fokker-Planck equation [1–3, 48–50]

∂W
∂ t

=− ∂

∂x

[(
h+2αg

∂g
∂x

)
W
]
+

∂ 2

∂x2

(
g2W

)
, (2)

which can be also written in the equivalent form

∂W
∂ t

=
∂

∂x

[
−hW +g2α ∂

∂x

(
g2(1−α)W

)]
. (3)

The right hand side of this Fokker-Planck equation can be ex-

pressed more explicitly as linear combination of W ,
∂W
∂x

, and

∂ 2W
∂x2 . We obtain

∂W
∂ t

=− fW − ℓ
∂W
∂x

+g2 ∂ 2W
∂x2 (4)

where we introduced the regular functions

f =
∂h
∂x

+2(α −1)
(

∂g
∂x

)2

+2(α −1)g
∂ 2g
∂x2 , (5)

ℓ = h+2(α −2)g
∂g
∂x

. (6)

These expressions show that the Fokker-Planck equation, and
thus the density W , are not affected by the sign of the function
g, which we assumed as always positive.

To solve the Fokker-Planck equation, we have to specify the
initial condition W (x, t0) =W0(x)∀x ∈ R, at a fixed initial time
t0. In particular, a special solution is given by the kernel or
propagator, defined by the initial condition W (x, t0) = δ (x−
y), where y is an arbitrary initial value. It means that the initial
value is deterministically known. This solution is referred to
as W (x, t) = K(x, t;y, t0) and it can be obtained by the partial
differential problem

∂K
∂ t

= − f K − ℓ
∂K
∂x

+g2 ∂ 2K
∂x2 (7)

K(x, t0;y, t0) = δ (x− y). (8)

With a little abuse of language, we can say that K is the pro-
bability density of observing the value x at time t, given the
value y at time t0.

The propagator is important since any initial condition,
such as W (x, t0) = W0(x)∀x ∈ R, can be handled by the re-
lation

W (x, t) =
∫ +∞

−∞

K(x, t;y, t0)W0(y)dy, (9)

as a consequence of the linearity of the Fokker-Planck equa-
tion.

The objective of this work is to find a good approxima-
tion of the propagator K for short times, and this will be or-
ganized as follows. The short-time approximation obviously
contains the singularity induced by the initial condition repre-
sented by the delta function δ (x− y). It means that we look
for K0 such that K(x, t;y, t0) ∼

t→t0
K0(x, t;y, t0). Successively,

for larger values of time, we can introduce a correction func-
tion F such that K(x, t;y, t0) = K0(x, t;y, t0)F(x, t;y, t0). Since
the effects of the initial singularity are all contained in K0,
it follows that F is regular. We will obtain a partial differen-
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tial equation describing the behavior of F . Moreover, based
on the regularity of F , we will introduce the Taylor develop-

ment F(x, t;y, t0) =
+∞

∑
n=0

Fn(x;y)(t − t0)n and we obtain the co-

efficient Fn+1 recursively, i.e. as function of preceding coeffi-
cients Fk,∀k such that 0 ⩽ k ⩽ n. Further simplifications are
introduced in the case where the functions h and g are time-
independent.

B. Formal development of the theory

We describe here in detail the formal development of the
theory, which includes the determination of the singular short-
time part of the propagator and its regular short-time part.
This regular perturbation is developed in series of powers over
time, and the coefficients are described by differential equa-
tions that are solved explicitly.

The singular short-time part of the propagator. In order to
obtain the explicit form of K0 associated to the Fokker-Planck
equation stated in Eq. (4), we firstly introduce the basic sto-
chastic differential equation

dx
dt

= aξ (t), (10)

where a∈R. This represents the simplest Ornstein-Uhlenbeck
process [51, 52], and the corresponding Fokker-Planck equa-
tion is given by the diffusion or heat equation

∂K
∂ t

= a2 ∂ 2K
∂x2 . (11)

The propagator for this equation is well-known and can be
written as follows [1, 2]

K(x, t;y, t0) =
1√

4πa2(t − t0)
exp

[
− (x− y)2

4a2(t − t0)

]
, (12)

when it is determined from the initial condition K(x, t0;y, t0) =
δ (x − y). This kernel represents the exact solution and per-
fectly describes the singularity for t → t0.

In the heat equation just solved, a is a constant. In contrast,
the diffusive term in the more general Fokker-Planck equation
given in Eq. (4) arbitrarily depends on space and time. Hence,
the idea is to consider the following short-time behavior of Eq.
(4)

K0(x, t;y, t0) =
C√

4π(t − t0)
exp

[
− (ω(x)−ω(y))2

4(t − t0)

]
. (13)

where ω(x) is a regular function able to take into account the
heterogeneous diffusion.

The introduction of a function ω , for now arbitrary, is use-
ful to take into account the possible non-Gaussian behavior
induced by the arbitrary form of g(x, t). The validity of this
proposed form of the short-time propagator is confirmed a
posteriori, by substitution.

The constant C has been introduced to normalize the pro-
pagator and is determined as follows, by considering the fol-
lowing representation of the delta function

lim
ε→0

1√
πε

exp
(
− z2

ε

)
= δ (z). (14)

To this aim, we study the expression δ (ω(x)−ω(y)) for an
arbitrary ω(x). Of course, if x ̸= y we have δ (ω(x)−ω(y)) =
0. Hence, we need to evaluate the integral

∫ +∞

−∞
δ (ω(x)−

ω(y))dx. To do this, we use the change of variable z = ω(x),
and we introduce the inverse function x = Ω(z). We suppose
that the function ω is always increasing, as we will be able to
confirm later on. By definition, ω(Ω(z)) = z and Ω(ω(x)) = x.
Then, we get dz = ω ′(x)dx and dx = Ω′(z)dz, with ω ′(x)≥ 0
and Ω′(z)≥ 0. We can write∫ +∞

−∞

δ (ω(x)−ω(y))dx =
∫ +∞

−∞

δ (z−ω(y))Ω′(z)dz

= Ω
′(ω(y)) =

1
ω ′(y)

. (15)

Indeed, from Ω(ω(x)) = x, we obtain by derivation
ω ′(x)Ω′(ω(x)) = 1 and hence Ω′(ω(x)) = 1/ω ′(x). We fi-
nally proved that

δ (ω(x)−ω(y)) =
1

ω ′(y)
δ (x− y). (16)

This is useful to obtain C = ω ′(y), yielding the normalized
expression for the propagator

K0(x, t;y, t0) =
ω ′(y)√

4π(t − t0)
exp

[
− (ω(x)−ω(y))2

4(t − t0)

]
. (17)

Indeed, by using the classical limiting expression in Eq. (14),
we deduce that

K0(x, t;y, t0)−→
t→t0

ω
′(y)δ (ω(x)−ω(y)) = δ (x− y), (18)

confirming the correct short time behavior of Eq. (17). The
function ω(x) is useful to accommodate the complexity in-
troduced by the space and time dependence of f , ℓ, and in
particular g. To obtain the explicit time-space dependence,
we firstly substitute Eq. (17) into the Fokker-Planck equation.
Hence, we need the following derivatives :

∂K0

∂x
= −K0

ω(x)−ω(y)
2(t − t0)

ω
′(x), (19)

∂ 2K0

∂x2 = K0

[
ω(x)−ω(y)

2(t − t0)
ω

′(x)
]2

(20)

− K0

2(t − t0)

[
ω

′(x)2 +(ω(x)−ω(y))ω ′′(x)
]
,

∂K0

∂ t
= − K0

2(t − t0)
+K0

(ω(x)−ω(y))2

4(t − t0)2 . (21)

In Eq. (4), the leading terms for t → t0 are those proportional
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to 1/(t − t0)2. We see that there is a leading term in ∂ 2K0
∂x2 , and

another one in ∂K0
∂ t . The balance of these two terms leads to

K0
(ω(x)−ω(y))2

4(t − t0)2 = g(x, t0)2K0

[
ω(x)−ω(y)

2(t − t0)
ω

′(x)
]2

,

(22)
and then ω ′(x)2g2(x, t0) = 1. Since g(x, t0) ≥ 0, we find
ω ′(x) = 1/g(x, t0)≥ 0, and therefore

ω(x)−ω(y) =
∫ x

y

dη

g(η , t0)
≜ D(x,y, t0), (23)

where we defined the quantity D(x,y, t0) for use in following
developments. This calculation confirms that ω ′(x)≥ 0, as as-
sumed in previous developments. To conclude, the short time
propagator is given by

K0(x, t;y, t0) =

exp
[
− 1

4(t−t0)

(∫ x
y

dη

g(η ,t0)

)2
]

g(y, t0)
√

4π(t − t0)

=
exp

[
− 1

4(t−t0)
D2(x,y, t0)

]
g(y, t0)

√
4π(t − t0)

, (24)

and it is only influenced by the diffusion coefficient g for the
initial time t = t0. It is important to remark that the integral
in Eq. (23) corresponds to the geodetic distance in a multi-
dimensional setting, as discussed in Ref. [25]. Interestingly,
the geodetic distance D can be written in closed form, as in
Eq. (23), only for the one-dimensional case considered here.

