
HAL Id: hal-04614350
https://hal.science/hal-04614350v1

Submitted on 17 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Predicting GPU kernel’s performance on upcoming
architectures

Lucas Van Lanker, Hugo Taboada, Elisabeth Brunet, François Trahay

To cite this version:
Lucas Van Lanker, Hugo Taboada, Elisabeth Brunet, François Trahay. Predicting GPU kernel’s
performance on upcoming architectures. The 30th International European Conference on Parallel and
Distributed Computing (Euro-Par), Aug 2024, Madrid, Spain. �hal-04614350�

https://hal.science/hal-04614350v1
https://hal.archives-ouvertes.fr


Predicting GPU kernel’s performance
on upcoming architectures

Lucas Van Lanker1,3, Hugo Taboada1,2, Elisabeth Brunet3
and François Trahay3

1 CEA, DAM, DIF, F-91297 Arpajon, France
{lucas.vanlanker,hugo.taboada}@cea.fr

2 Université Paris-Saclay, CEA, Laboratoire en Informatique Haute Performance
pour le Calcul et la simulation, 91680 Bruyères-le-Châtel, France

3 Télécom SudParis, Institut Polytechnique de Paris, Inria, 91000 Évry, France
{elisabeth.brunet,francois.trahay}@telecom-sudparis.eu

Abstract. With the advent of heterogeneous systems that combine
CPUs and GPUs, designing a supercomputer becomes more and more
complex. The hardware characteristics of GPUs significantly impact the
performance. Choosing the GPU that will maximize performance for a
limited budget is tedious because it requires predicting the performance
on a non-existing hardware platform.
In this paper, we propose a new methodology for predicting the perfor-
mance of kernels running on GPUs. This method analyzes the behavior
of an application running on an existing platform, and projects its per-
formance on another GPU based on the target hardware characteristics.
The performance projection relies on a hierarchical roofline model as well
as on a comparison of the kernel’s assembly instructions of both GPUs
to estimate the operational intensity of the target GPU.
We demonstrate the validity of our methodology on modern NVIDIA
GPUs on several mini-applications. The experiments show that the per-
formance is predicted with a mean absolute percentage error of 20.3 %
for LULESH, 10.2 % for MiniMDock, and 5.9 % for Quicksilver.

Keywords: Performance projection · GPU architecture · Roofline model.

1 Introduction

Designing a supercomputer is a complex task that requires balancing multiple
properties including the price of components, and their performance. GPUs are
a major part of the design space to explore, as new generations of GPUs deliver
ever-better performance. Due to the high price of high-end GPUs, estimating
the performance of an application on a target GPU architecture is crucial before
committing to buy new hardware.

Predicting GPU applications’ performance is quite challenging: GPUs rely
on many cores and a complex memory hierarchy, vendors may use closed source
documentation that hides artifacts such as memory bank conflict or code diver-
gence, and applications require fine tunings to use the GPU to its full potential.



2 L. Van Lanker et al.

As we will see in the related work section, to project performance, several
approaches exist, such as simulation, statistical model with machine learning,
and analytical model. However, they are either too much time-consuming, or
they cannot be applied to large applications. In this context, less accurate but
faster methods such as performance projection models become interesting.

In this paper, we propose a methodology for predicting the performance
of kernels running on a target GPU, as presented in Figure 1. The proposed
method runs a program on an existing GPU once, and it projects the application
performance on a target GPU. With a single sample run, we characterize the
application behavior according to different criteria such as its computational
intensity, data placement, and other properties that can be measured, analyzed,
and modeled. Our methodology compares the assembly code of the application
on both the source GPU and the target GPU and uses the model in order to
project the application performance on the target GPU.

Compilation

Performance
analysis

Src GPU
executable

Binary code
analysis

trace Performance
projection

Src 
performance

metrics

Target
performance

metrics

source code

Src roofline model
with ceilings

Target
performance

projection
Target roofline

model with ceilings

Target GPU
executable

Fig. 1: Summary of the proposed projection workflow.