The regular short-time part of the propagator. In order to
improve the short-time representation of the propagator, we
can consider the following solution

K(x, t;y, t0) = K0(x, t;y, t0)F(x, t;y, t0), (25)

where F is for the moment unknown. Of course, the choice to
consider the multiplicative correction is arbitrary, and an addi-
tive correction could have been used. We kept the first choice
because it involves analytically feasible calculations and exact
solutions as discussed below and in the recent literature [23–
25].

An equation for the quantity F can be found by substitu-
ting Eq. (25) into Eq. (4), and by considering the expression
just obtained for K0. First of all, we introduce the notations
g0(x) = g(x, t0) and g′0(x) = ∂g(x, t0)/∂x, and we calculate
the following partial derivatives

∂K
∂x

= − K0

2(t − t0)
D

g0
F +K0

∂F
∂x

(26)

∂K
∂ t

= − K0F
2(t − t0)

+
D2K0F

4(t − t0)2 +K0
∂F
∂ t

(27)

∂ 2K
∂x2 =

K0

4(t − t0)2
D2

g2
0

F − K0

2(t − t0)
F
g2

0
+

K0

2(t − t0)
Dg′0
g2

0
F

− K0

(t − t0)
D

g0

∂F
∂x

+K0
∂ 2F
∂x2 . (28)

By using these expressions in Eq. (4), we elaborate an equa-
tion for the function F

∂F
∂ t

= − f F − ℓ
∂F
∂x

+g2 ∂ 2F
∂x2 − 1

2(t − t0)
F
(

g2

g2
0
−1

)
+

1
4(t − t0)2 D2F

(
g2

g2
0
−1

)
(29)

+
D

2(t − t0)g2
0

(
ℓFg0 +g2g′0F −2g2g0

∂F
∂x

)
.

Although this result appears in a more complex form than the
initial Fokker-Planck equation, the function F always has a re-
gular behavior for each time t ≥ t0. In such an equation, it must
be taken care that g(x, t) is different from g0(x) = g(x, t0). We
underline two specific points :

(i) there is only one initial condition to fully determine F ,
which is

F(y, t0;y, t0) = 1. (30)

It means that the function F must not alter the unit integral of
the delta function for t → t0 and, therefore, it must be equal to
one only for x = y.

(ii) since the singular behavior for t → t0 is fully described
by K0, the function F is regular everywhere and can be deve-
loped in a Taylor series with respect to t − t0.

According to this second point, since all the functions F , f ,
ℓ, and g2, involved in Eq. (29) are regular, we can introduce
the following analytic developments

F(x, t;y, t0) =
+∞

∑
n=0

Fn(x;y)(t − t0)n, (31)

f (x, t) =
+∞

∑
n=0

fn(x)(t − t0)n, (32)

ℓ(x, t) =
+∞

∑
n=0

ℓn(x)(t − t0)n, (33)

g2(x, t) =
+∞

∑
n=0

g2
n(x)(t − t0)n. (34)

The initial condition stated in Eq. (30) simplifies to

F0(y;y) = 1. (35)

We will discuss later the conditions for Fn, n ≥ 1, which need
to be automatically identified by the procedure we are develo-
ping since there are no other a priori conditions to be impo-
sed. We suppose from now on that all terms fn, ℓn, and g2

n are
known regular functions of x ∈ R, n ≥ 0.

Before starting the substitution of Eqs. (31), (32), (33), and
(34) into Eq. (29), we observe that

g2

g2
0
−1 =

+∞

∑
n=1

g2
n

g2
0
(t − t0)n, (36)

which means that g2/g2
0 − 1 is divisible by t − t0. Therefore,
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the last term in the first line of Eq. (29) is regular, i.e. wi-
thout the singularity 1/(t − t0), and the term in the second
line exhibits a singularity of the type 1/(t− t0) instead of type
1/(t− t0)2, as it might seem at a first glance. Thus, the term in
the second line together with the terms in the third line share
the same singularity of the type 1/(t − t0). Importantly, we
will see that the balance equation for these terms will yield
the first coefficient F0(x;y). That said, we can substitute all
Taylor developments into the main equation and obtain, after
long calculations, the relation

+∞

∑
n=0

Fn+1(n+1)(t − t0)n =
+∞

∑
n=0

Gn(t − t0)n

+
D2g2

1

4(t − t0)g2
0

F0 +
Dℓ0

2(t − t0)g0
F0

+
Dg′0

2(t − t0)
F0 −

Dg0

(t − t0)
∂F0

∂x
, (37)

where

Gn =
n

∑
k=0

[
− fkFn−k − ℓk

∂Fn−k

∂x
+g2

k
∂ 2Fn−k

∂x2 −
g2

k+1

2g2
0

Fn−k

]

+
n+1

∑
k=0

[
D2

4
g2

k+1

g2
0

Fn+1−k +
D

2g0
ℓkFn+1−k

+
Dg′0
2g2

0
g2

kFn+1−k −
D

g0
g2

k
∂Fn+1−k

∂x

]
. (38)

The last four terms of Eq. (37), with the singularity 1/(t − t0),
give the following equation for F0

∂F0

∂x
=

(
Dg2

1

4g3
0
+

ℓ0

2g2
0
+

g′0
2g0

)
F0, (39)

where F0 = F0(x;y), with F0(y;y) = 1. Hence, the solution is
easily obtained as

F0(x;y) = exp
[

1
4

∫ x

y

D(η ,y, t0)g2
1(η)

g3
0(η)

dη

+
1
2

∫ x

y

ℓ0(η)

g2
0(η)

dη +
1
2

∫ x

y

g′0(η)

g0(η)
dη

]
. (40)

We therefore obtained a closed form expression for the first
correction term F0. The higher-order corrections can be found
by equaling to zero the sum of terms having the same power
(t − t0)n, n ≥ 0, in Eq. (37). This results in a differential equa-
tion for Fn+1, n ≥ 0, that depends on all the preceding terms

F0,...,Fn. It reads

Dg0
∂Fn+1

∂x
+Fn+1

(
n+1− D2g2

1

4g2
0

− Dℓ0

2g0
−

Dg′0
2

)
=

n

∑
k=0

(
− fkFn−k − ℓk

∂Fn−k

∂x
+g2

k
∂ 2Fn−k

∂x2 −
g2

k+1

2g2
0

Fn−k

+
D2g2

k+2

4g2
0

Fn−k +
Dℓk+1

2g0
Fn−k

+
Dg′0g2

k+1

2g2
0

Fn−k −
Dg2

k+1

g0

∂Fn−k

∂x

)
. (41)

An important point concerns the initial condition to be
used for this differential equation. The original condition
F(y, t0;y, t0) = 1, simplified to F0(y;y) = 1, has been already
used in Eqs.(35) and (40). So, there are no other conditions
from the original problem that we are studying. However, we
easily see that the term with ∂Fn+1/∂x in Eq. (41) is propor-
tional to D(x,y, t0). It means that if we consider x = y in Eq.
(41) we obtain a relation fixing Fn+1(y;y), since D(y,y, t0) =
0, see Eq. (23). The initial condition is therefore

Fn+1(y;y) =
1

n+1

n

∑
k=0

(
− fkFn−k − ℓk

∂Fn−k

∂x

+g2
k

∂ 2Fn−k

∂x2 −
g2

k+1

2g2
0

Fn−k

)
. (42)

From a conceptual point of view, the problem we studied
was traced back to the solution of a hierarchy of differential
problems, i.e. an infinite sequence of differential equations
whose initial conditions are known. Nevertheless, although
these equations are of the first order, their form is quite com-
plex and needs to be simplified as described below.

C. The formal solution of the hierarchy of differential
equations

In order to simplify our results from section II B, we define

Φ(x,y) ≡ Dg2
1

4g3
0
+

ℓ0

2g2
0
+

g′0
2g0

, (43)

Ψn(x,y) ≡
n−1

∑
k=0

[
− fkFn−1−k − ℓk

∂Fn−1−k

∂x
+g2

k
∂ 2Fn−1−k

∂x2

−
g2

k+1

2g2
0

Fn−1−k +
D2g2

k+2

4g2
0

Fn−1−k +
Dℓk+1

2g0
Fn−1−k

+
Dg′0g2

k+1

2g2
0

Fn−1−k −
Dg2

k+1

g0

∂Fn−1−k

∂x

]
, (44)
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and the differential equations, with corresponding initial
conditions, can be rewritten as

∂F0

∂x
−ΦF0 = 0, (45)

F0(y,y) = 1, (46)
∂Fn

∂x
+

(
n
D ′

D
−Φ

)
Fn =

D ′

D
Ψn, (47)

Fn(y;y) =
1
n

Ψn(y,y), (48)

where we considered n ≥ 1, and we used the fact that g0(x) =
1/D ′(x,y, t0), with D ′ = ∂D/∂x. Since the quantity D de-
pends on y, while D ′ does not depend on y, from now on,
we use consistently the notation D = D(x,y, t0) and D ′ =
D ′(x, t0). Clearly, the solution of the differential equation for
F0 is

F0(x;y) = exp
[∫ x

y
Φ(η ,y)dη

]
, (49)

which exactly corresponds to Eq. (40). For solving Eq. (47),
we start by considering the homogeneous equation ∂Fh

n /∂x+
(nD ′/D −Φ)Fh

n = 0, and we obtain the solution as

Fh
n (x;y) = exp

[
−n

∫ x

z

D ′(η , t0)
D(η ,y, t0)

dη +
∫ x

z
Φ(η ,y)dη

]
= exp

[
−n ln

(
D(x,y, t0)
D(z,y, t0)

)
+

∫ x

z
Φ(η ,y)dη

]
=

(
D(z,y, t0)
D(x,y, t0)

)n

exp
[∫ x

z
Φ(η ,y)dη

]
, (50)

where ln(ζ ) represents the natural logarithm of ζ . Moreover,
z takes an arbitrary value that could be fixed by knowing the
initial condition of Fh

n . For now, let’s leave z free and look for
the solution of the non-homogeneous equation by adopting
the method of variation of parameters (Lagrange’s method).
We can in fact write a particular solution in the form

F p
n (x;y) =C(x)

(
D(z,y, t0)
D(x,y, t0)

)n

exp
[∫ x

z
Φ(η ,y)dη

]
, (51)

where C(x) is an unknown regular function, which can be de-
termined as follows. We can substitute Eq. (51) into Eq. (47)
to get

C′(x)
(

D(z,y, t0)
D(x,y, t0)

)n

exp
[∫ x

z
Φ(η ,y)dη

]
=

D ′(x, t0)
D(x,y, t0)

Ψn(x,y). (52)

Hence, we find the following explicit expression for C(x)

C(x) =
1

D(z,y, t0)n

∫ x

y
D ′(η , t0)D(η ,y, t0)n−1

Ψn(η ,y)

×exp
[
−
∫

η

z
Φ(χ,y)dχ

]
dη . (53)

A particular solution of Eq. (47) is therefore

F p
n (x;y) =

1
D(x,y, t0)n

∫ x

y
D ′(η , t0)D(η ,y, t0)n−1

Ψn(η ,y)

×exp
[
−
∫

η

z
Φ(χ,y)dχ

]
dη exp

[∫ x

z
Φ(η ,y)dη

]
,

(54)

which is valid for any value of z. In general, following La-
grange theory, the complete solution of Eq. (47) is given by
the sum of the solution of the homogeneous equation and the
particular solution. In this specific case, the procedure can be
simplified by trying to consider z = y in previous solutions. So
doing, the solution of the homogeneous equation is zero since
D(y,y, t0) = 0, and the general solution becomes coincident
with the particular solution with z = y (n ≥ 1)

Fn(x;y) =
1

D(x,y, t0)n

∫ x

y
D ′(η , t0)D(η ,y, t0)n−1

×Ψn(η ,y)exp
[
−
∫

η

y
Φ(χ,y)dχ

]
dη exp

[∫ x

y
Φ(η ,y)dη

]
.

(55)

We can verify that this solution perfectly satisfies the initial
condition Fn(y;y) = Ψn(y,y)/n. To this aim, we consider two
regular functions ϕ(x) and a(x) such that ϕ(y) = 0, and we
use the result

lim
x→y

1
ϕ(x)

∫ x

y
a(η)ϕ ′(η)dη = a(y), (56)

which can be directly proved, for instance, by means
of L’Hôpital’s rule. We can assume ϕ(x) = D(x,y, t0)n

so that ϕ ′(x) = nD ′(x, t0)D(x,y, t0)n−1, and a(x) =
1
n Ψn(x,y)exp

(
−
∫ x

y Φ(χ,y)dχ

)
. Then, we find that

limx→y Fn(x;y) = Ψn(y,y)/n, as expected.

To conclude, Eqs.(49) and (55) are the formal solutions of
the hierarchy of differential equations for the coefficients Fn.
Thus we have at our disposal the complete mathematical form
of the propagator K = K0F of the Fokker-Planck equation,
consisting in the product of Eq. (24) and Eq. (31), where the
coefficients just found are to be used.

A particular but very important case concerns the time-
independent stochastic differential equation

dx
dt

= h(x)+g(x)ξ (t), (57)

In this case the functions f and ℓ remains unchanged with
respect to Eqs.(5) and (6), but their Taylor developments are
greatly simplified. Indeed, we have f0(x) = f (x), ℓ0(x) = ℓ(x),
and g2

0(x) = g2(x). Moreover, for all n ≥ 1, we have fn(x) = 0,
ℓn(x) = 0, and g2

n(x) = 0. As a result, the functions Φ and Ψn
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turn out to be simplified as follows

Φ =
ℓ

2g2 +
g′

2g
, (58)

Ψn = − f Fn−1 − ℓ
∂Fn−1

∂x
+g2 ∂ 2Fn−1

∂x2 (59)

Importantly, Ψn depends only on the previous coefficient Fn−1
and not on all coefficients as in the arbitrarily time-varying
case. So, in this case Eq. (55) represents a simple recursion
between Fn and Fn−1. This makes the procedure easily appli-
cable in many practical cases. In addition, this approach can
be further simplified by defining

Fn(x;y) = Dn(x,y)F0(x;y). (60)

Of course, we have D0 = 1. As discussed below, the recursion
law for the parameters Dn is simpler than the previous one,
concerning the parameters Fn. To prove this point, we begin
by developing the derivatives in Eq. (59), as follows

∂Fk

∂x
=

(
∂Dk

∂x
+DkΦ

)
F0 (61)

∂ 2Fk

∂x2 =

(
∂ 2Dk

∂x2 +2
∂Dk

∂x
Φ+Dk

∂Φ

∂x
+DkΦ

2
)

F0. (62)

It is important to remark that both results are proportional to
F0. It means that we can introduce a function Λn, such that
Ψn = ΛnF0, which can be eventually written as

Λn = − f Dn−1 − ℓ

(
∂Dn−1

∂x
+Dn−1Φ

)
(63)

+g2
(

∂ 2Dn−1

∂x2 +2
∂Dn−1

∂x
Φ+Dn−1

∂Φ

∂x
+Dn−1Φ

2
)
.

In this time-independent situation, the function D can be rede-
fined as D(x,y)=

∫ x
y dη/g(η) and, therefore, D ′(x)= 1/g(x).

Hence, Eq. (55) takes the form

Fn(x;y) =
∫ x

y

D ′(η)D(η ,y)n−1Ψn(η ,y)
D(x,y)nF0(η ,y)

dηF0(x;y)

=
∫ x

y

D ′(η)D(η ,y)n−1Λn(η ,y)
D(x,y)n dηF0(x;y),

(64)

or, equivalently

Dn(x,y) =
1

D(x,y)n

∫ x

y
D ′(η)D(η ,y)n−1

Λn(η ,y)dη . (65)

Finally, the combination of Eqs.(63) and (65) represents a re-
cursive procedure that gives all the parameters Dn, which, in
turn, can be used to obtain all the parameters Fn through Eq.
(60). This approach can be easily applied to study the beha-
vior of stochastic differential equations, as in Eq. (57), with
arbitrary drift and heterogeneous diffusion.

In the next section, we will turn to applications of our

formalism. In particular, we demonstrate the determination of
the coefficients Dn, and the convergence of the series in Eq.
(31) for various stochastic processes.

III. APPLICATION TO SPECIFIC STOCHASTIC
PROCESSES

We now turn to the application of our formal developments
to specific examples. We begin with the simplest of all cases, a
Gaussian process, which has numerous applications in many
scientific fields. The second is the geometric Brownian pro-
cess, a stochastic process most often associated with problems
in finance. It is worth noting that for these first two examples
we could compute the full propagator exactly, against which
the form of short-term propagator can be easily compared.
The third and fourth are two case studies taken from biophy-
sics, for which we do not know a priori the full propagator :
(i) a model stochastic process for a molecular motor, and (ii) a
stochastic process occurring in parasite motility, based on an
exponential heterogeneous diffusion coefficient.

A. Gaussian processes

This simple case describes a system with constant drift and
diffusion terms. We consider therefore two real parameters H0
and G0 > 0 and the stochastic differential equation

dx
dt

=−H0 +G0ξ (t). (66)

Of course, the propagator for this problem is well-known, in
fact a generalization of Eq. 12 that can be written as [1, 2]

K(x, t;y, t0) =
exp

[
− (x−y+H0(t−t0))2

4G2
0(t−t0)

]
√

4πG2
0(t − t0)

. (67)

Within our formalism we thus have for Eqs. (5) and (6)
f (x) = 0, ℓ(x) = −H0, and g2(x) = G2

0. Moreover, D(x,y) =
(x− y)/G0. Therefore, we can obtain the short-time propaga-
tor K0 in the form

K0(x, t;y, t0) =
1√

4πG2
0(t − t0)

exp
[
− (x− y)2

4G2
0(t − t0)

]
. (68)

It can be immediately seen that this expression, valid for short
times, does not coincide with K, Eq. (67). Therefore, the cor-
rection introduced by the function F is essential in this case to
obtain the correct propagator.