The contributions of this paper are the following:

• We propose a kernel performance projection methodology for GPUs from
the run of a kernel on a given source GPU to a target one based on roofline
models of GPUs with kernel-specific ceilings;

• We implement the methodology for NVIDIA GPUs. Our implementation
combines a comparison of the assembly-code of both GPUs with a perfor-
mance projection on both roofline models;

• We validate our methodology by projecting multiple mini-applications (Hy-
dro1d, UVMBench, Quicksilver, LULESH, miniMDock) running on V100
GPUs to several modern NVIDIA GPUs like A100 and H100. In this evalua-
tion, our methodology achieves a mean absolute percentage of error (MAPE)
comprise between 10.3 % and 17.0 %.

The remainder of this paper is organized as follows. In Section 2, we describe
how to modify a roofline model to take into account the characteristics of a



Predicting GPU kernel’s performance on upcoming architectures 3

kernel. In Section 3 we describe how we predict the performance of a kernel
that would run on a target GPU. We present the implementation details of our
methodology in Section 4. Section 5 presents the experimental evaluation of our
implementation. We discuss related work in Section 6. Finally, we conclude the
paper in Section 7.

2 Roofline model of a GPU with kernel-specific ceilings

As introduced in [21], the roofline model of a machine gives its upper bound
in terms of performance and memory bandwidth. These bounds can be esti-
mated based on the hardware characteristics(PerfPeak and BWPeak), or by
measurement with benchmark applications such as HPL [17] and STREAM [14]
(PerfMax and BWMax). Depending on an application operational intensity (OI)
and its performance, the roofline model indicates the optimization level of the
application and its limiting hardware component. Several works have extended
the roofline model for GPUs [6, 12, 22–24]. In particular, the NVIDIA Nsight
Compute (ncu) profiler [16] defines a hierarchical roofline which relies on the OI
of all GPU’s cache levels (eg. BWMax

L1 , BWMax
L2 , BWMax

DRAM ).

(a) On source GPU V100. (b) On the target GPU H100 with its
performance projection (blue area).

Fig. 2: Roofline models with ceilings for the LULESH CVFFE kernel.

The roofline model describes the maximum attainable performance on a given
machine for a given operational intensity, as depicted by Equation 1.

roofline(OI) = min(BWmax ×OI, Perfmax) (1)

However, this upper bound to performance could only be reached with a perfect
compute efficiency and memory efficiency, which is unrealistic. To better under-
stand how a given kernel performs, we refine the roofline model by adding ceil-
ings of the compute and memory capacities. These ceilings are noted PerfCeil,
BWCeil

L1 , BWCeil
L2 , and BWCeil

DRAM in Figure 2.

Compute efficiency. Roofline models usually model GPU maximum performance
Perfmax by relying only on Fused Multiply-Add (FMA) instructions perfor-
mance. Nevertheless, the compute efficiency of a kernel is dependent on its



4 L. Van Lanker et al.

floating-point operation mix [8, 22]. Indeed, kernels use other floating-point in-
structions such as ADD, or MUL. In Equation 2, we enhance the roofline Perfmax

term of Equation 1 by averaging the maximum performance of both FMA and
ADD+MUL operations as summed in Equation 2 :

Perfmix(k) = Perfmax
FMA × NFMA

NFMA +NADD +NMUL

+ Perfmax
ADD_MUL × NADD +NMUL

NFMA +NADD +NMUL

(2)

where NFMA (respectively ADD, MUL) corresponds to the number of FMA
instructions in the studied kernel k, and PerfFMA (resp. ADD_MUL) is the
maximum performance of only FMA instructions.

To go further, we also take into account the GPU warp usage, which is the
mean number of active threads per warp instruction divided by the size of a warp,
which gives the performance ceiling of Perf ceil(k) the kernel k as described in
Equation 3, and represented with a yellow horizontal line in Figure 2a.

Perf ceil(k) =
active_thr_per_instr

warp_size
× Perfmix(k) (3)

Memory performance. A kernel performance may also be limited by its memory
performance. A kernel accesses data located in various place of the memory

DRAM

L2

L1

Registers

Sh.M Sh.ML1 Sh.ML1

SM 0 SM 2 SM n-1

...

Registers Registers

Fig. 3: Memory hierarchy of a GPU.

hierarchy, as illustrated in Figure 3, where the DRAM is the main memory of
the GPU, L2 a coherent cache level shared by all streaming multiprocessors
(SM), L1 a cache private to each SM, and the shared memory (Sh.M), which is
a fast memory shared by all the threads of a CUDA block.

We assume that the time for getting data from a memory location depends
on the memory location bandwidth, as described in Equation 4.

tmem(k) =
Nmem(k)

BWmax
mem

(4)

where Nmem is the number of bytes accessed by the kernel that hits the memory
level mem, and BWmax

mem its maximum bandwidth as used in the roofline model.
Furthermore, we model the shared memory differently, as it is physically

located in the L1 cache in our studied GPUs which is divided in memory banks.



Predicting GPU kernel’s performance on upcoming architectures 5

The time for getting data from the shared memory (tShM ) depends on the bank
conflicts and the number of clock cycles needed to handle the memory requests.
To be optimal, the number of accessed bytes per clock cycle (NShM_pc) should
be 128 (Nmax

ShM_pc), due to the 32 banks, each with a bandwidth of 4 bytes per
clock cycle [15], hence our definition of tShM in equation (5).

tShM (k) =
NShM (k)

NShM_pc(k)
×

Nmax
ShM_pc

BWmax
ShM

(5)

Then we update the roofline model with bandwidth ceilings for L1, L2, and
DRAM (BW ceil

L1 , BW ceil
L2 and BW ceil

DRAM in Figure 2a). For each memory loca-
tion, the bandwidth ceiling takes into account all the data access that traverse
the memory location, e.g., L2 bandwidth ceiling is the bandwidth for the data
coming from both the L2 cache, and the DRAM. Overall these bandwidth ceil-
ings are computed as a weighted harmonic mean of bandwidths, as described by
Equations 6, 7, and 8.

BWCeil
L1 (k) =

NL1(k) +NShM (k) +NL2(k) +NDRAM (k)

tL1(k) + tShM (k) + tL2(k) + tDRAM (k)
(6)

BWCeil
L2 (k) =

NL2(k) +NDRAM (k)

tL2(k) + tDRAM (k)
(7)

BWCeil
DRAM (k) =

NDRAM (k)

tDRAM (k)
(8)

where Nmem(k) is the number of memory access to the memory location
mem performed by kernel k.

3 Projecting the roofline model with ceilings to a target
GPU

In order to predict the performance of a kernel on a target GPU, we first build
its roofline model with ceilings on both source and target GPU following the
method described in Section 4.2, as illustrated in Figure 2.

Then, we measure the performance of the kernel itself PerfMeas
s (k) on the

source GPU, as well as its three OIs (OIL1(k), OIL2(k), and OIDRAM (k)), before
projecting it on the target GPU using formula (9) which is presented by C.
Gavoille et al. in [8] and Kwack et al. in [13].

The idea is to consider for each OI the ratio between the mea-
sured performance of the kernel PerfMeas

s (k) and the corresponding
roofline rooflinesmem(OIsmem , k) on the source GPU, and to project this
ratio by using the corresponding roofline and the OI of the target GPU
rooflinetmem

(OItmem
, k).

Perft(mem, k) =
Perfs(k)

rooflinesmem
(OIsmem

, k)
× rooflinetmem

(OItmem
, k) (9)



6 L. Van Lanker et al.

Thus, we obtain three performance values Perft(L1, k), Perft(L2, k), and
Perft(DRAM, k) which give an interval of performance to expect, as illustrated
by the blue area in Figure 2b. Finally, we compute the kernel execution time by
dividing FLOP by the performance interval.