To determine this correction, we evaluate Φ = − H0

2G2
0

, and

we write F0 as

F0(x;y) = exp
[∫ x

y
Φ(η)dη

]
= exp

[
− H0

2G2
0
(x− y)

]
. (69)
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FIGURE 1. Demonstration of the convergence of the expansion for a
Gaussian process. We plot the short-time propagator K0, the full pro-
pagator K, and low-order approximations K0Q0, K0Q1, K0Q2, and
K0Q3, to show the convergence K0Qm → K when m → ∞. We adop-
ted the parameter values H0 = −1, G0 = 1, y = 1, t0 = 0, t = 3 (in
arbitrary units).

We can prove by mathematical induction that

Dn =
(−1)nH2n

0

4nn!G2n
0

. (70)

This expression was found by explicitly applying the recur-
sive procedure - see Eqs.(63) and (65) - to the first terms and
looking for a general formula, which must now be rigorously
proved. To begin with, we note that the formula gives the cor-
rect value D0 = 1, for n = 0. Now, we can calculate Dn+1
with the procedure of Section II C to verify that the assump-
tion made on Dn is correct. To this aim, we firstly determine
Λn+1 through Eq. (63) as follows

Λn+1 =
(−1)n+1H2(n+1)

0

4n+1n!G2(n+1)
0

. (71)

Then, we can determine Dn+1 by means of Eq. (65)

Dn+1 =
∫ x

y

D ′(η)D(η ,y)n

D(x,y)n+1
(−1)n+1H2(n+1)

0

4n+1n!G2(n+1)
0

dη

=
∫ x

y

(η − y)n

(x− y)n+1
(−1)n+1H2(n+1)

0

4n+1n!G2(n+1)
0

dη

=
(−1)n+1H2(n+1)

0

4n+1(n+1)!G2(n+1)
0

, (72)

which is consistent with Eq. (70) through the replacement n→
n+1. This confirms the validity of the result by mathematical
induction.

This approach, based on an ansatz like that in Eq. (70),
which is then verified by induction on the natural numbers is
interesting but can probably be applied to a variety of special
cases but not to the general problem. In fact, in the most com-

plicated cases it is difficult to propose an expression for Dn by
applying only a few recursions of the procedure. However, it
remains useful for various applications discussed below.

We can now explicitly determine F as follows

F(x, t;y, t0) =
+∞

∑
n=0

Fn(x;y)(t − t0)n

=
+∞

∑
n=0

Dn(x)(t − t0)nF0(x;y)

=
+∞

∑
n=0

(
−H2

0 (t−t0)
4G2

0

)n

n!
F0(x;y)

= exp
[
−

H2
0 (t − t0)

4G2
0

]
exp

[
− H0

2G2
0
(x− y)

]
. (73)

We can finally multiply K0 by F , and it is easily seen that
we get the correct solution for K, given by Eq. (67). The se-
ries defining the function F is clearly convergent and thus de-
termines the first exponential function in Eq. (73). Although
rather simple, this example shows that the coefficients Dn de-
crease rapidly with n and thus a few terms are often sufficient
to have a good approximation on short-time intervals.

An illustration of this behaviour is found in Fig. 1, where
we show K0, K, and different approximations given by K0Qm,
where Qm = ∑

m
n=0 Fn(x;y)(t − t0)n ; Qm is partial sum of Eq.

(73). We see that the first approximation K0Q0 is too crude and
in fact is not even properly normalizable. On the other hand,
the subsequent approximations are automatically normalized
to within a negligible error. To conclude, we finally remark
that the results of this first example are independent of α since
the noise is additive and not multiplicative. We next turn to a
first example with multiplicative noise.

B. Geometric Brownian processes

Geometric Brownian processes find application in physics,
e.g., in the statistical theory of turbulence [38, 39], but they are
much more popular in finance, in particular in the modeling of
stock option prices [53–56].

For this example we will see that we can compute the kernel
with our recursive procedure for an arbitrary interpretation of
the stochastic integrals (i.e. for any value of α). We consider
an exemplary geometric Brownian process described by the
stochastic differential equation

dx
dt

=−H0x+G0|x|ξ (t), (74)

where we considered the absolute value in the diffusion term
in order to have g(x) ≥ 0, x ∈ R, that is a key assumption of
all our work (considering G0 > 0). We have h(x) = −H0x,
g(x) = G0|x|, and g′(x) = G0 sgn(x), where sgn(ζ ) represents
the signum function returning the sign of ζ , i.e., sgn(ζ ) = +1
if ζ > 0, sgn(ζ ) = 0 if ζ = 0, and sgn(ζ ) = −1 if ζ < 0. It
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FIGURE 2. Convergence of the short-time expansion for a geome-
tric Brownian process. We plot the short-time propagator K0, the full
propagator K, and some low-order approximations K0Q0, K0Q1, and
K0Q2, to illustrate the convergence K0Qm → K when m → ∞. We
adopted the parameter values H0 =−1, G0 = 1, y = 5, t0 = 0, t = 2,
and α = 1/2 (in arbitrary units).

easily follows from Eqs.(5), (6), and (58) that

f (x) = −H0 +2(α −1)G2
0, (75)

ℓ(x) =
[
−H0 +2(α −2)G2

0
]

x, (76)

Φ(x) =

[
−H0

G2
0
+(2α −3)

]
1
2x

, (77)

valid for any x ∈ R. An important point concerns the determi-
nation of the function D(x,y), defined as

D(x,y) =
∫ x

y

dη

g(η)
=

1
G0

∫ x

y

dη

|η |
. (78)

We know that
∫

dη/|η | = sgn(η) ln |η |+C (for some real
constant C), but we must be careful in the use of this inde-
finite integral. In fact, if x and y have the same sign (both
positive or both negative), there is no problem and the result
can be written without doubt as

∫ x
y dη/|η |= sgn(x) ln |x/y|=

sgn(y) ln |x/y|. However, when sgn(x) ̸= sgn(y), the integra-
tion region certainly crosses the origin and the definite inte-
gral is then divergent, i.e.

∫ x
y dη/|η | → ±∞. To summarize,

we have :

D(x,y) =
{ 1

G0
sgn(x) ln | x

y | if sgn(x) = sgn(y),
±∞ if sgn(x) ̸= sgn(y).

(79)

This complex behavior of the function D has important im-
plications for the short-time propagator structure. To begin,
we can write

K0(x, t;y, t0) =
1

G0|y|
√

4π(t − t0)
exp

[
−D2(x,y)

4(t − t0)

]
, (80)

and therefore, we obtain

K0(x, t;y, t0) =

exp
[
−

ln2 | x
y |

4G2
0(t−t0)

]
G0|y|

√
4π(t − t0)

1(x), y > 0, (81)

K0(x, t;y, t0) =

exp
[
−

ln2 | x
y |

4G2
0(t−t0)

]
G0|y|

√
4π(t − t0)

1(−x), y < 0, (82)

where the Heaviside step function 1(ζ ) is defined as 1(ζ ) = 1
if ζ ≥ 0, and 1(ζ ) = 0 if ζ < 0. This means that the propagator
vanishes on the negative real semi-axis when the initial value
y is positive, and vice versa, it vanishes on the positive real
semi-axis, when the initial value y is negative. This result is
derived from the fact that the function D is infinite when the
signs of x and y are discordant, and then we observe that K0 →
0 in this case. Therefore, the stochastic process cannot cross
the point x = 0, as if there were a fictitious reflecting boundary
condition. This is consistent with the fact that both the drift
and diffusion terms are zero for x = 0.

The short-time propagator must be now improved by means
of the correction function F . As before, we apply the recursive
procedure stated in Eqs.(63) and (65) and the observation of
the first terms leads to the expression

Dn =
(−1)nG2n

0
4nn!

(
2α −1− H0

G2
0

)2n

, (83)

which must be proved by mathematical induction. Firstly, for
n = 0, we correctly have D0 = 1. Based on Eq. (83), the
straightforward application of Eq. (63) delivers the following
coefficient Λn+1

Λn+1 =
(−1)n+1G2(n+1)

0
4n+1n!

(
2α −1− H0

G2
0

)2(n+1)

. (84)

For applying Eq. (65), we observe that Λn+1 is a constant,
and we can restrict the study the case with sgn(x) = sgn(y)
for what has already been discussed in the calculation of K0
(indeed, K0 is zero if sgn(x) ̸= sgn(y)). We then write

Dn+1 =
Λn+1[

sgn(x) ln | x
y |
]n+1

∫ x

y

[
sgn(η) ln | η

y |
]n

|η |
dη

=
Λn+1

n+1

=
(−1)n+1G2(n+1)

0
4n+1(n+1)!

(
2α −1− H0

G2
0

)2(n+1)

, (85)

which is consistent with Eq. (83) as a result of the substitu-
tion n → n+1. The mathematical induction finally proves the
expression for Dn, which can be used to obtain the correction
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F = F0 ∑
+∞

n=0 Dn(t − t0)n. We determine

F0 = exp
[∫ x

y
Φ(η)dη

]
= exp

[(
− H0

2G2
0
+

2α −3
2

)
ln |x

y
|
]
,

(86)
and

F = F0

+∞

∑
n=0

(−1)nG2n
0

4nn!

(
2α −1− H0

G2
0

)2n

(t − t0)n

= F0 exp

[
−

G2
0

4

(
2α −1− H0

G2
0

)2

(t − t0)

]
. (87)

To conclude, after straightforward calculations we obtain the
complete propagator K(x, t;y, t0) = K0F in the form

K =

exp

[
−

[
ln | x

y |+H0(t−t0)−(2α−1)G2
0(t−t0)

]2

4G2
0(t−t0)

]
G0|x|

√
4π(t − t0)

1(x), y > 0,

(88)

K =

exp

[
−

[
ln | x

y |+H0(t−t0)−(2α−1)G2
0(t−t0)

]2

4G2
0(t−t0)

]
G0|x|

√
4π(t − t0)

1(−x), y < 0,

(89)

which is in full agreement with previous investigations [16,
57]. A numerical result is displayed in Fig. 2, where we
show the fast convergence of the process. We plot the short-
time propagator K0, the full propagator K, and some approxi-
mations K0Q0, K0Q1, and K0Q2, to show the convergence
K0Qm → K, when m → ∞. Here, Qm = ∑

m
n=0 Fn(x;y)(t − t0)n,

representing the partial sum of Eq. (87). We have rigorously
proved by our method that if the geometric stochastic equation
is defined on the entire real axis, then the support of the propa-
gator consists of only the semi-axis in which the initial value
is present. The obtained result for the propagator is the log-
normal distribution which is typically associated with geo-
metric Brownian motion. We note that the result retains the
dependence on the discretization parameter α and thus holds
for all definitions of the the stochastic integral. However, it
may be worth noting that in most applications the geometric
Brownian process is considered in the Itô-interpretation, with
α = 0.

C. A stochastic process for chromatin remodeling

We will now introduce two practical applications for which
the full propagator is difficult to obtain, therefore the approxi-
mation of the short-term expression of K may have an impor-
tant, heuristic value.

We firstly consider a stochastic model that has been used
to map the stochastic motion of a chromatin remodeler ac-
ting on a nucleosome to an active Brownian dimer [26–28].
Originally developed for general dimeric motors, it has re-
cently been linked via structural biology insights on the ac-

tion of two motor domains of a chromatin remodeling enzyme
on the DNA wrapped around a nucleosome. In this unders-
tanding, first one of the motor domain pulls in DNA into the
nucleosome, and subsequently the second motor domain ex-
pels the surplus DNA outward, thereby establishing a proper
wrapping of 147 base pairs of DNA around the protein core of
the nucleosome. The motion of the two-domain nucleosome-
remodeler complex can then be separated into a center of mass
motion, and a stochastic differential equation for the relative
motion, which is given by a very simple expression in view of
the complexity of the system

dx
dt

= h(x)+g(x)ξ (t) (90)

with the drift and diffusion terms given by

h(x) =−
(

1
β
+

1
β + γx

)
kx, (91)

g(x) =
A

(β + γx)2 . (92)

These expressions are valid when only active, ATP-dependent
fluctuations are retained and thermal fluctuations are ignored.
The equation is studied under the Fisk-Stratonovich interpre-
tation (α = 1/2). This choice was made only to fix ideas, and
any other value for α could have been considered. In physical
and biophysical applications, however, this is the value typi-
cally adopted.

The parameter A signifies the strength of the active process,
while the constants β and γ are friction terms (γ ≪ β ) ; k is the
spring constant of a harmonic interaction potential between
the remodeler motor domains on DNA. We stress that this mo-
del is purely phenomenological and therefore also other forms
of these functions can be adopted and can in fact be found in
the literature [26, 27].

Applying our formal analysis, we fix the initial position y =
0, and the initial time t0 = 0. First of all, we determine the
quantity D as

D =
1
A

(
1
3

γ
2x3 +βγx2 +β

2x
)
, (93)

and therefore we obtain the short-time propagator in the form

K0(x, t;y, t0) = β
2

exp
[
− 1

4A2t

( 1
3 γ2x3 +βγx2 +β 2x

)2
]

√
4πA2t

.

(94)
Moreover, the first correction F0 is found as

F0 =

(
γx+β

β

)2

exp
(
−β 3kx2

2A2 − 7β 2γkx3

6A2

−9βγ2kx4

8A2 − γ3kx5

2A2 − γ4kx6

12βA2

)
. (95)

The application of the recursive procedure given by Eqs.(63)
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FIGURE 3. Application of the recursive procedure to the stochastic equation for the remodeler-nucleosome complex. In the left panel we
adopted the parameters k = 2, β = 1, γ = 1/10, and A = 1, and in the right panel k = 2, β = 1, γ = 1/10, and A = 2 (in arbitrary units). In both
cases we plot the short-time propagator K0, and low-order approximations K0Q0, K0Q1, K0Q2, K0Q3,and K0Q4, to show the convergence of
K0Qm for m → ∞. Here, Qm = ∑

m
n=0 Fn(x;y)(t − t0)n represents the partial sum of Eq. (31). In both panels we adopted t0 = 0, and t = 1/2.

and (65) yields closed form expressions for the coefficients
Dn. While these quite lengthy expressions can be easily obtai-
ned through standard symbolic environments like MAPLE,
we display in the Appendix only the series expansion of the
coefficients Dn with respect to the variable x, keeping fixed
the other physical parameters.

The plot of the successive approximations for the propa-
gator can be found in the left panel of Fig. 3 for a first set
of parameters. Here we represented the functions K0, and
some approximations K0Q0, K0Q1, K0Q2, K0Q3,and K0Q4,
to show the convergence of K0Qm for m → ∞. Here, Qm =
∑

m
n=0 Fn(x;y)(t − t0)n represents the partial sum of Eq. (31). It

means that Q0 = K0, Q1 = F0(1+D1t), Q2 = F0(1+D1t +
D2t2), Q3 = F0(1 + D1t + D2t2 + D3t3), and Q4 = F0(1 +
D1t + D2t2 + D3t3 + D4t4). Here, we adopted t0 = 0, and
t = 1/2. It is interesting to note that a rather small number of
terms is sufficient to have reasonably convergent behaviour.
This can be seen from the fact that the last two approxima-
tions are almost overlapping and also from the fact that they
are automatically well normalized. We emphasize that the first
approximation K0F0 is again so poorly approximate that it is
not even normalized.

The results for a second set of parameters, where we
adopted a larger intensity of the noise related to the ATP-
consumption, can be found in the right panel of Fig. 3. In this
case, we observe a larger variance of the variable x, which
induces larger propagator spread. Also in this case we can
remark a good convergence with a quite limited number of
terms. This means that the recursive procedure proposed in
this paper can be effectively applied to physical and biologi-
cal problems of some interest with relative simplicity. In par-
ticular, it makes it possible to obtain good approximations of
the propagator of one-dimensional Fokker-Planck equations
even when such equations are very difficult to solve by other
approaches.

D. Exponential heterogeneous diffusion

Our final example in this Section deals with the heteroge-
neous exponential diffusion described by g(x) = G0 exp(γx),
with G0 > 0 and γ real. Such an exponential behavior of the
diffusion coefficient has been used in a different biological
context : it had been introduced to give a stochastic interpreta-
tion of the movement of the parasitic nematode Phasmarhab-
ditis hermaphrodita [58–60]. Another biological example is
given by an exponential rate of morphogen degradation in a
reaction-subdiffusion model for cell development [61]. Mor-
phogens are special signaling molecules whose spatial distri-
bution controls the growth of embryonic cells [62]. However,
such biologically-motivated examples are not the only ones
for which an exponential diffusion coefficient can be used.
For example, they were similarly employed to model the dif-
fusion of impurities induced by irradiation [63, 64] : in this
case, the exponential dependence originates from the decay of
the radiation propagating in the material under study. Finally,
they were also applied to the description of grain-boundary
diffusion in nanostructured materials [65].

We thus consider the differential equation with exponential
diffusion :

dx
dt

= G0 exp(γx)ξ (t), (96)

where at first an arbitrary stochastic interpretation is assumed.
We start our analysis by applying Eqs.(5), (6), and (58), which
lead to the expressions

f (x) = 4(α −1)G2
0γ

2 exp(2γx), (97)

ℓ(x) = 2(α −2)G2
0γ exp(2γx), (98)

Φ(x) =
γ

2
(2α −3). (99)
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As done previously, we applied the recursion for the first terms
manually, see Eqs.(63) and (65), and realized that the parame-
ters Dn are described by the relation

Dn =
(−1)nG2n

0 γ2n exp [nγ(x+ y)]
4nn!

n−1

∏
k=0

[
4α

2 − (2k+1)2] ,
(100)

which we now demonstrate by mathematical induction.
Firstly, for n = 0 we have D0 = 1, considering that the empty
product is unitary. Next, let’s assume that the formula is
true for a natural number n, and since dDn/dx = nγDn, and
dΦ/dx = 0, we get from Eq. (63)

Λn+1 =−G2
0γ

2 exp(2γx)Dn
4α2 − (2n+1)2

4
. (101)

We introduce the polynomials Qn(ζ ) such that Q0(ζ ) = 1 and
Qn+1(ζ ) = [4ζ 2 − (2n + 1)2]Qn(ζ ). They allow us to write
Eq. (100) in the form

Dn =
(−1)nG2n

0 γ2n exp [nγ(x+ y)]
4nn!

Qn(α), (102)

Now, by means of the expression D = [exp(−γy) −
exp(−γx)]/G0γ , we can apply Eq. (65) and we obtain after
straightforward calculation

Dn+1 =
(−1)n+1G2(n+1)

0 γ2(n+1) exp [(n+1)γ(x+ y)]
4n+1(n+1)!

Qn+1(α),

(103)
which finally proves Eq. (100) by mathematical induction.

In this case we have obtained the closed form of the Taylor
coefficients but it is important now to remark that the corres-
ponding series leads to a meaningful result only if α = 1/2.
In fact, with α = 1/2, all coefficients Dn vanish with n ≥ 1 as
seen by observing the product in Eq. (100). The expansion is
thus cut off after the first term. On the other hand, it is seen
that with α ̸= 1/2 the series of powers with coefficients Dn
cannot converge because of the divergent behavior of Dn with
n since the product grows roughly as (n!)2. Therefore, only the
Fisk-Stratonovich interpretation leads to a well-defined deve-
lopment for the exponential diffusion (this case will be further
discussed in the next Section). As a consequence the proba-
bility density for the exponential diffusive process cannot be
developed in a Taylor series independently from the interpre-
tation of the stochastic integrals.

Although it is interesting to have understood that the solu-
tion by series can be obtained only for certain values of α , a
theoretical understanding of this fact is lacking. In particular,
for the time being it is impossible to predict for a certain pro-
blem what are the values of α for which we have a convergent
solution. This point certainly requires further theoretical ana-
lysis in the near future.

IV. STOCHASTIC PROCESSES IN THE
FISK-STRATONOVICH INTERPRETATION - NEW

INSIGHTS FROM OUR FORMALISM

In this Section we take a different point of view. Rather
than starting out from a specifically defined model, as we did
in Section III, we here develop rather general consequences
following from of our formalism. In this Section we consider
stochastic processes always in the Fisk-Stratonovich calculus.
We first report on some general results in the case of pure
diffusions, i.e. in the absence of a drift term. Then we turn to
the special case in which drift and diffusion terms conspire in
such a way as to render our recursion equations particularly
simple to solve.

A. The case of pure diffusion and no drift

We first consider a stochastic process without drift, h(x) =
0, interpreted through the Fisk-Stratonovich integration with
α = 1/2. We have

dx
dt

= g(x)ξ (t), (104)

with g(x) ≥ 0 for any x ∈ R. To take advantage of our proce-
dure, we can directly apply Eqs.(5), (6), and (58) and obtain
the expressions

f (x) = −g′2(x)−g(x)g′′(x), (105)
ℓ(x) = −3g(x)g′(x), (106)

Φ(x) = −g′(x)
g(x)

. (107)

In order to implement the recursion, we start form D0 = 1 and
we calculate Λ1 through Eq. (63), eventually obtaining

Λ1(x) = g′2(x)+g(x)g′′(x)−3g(x)g′(x)
g′(x)
g(x)

+g2(x)
(
−g′′(x)g(x)−g′2(x)

g2(x)
+

g′2(x)
g2(x)

)
= g′2(x)+g(x)g′′(x)−3g′2(x)−g′′(x)g(x)

+g′2(x)+g′2(x) = 0. (108)

The fact that Λ1 = 0, by induction, implies that all parameters
Λn and Dn are zero from n = 1 until infinity. Hence, the cor-
rection function F is simply given by the first term F0, which
can be calculated as follows

F0(x;y) = exp
[∫ x

y
Φ(η ,y)dη

]
=

g(y)
g(x)

, (109)

where we used Eq. (107). To conclude, we obtain the closed
form expression of the propagator for Eq. (104) as K = K0F0,
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FIGURE 4. Example of time evolution for a geometric Brownian pro-
cess. We plot the full propagator K given in Eq. (111) for different
values of the time t = 0.2k, with k = 1, ...,10 (start time in red and
end time in blue). We adopted the parameters, G0 = 1, y = 5, t0 = 0,
and α = 1/2 (in arbitrary units).

which turns out to be

K(x, t;y, t0) =
exp

[
− 1

4(t−t0)

(∫ x
y

dη

g(η)

)2
]

g(x)
√

4π(t − t0)
. (110)

The Wiener process is of course retrieved when g(x) is a
constant.

The fact that in this specific case we were able to find a
rather general solution should not be too surprising. In fact,
the stochastic differential equation is interpreted by Fisk-
Stratonovich integration and thus all the rules of mathematical
analysis remain unchanged and applicable as if the equation
were not stochastic. Based on this observation, we see that
the simple transformation law z(x) =

∫ x
a dη/g(η) (for some

real constant a) is able to convert the starting equation into
dz/dt = ξ (t), which describes a simple Wiener process. This
alternative approach leads indeed to the same result stated in
Eq. (110). An interesting investigation on this type of equation
can be found in Ref. [66].

This problem is useful to further explore the behavior of
several systems with heterogeneous diffusion. For example, if
we consider the geometric Brownian motion case from Sec-
tion III with g(x) = G0|x| but without drift, we simply obtain

K(x, t;y, t0) =

exp
[
−

ln2 | x
y |

4G2
0(t−t0)

]
G0|x|

√
4π(t − t0)

1(x), y > 0, (111)

K(x, t;y, t0) =

exp
[
−

ln2 | x
y |

4G2
0(t−t0)

]
G0|x|

√
4π(t − t0)

1(−x), y < 0, (112)

in full agreement with Eqs.(88) and (89), with H0 = 0 and

α = 1/2. The geometric Brownian motion without drift, in the
case of Fisk-Stratonovich interpretation, can thus be studied
directly with this simple approach, without developing the full
procedure as in the previous Section III B. An example can
be found in Fig. 4, where we plot the time evolution of the
propagator given in Eq. (111), with a positive initial condition.

A further interesting case concerns the diffusive behavior
described by the power law g(x) = G0|x|β , where we as-
sume that β < 1 for reasons that will be clarified shortly.
We have to study the integral

∫ x
y dη/|η |β . It is rather simple

to verify the validity of the indefinite integral
∫

dη/|η |β =

sgn(η)|η |1−β/(1−β )+C for some real constant C. Hence,
the hypothesis β < 1 allows us to state that the improper in-
tegral is convergent in the neighborhood of η = 0 (indeed,
1−β > 0), and we can write∫ x

y

dη

|η |β
= sgn(x)

|x|1−β

1−β
− sgn(y)

|y|1−β

1−β

=
|x|2−β

x(1−β )
− |y|2−β

y(1−β )
, (113)

which is valid for any real numbers x and y. Unlike the case
of geometric Brownian motion, we find here a propagator de-
fined on the entire real axis (with β < 1)

K(x, t;y, t0) =
exp

[
− 1

4G2
0(t−t0)(1−β )2

(
|x|2−β

x − |y|2−β

y

)2
]

G0|x|β
√

4π(t − t0)
.

(114)
This result represents a generalization of the expression obtai-
ned in Ref. [5] for y = 0, which reads as

K(x, t;y, t0) =
exp

[
− 1

4G2
0(t−t0)(1−β )2 |x|2(1−β )

]
G0|x|β

√
4π(t − t0)

. (115)

This process is called subdiffusive if β < 0 and superdiffu-
sive if 0 < β < 1. This terminology derives from the calcu-
lation of mean-squared displacement from Eq. (115), resul-
ting in E(x2(t)) ∼ t1/(1−β ), where we identify the exponent
e = 1/(1 − β ). Depending on the value of the anomalous
diffusion exponent e we can thus distinguish subdiffusion
(0 < e < 1), superdiffusion (e > 1), standard Brownian mo-
tion (e = 1), ballistic wave-like motion (e = 2) and geometric
Brownian motion (e → ∞). This analysis shows that the ano-
malous diffusion observed in several systems can be explai-
ned by means of a heterogeneous diffusion, for example of the
power-law type. Examples of asymmetric (y ̸= 0) and symme-
tric (y = 0) subdiffusion and superdiffusion processes can be
found in Figs.5 and 6, respectively. In these cases the mean-
squared displacement exponent assumes the values e = 2/3
(subdiffusive behavior) and e = 2 (superdiffusive behavior).

This procedure also works, of course, for the case of hete-
rogeneous exponential diffusion, already discussed in Section
III D. The application of Eq. (110) leads directly to the propa-
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FIGURE 5. Asymmetric and symmetric subdiffusion processes. We plot the full propagators K given in Eqs.(114) and (115) for different values
of the time t = 0.5k, with k = 1, ...,10 (start time in red and end time in blue), and for β =−1/2 (e = 2/3). We adopted the parameters, G0 = 1,
y = 3 (for the asymmetric subdiffusion, left panel), y = 0 (for the symmetric subdiffusion, right panel), t0 = 0, and α = 1/2 (in arbitrary units).
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FIGURE 6. Asymmetric and symmetric superdiffusion processes. We plot the full propagators K given in Eqs.(114) and (115) for different
values of the time t = 0.5k (start time in red and end time in blue), with k = 1, ...,10, and for β = +1/2 (e = 2). We adopted the parameters,
G0 = 1, y = 3 (for the asymmetric superdiffusion, left panel), y = 0 (for the symmetric superdiffusion, right panel), t0 = 0, and α = 1/2 (in
arbitrary units).

gator in the form

K(x, t;y, t0) =
exp

[
− 1

4G2
0γ2(t−t0)

(exp(−γy)− exp(−γx))2
]

G0 exp(γx)
√

4π(t − t0)
,

(116)
in agreement with the result in Ref. [5]. In this case, the mean-
squared displacement shows a logarithmic time dependence,
which is a characteristic feature of ultraslow processes [5].
The existence of the solution for the case with the exponen-
tial heterogeneous diffusion under the Fisk-Stratonovich in-
terpretation is consistent with the result of Section III D, affir-
ming that the development in a power series is possible only
if α = 1/2. An example can be seen in Fig. 7, where we show

the time behavior of the propagator for the exponential pro-
cess with G0 = 1 and γ = 1. We observe that the probability
density evolves slowly in the direction where the diffusion co-
efficient is lower, being driven by the gradient of fluctuations.

Although the analysis developed here concerns the Fisk-
Stratonovich interpretation, some generalizations can be men-
tioned. Indeed, it is interesting to remark that Eq.(104), inter-
preted with α = 1/2, is equivalent to the equation

dx
dt

= (1−2α)g(x)
dg(x)

dx
+g(x)ξ (t), (117)

interpreted with an arbitrary value of α . Then the solution gi-
ven in Eq. (110) is valid also in these cases, that are outside
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FIGURE 7. Example of time evolution for a exponential process. We
plot the full propagator K given in Eq. (116) for different values of
the time t = 1, ...,10 (start time in red and end time in blue). We
adopted the parameter values G0 = 1, γ = 1, y = 0, t0 = 0, and α =
1/2 (in arbitrary units).

the Fisk-Stratonovich interpretation.

B. Stochastic processes with drift under the Fisk-Stratonovich
interpretation

We now return to stochastic processes with drift, studied
under the Fisk-Stratonovich interpretation, and search for
functions h and g that are able to significantly simplify the
recursive procedure obtained with our approach. In particular,
we look for the form of these functions that generate constant
coefficients Λn and Dn (i.e., independent of x). From Eq.(63),
we see this can be true only if

− f − ℓΦ+g2 ∂Φ

∂x
+g2

Φ
2 =C, (118)

where C is a constant. By using Eqs.(5), (6), and (58) for f , ℓ,
and Φ, this condition can be rewritten as

h′+2(α −1)h
g′

g
+

h2

2g2

=−2C− (2α −1)
[

2α −1
2

(g′)2 +gg′′
]
, (119)

where α is the stochastic discretization parameter. This rela-
tion must be fulfilled by h and g in order to have constant
coefficients Λn and Dn. In the particular case with h = 0 and
α = 1/2, we get C = 0, and therefore we retrieve the results
of the previous Section (all coefficients are zero for n ≥ 1).
We now want to retain the Fisk-Stratonovich interpretation but

also assume that h ̸= 0. In this situation, Eq.(119) reduces to

h′−h
g′

g
+

h2

2g2 =−2C, (120)

A simple assumption that allows us to verify this condition is
given by h(x)=−mg(x), where m is a real parameter. It means
that we are studying the stochastic differential equation

dx
dt

=−mg(x)+g(x)ξ (t), (121)

where the drift term is proportional to the diffusion term. In
this particular case we get

f (x) = −mg′− (g′)2 −gg′′, (122)
ℓ(x) = −mg−3gg′, (123)

Φ(x) = −1
2

m
g
− g′

g
. (124)

The short-time propagator is given by the expression

K0(x, t;y, t0) =

exp
[
− 1

4(t−t0)

(∫ x
y

dη

g(η)

)2
]

g(y)
√

4π(t − t0)
, . (125)

The first correction term F0 can be calculated as follows

F0 = exp
[∫ x

y
Φ(η)dη

]
=

g(y)
g(x)

exp
[
−m

2

∫ x

y

dη

g(η)

]
, (126)

and the other coefficients must be determined through the ite-
ration stated in Eqs.(63) and (65). In this case, Eq.(118) is
fulfilled with a constant C = −m2/4, and therefore we have
from Eq.(63)

Λn =−1
4

m2Dn−1. (127)

When this relation is substituted into Eq.(65), the following
simple recursion is found

Dn =− 1
4n

m2Dn−1, (128)

which leads to the result

Dn = (−1)n m2n

4nn!
(129)

that complies with the condition D0 = 1. The correction func-
tion F can be summed as follows

F = F0

+∞

∑
n=0

1
n!

[
−m2(t − t0)

4

]n

= F0 exp
[
−m2

4
(t − t0)

]
,

(130)
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and the propagator K = K0F is finally found in the form

K(x, t;y, t0) =
exp

[
− 1

4(t−t0)

(∫ x
y

dη

g(η) +m(t − t0)
)2

]
g(x)

√
4π(t − t0)

. (131)

This result, as expected, reduce to Eq.(110) when m = 0,
i.e., when we set the drift to zero. The problem described by
Eq.(121), just solved for α = 1/2, is useful for studying va-
rious stochastic population growth models. For instance, as
the diffusion function g varies, we can recover the Verhulst
logistic model, the Gompertz model, the Shoener model, the
Richards model, and the Smith model [67–71].

Another interesting example can be found by considering
g(x) fixed and by searching for the solution of Eq.(120) with
respect to h(x). This equation is of Riccati type, which means
that it is composed of a linear combination of the derivative
of h, a linear term in h, a term independent of h and finally
a quadratic term in h. We learned from the previous example
that h(x) = −mg(x) is a particular solution of this equation
(with C = −m2/4). We can therefore search for a general so-
lution of Eq.(120) in the form h(x) = −mg(x)+ τ(x) (again
with C = −m2/4). A simple calculation proves that τ(x) sa-
tisfies the following equation

τ
′ =

(
g′

g
+

m
g

)
τ − τ2

2g2 , (132)

which is of the Bernoulli type (with a structure similar to the
Riccati equation without the term independent of the unk-
nown τ). It means that the knowledge of a particular solution
of Eq.(120), in the form h(x) = −mg(x), allowed us to move
from a Riccati equation to a Bernoulli equation, thus slightly
simpler. A further change of variable, namely θ = 1/τ , finally
reduces the equation to the linear case. Straightforward calcu-
lations lead indeed to the equation

θ
′ =−

(
g′

g
+

m
g

)
θ +

1
2g2 , (133)

which can be solved without additional effort. In fact, by de-
fining a function p(x) such that p′(x) = 1/g(x), i.e. p is any
indefinite integral of 1/g, we have the solution

θ(x) =
S

g(x)
e−mp(x)+

1
2g(x)

e−mp(x)
∫ x 1

g(η)
emp(η)dη ,

(134)
where S is an arbitrary integration constant. We can conclude
that the general solution of Eq.(120) is given by h(x) =
−mg(x)+ 1/θ(x). As a result of the construction developed,
the Fokker-Planck equation generated by h and g definitely
has constant coefficients Dn and thus its propagator can be
found without difficulty. This defines a new class of Langevin
equations for which the exact solution can be calculated.

Let’s study a specific example in detail concerning a
constant diffusion term g = G0. This choice leads to a drift
term h(x) = −mG0 + 1/θ(x) = −H0 + 1/θ(x), where θ(x)

can be obtained through Eqs.(133) and (134). More explicitly

h(x) = H0

1−2H0Sexp
(
−H0

G2
0
x
)

1+2H0Sexp
(
−H0

G2
0
x
) , (135)

where S is arbitrary. We are therefore studying the nonlinear
Langevin equation with a sigmoidal drift

dx
dt

= H0

1−2H0Sexp
(
−H0

G2
0
x
)

1+2H0Sexp
(
−H0

G2
0
x
) +G0ξ (t), (136)

interpreted through α = 1/2. For this equation, the function
Φ(x) can be written as

Φ(x) =
h(x)
2G2

0
=

H0

2G2
0

1−2H0Sexp
(
−H0

G2
0
x
)

1+2H0Sexp
(
−H0

G2
0
x
) , (137)

and therefore

F0 = exp
[∫ x

y
Φ(η)dη

]
=

exp
(

H0
2G2

0
x
)
+2H0Sexp

(
− H0

2G2
0
x
)

exp
(

H0
2G2

0
y
)
+2H0Sexp

(
− H0

2G2
0
y
) .

(138)

Moreover, the constant C is given by C = −m2/4 =
−H2

0/(4G2
0). Hence, we have

Dn = (−1)n m2n

4nn!
= (−1)n 1

4nn!

(
H0

G0

)2n

. (139)

We can calculate the correction function F

F = F0 exp

[
−1

4

(
H0

G0

)2

(t − t0)

]
, (140)

and we finally have the propagator K = K0F in explicit form

K(x, t;y, t0) =
1√

4πG2
0(t − t0)

exp
[
− (x− y)2

4G2
0(t − t0)

]

×
exp

(
H0

2G2
0
x
)
+2H0Sexp

(
− H0

2G2
0
x
)

exp
(

H0
2G2

0
y
)
+2H0Sexp

(
− H0

2G2
0
y
)

×exp

[
−1

4

(
H0

G0

)2

(t − t0)

]
. (141)

It can be verified that this expression is indeed the solution of
the Fokker-Planck equation associated to Eq.(136). A numeri-
cal example can be found in Fig. 8, where we show the sigmoi-
dal drift with the propagator evolution for two different initial
conditions, corresponding to the positive and negative regions
of the sigmoidal function. We observe a regressive diffusion in
the first case and a progressive diffusion ion the second one, as
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FIGURE 8. Stochastic process with a sigmoidal drift. We plot the full propagators K given in Eq.(141) for different values of the time t = 0.1k,
with k = 1, ...,20 (start time in red and end time in blue). We also plot the sigmoidal drift h(x) (black lines). We adopted the parameter values,
G0 = 1, H0 = 1, t0 = 0, S = 10, and α = 1/2 (in arbitrary units). We observe a regressive diffusion in left panel with y = 0, and a progressive
diffusion in the right panel with y = 5.

expected. We also observe that the rate of displacement of the
mean value of the variable x converges to a well-determined
value for long times because of the horizontal asymptotes of
the sigmoidal function. Moreover, the variance is an increa-
sing function due to the noise fluctuations.

Another example deals with the heterogeneous exponential
diffusion of the form g(x) = G0 exp(γx). We consider again
α = 1/2, and we search for the function h given by h(x) =
−mg(x) + 1/θ(x), as before. We define H0 = mG0, and we
obtain p(x) = −exp(−γx)/(G0γ), such that p′(x) = 1/g(x).
The application of previous procedure delivers

h(x) = H0 exp(γx)
1−2 H0

G0
Sexp

[
−H0

G0
p(x)

]
1+2 H0

G0
Sexp

[
−H0

G0
p(x)

]
= H0 exp(γx)

1−2 H0
G0

Sexp
[

H0
G2

0γ
exp(−γx)

]
1+2 H0

G0
Sexp

[
H0

G2
0γ

exp(−γx)
] , (142)

where S is an arbitrary constant. It means that we study the
nonlinear Langevin equation with heterogeneous diffusion

dx
dt

= H0 exp(γx)
1−2 H0

G0
Sexp

[
H0

G2
0γ

exp(−γx)
]

1+2 H0
G0

Sexp
[

H0
G2

0γ
exp(−γx)

]
+G0 exp(γx)ξ (t), (143)

under the Fisk-Stratonovich interpretation. With straightfor-

ward calculation we find

F0 =
1+2 H0

G0
Sexp

[
H0

G2
0γ

exp(−γx)
]

1+2 H0
G0

Sexp
[

H0
G2

0γ
exp(−γy)

] (144)

×exp
{
−γ(x− y)− H0

2G2
0γ

[exp(−γx)− exp(−γy)]
}
,

and the correction function F appears to be

F = F0 exp

[
−1

4

(
H0

G0

)2

(t − t0)

]
. (145)

To conclude, we can obtain the short time propagator as

K0 =
exp

{
− [exp(−γx)−exp(−γy)]2

4G2
0γ2(t−t0)

}
√

4πG2
0 exp(2γy)(t − t0)

, (146)

and the complete propagator in the form

K =
exp

{
− [exp(−γx)−exp(−γy)]2

4G2
0γ2(t−t0)

}
√

4πG2
0 exp(2γy)(t − t0)

exp

[
−1

4

(
H0

G0

)2

(t − t0)

]

×
1+2 H0

G0
Sexp

[
H0

G2
0γ

exp(−γx)
]

1+2 H0
G0

Sexp
[

H0
G2

0γ
exp(−γy)

] (147)

×exp
{
−γ(x− y)− H0

2G2
0γ

[exp(−γx)− exp(−γy)]
}
.

This is the final result concerning the exponential diffusion
with a specific drift and it can be checked by direct substitu-
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tion into the Fokker-Planck equation.
This procedure, once fixed an arbitrary heterogeneous dif-

fusion described by g(x), enables us to find a function h(x)
that allows solving the associated Fokker-Planck equation
with some degree of ease, as shown in the examples above.
This can be useful for constructing stochastic systems whose
solutions are known, with a variety of practical applications.

V. CONCLUSIONS

In this paper we have derived a short-time expansion for the
probability distribution of a Fokker-Planck equation. We have
shown that its kernel or propagator can be expressed as the
product of a singular and a regular term, the latter of which
allows an expansion in a Taylor series, whose coefficients can
be obtained from the recursive solutions of a system of ordi-
nary differential equations. Their solutions simplify conside-
rably in the case of time-independent drift and diffusion coef-
ficients. Indeed, with fully time-dependent drift and diffusion
terms, each Taylor coefficient of the expansion depends on all
the previous coefficients. Differently, with time-independent
drift and diffusion terms, each coefficient only depends on the
previous one. This reduction in complexity, allows the pro-
cedure to be applied to cases of practical interest much more
easily. Moreover, it can be applied manually in simple cases
of theoretically interest and can be implemented in automatic
symbolic computing environments in more complex cases of
application interest.

Subsequently we have put our newly developed machinery
to work on known examples of stochastic processes, highligh-
ting specific aspects of the implementation of our approach.
Specifically, we have shown the application of our method to
the simple case of Gaussian processes, to geometrical Brow-
nian motions leading to the so-called log-normal distribution,
and to a particular stochastic process used to describe chro-
matin remodeling phenomena. In particular, we see that the
expansion cannot be guaranteed to work independently of
the discretization parameter α , which we illustrated for the
case of an exponential diffusion coefficient. We also showed
that in the cases in which the expansion works and leads to
a convergent expression for the time-dependent propagator -
hence also at long times - only a few of the expansion coef-
ficients are needed in order to already obtain a quantitatively
reliable result.

Finally, we have taken advantage of our recursion system
for the determination of the expansion coefficients to allow us
to find novel drift and diffusion terms for which the procedure
yields exact results for the propagator. This feature is of inter-
est to be further exploited to define novel stochastic processes
of interest in future applications. Within the Fisk-Stratonovich
interpretation, this approach allowed us to solve the stochastic
differential equation without drift term. This result provides a
unified picture for describing the geometric Brownian motion,
the power law diffusion, and the exponential diffusion. These
different heterogeneous diffusion schemes are well adapted to
describe the anomalous diffusion observed in several physi-
cal and biological systems. A further generalization concerns

the Fisk-Stratonovich equation with drift. Here we have pro-
posed a technique that allows us to identify pairs of drift and
diffusion terms for which it is easy to determine the exact ex-
pression of the propagator. This is useful for exploring new
forms of stochastic equations and processes with possible va-
rious applications. From this point of view, an interesting fu-
ture perspective concerns the application of this approach to
problems with drift or diffusion terms that are periodic in
space. This can be useful to study diffusion processes in stra-
tified or multilayered systems and to analyze the behaviors of
reaction-diffusion equations with application to chemical pro-
cesses and other physical instabilities and transformations.

VI. APPENDIX

In this appendix we list, for completeness, the coefficients
of the development for the model discussed in Section III C,
with the results shown in Fig. 3.

A first set of parameters is given by k = 2, β = 1, δ = 1/10,
and A = 1 (in arbitrary units) and the results have been obtai-
ned as

D0 = 1, (148)

D1 = 2+
1
10

x− 67
50

x2 − 1099
3000

x3 − 409
10000

x4

− 91
45000

x5 +O(x6), (149)

D2 =
13
20

+
1

150
x− 19969

7500
x2 − 3251

3750
x3 +

1363801
1750000

x4

+
50689969
105000000

x5 +O(x6), (150)

D3 = −5033
3750

− 11641
25000

x+
1521223
2625000

x2 +
4000063

13125000
x3,

+
1149745319
630000000

x4 +
14432096843
13500000000

x5 +O(x6),(151)

D4 = − 3759293
10500000

− 16963
750000

x+
1454450549
315000000

x2

+
11140823723
4725000000

x3 − 57641437687
63000000000

x4

−458475394523
506250000000

x5 +O(x6). (152)

A second set of parameters is given by k = 2, β = 1, δ =
1/10, and A = 2 (in arbitrary units) and we obtained

D0 = 1, (153)
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D1 = 2+
1

10
x− 17

50
x2 − 137

1500
x3 − 307

30000
x4

− 91
180000

x5 +O(x6), (154)

D2 =
3
5
+

2
75

x− 10007
15000

x2 − 1621
7500

x3 +
24527
875000

x4

+
1524793

52500000
x5 +O(x6), (155)

D3 = −2599
1875

− 1407
3125

x+
57521

328125
x2 +

1992491
26250000

x3

+
9657743
78750000

x4 +
795208357

11812500000
x5 +O(x6), (156)

D4 = −165647
656250

− 7079
93750

x+
45878477
39375000

x2 +
347956369
590625000

x3

+
741347219

47250000000
x4 − 45979054151

885937500000
x5 +O(x6).(157)
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