4 Implementation

We implemented our performance projection methodology for NVidia GPUs.
This Section details the metrics that are collected when characterizing a kernel
and a GPU. We also describe how we analyze the assembly instructions of a
kernel in order to estimate its OIs.

4.1 Collecting metrics

Our performance projection methodology requires to gather capabilities of both
target and source GPUs. Reminding that the target GPU is unavailable, the
theoretical peak PerfPeak

t and BWPeak
t performance can be retrieved from the

target GPU specification. The measured PerfMax
t and BWMax

t performance are
either obtained thanks to publicly available benchmarks results, or estimated if
the Peak/Max ratio is assumed to be similar for the source GPU and the target
GPU. Source GPU capabilities are actually measured. We collect the maximum
performance PerfMax

s using the High Performance Linpack (HPL) [17] bench-
mark, and the peak bandwidth BWMax

s using the STREAM bandwidth [14] for
each memory level. Application-specific performance data are also retrieved for
each kernel during a profiling execution. We run the application with the ncu
profiler and collect several metrics for each kernel, such as the execution time,
the number of bytes accessed at each memory level, and the number of FLOPs.

4.2 Estimating the target operational intensity

As depicted in Figure 2a, we first characterize the actual kernel performance on
the source GPU obtained by a profiling run. During this run, the amount of data
accessed through the L1, L2, and DRAM are also gathered and we compute three
operational intensities of the kernel on the source GPU. Following Equation (10),
the OI for a memory level is defined as the number of FLOPs per byte written or
read at this cache level, with N+

mem the number of bytes traversing the memory
level mem.

OImem(k) =
FLOP (k)

N+
mem(k)

(10)

Now, in order to accurately project the kernel performance on a target GPU,
it is necessary to estimate the kernel memory usage, and its OIs on the target
GPU. While the memory usage is considered as roughly similar from one GPU to
another in our current implementation, our model takes in consideration the fact
that an OI may differ because both GPUs may provide different instruction sets.
We estimate the target OI by analyzing the kernel assembly instructions (SASS)



Predicting GPU kernel’s performance on upcoming architectures 7

of the target machine binary, and comparing it with SASS instructions traces
we profiled on the source GPU. In fact, since the intermediate PTX language
of a kernel is the same for all GPUs, we only need to compare instructions that
implement special functions, e.g. divisions or logarithms, which will be translated
into multiples different floating operations depending on the GPU [1,24] and that
the other instructions are executed the same way for both machines. Thus, we
compare the basic blocks of the control-flow graph for both GPUs that contain
such special functions: for these blocks, the SASS traces of the source GPU give
the number of active threads, and we assume that the same number of threads
are active in the equivalent blocks in the SASS instructions of the target GPU.

5 Experiments

In this Section, we evaluate our performance projection methodology. For this
purpose, we run 5 mini-applications, i.e. Hydro1D, UVMBench, Quicksilver,
LULESH, and MiniMDock on an NVidia V100 GPU, and we project their per-
formance on the modern A100 and H100 NVidia GPUs. Effective runs of the
latter allow us to compare and validate our projection with actual performance
as depicted in Figures 4 to 9. In these Figures, the leftmost blue bar is the av-
erage execution time per kernel when running on the V100, the black segment
is the predicted performance interval on the target GPU, and the other colored
bars are the actual performance measured on the target GPUs. Additionally, the
small red line is the mean point of the projection interval. To assess the preci-
sion of the prediction, we compute the mean absolute percentage error (MAPE)
between the mean prediction, and the actual performance measurement.

5.1 GPU test-bed description

Table 1 summarizes up the characteristics of the different NVidia GPUs used
for our experiments.

Table 1: Characteristics of used machines.
GPU V100 A100-40 A100-80 H100
Compute Capability 7.0 8.0 8.0 9.0
PerfMax (GFLOP/s) 6890 9476 9476 24979
BWMax

DRAM (GB/s) 846 1375 1678 1907
BWMax

L2 (GB/s) 2460 4710 4710 7758
BWMax

L1 (GB/s) 13963 19492 19492 25330
nvcc version V12.0.140 V11.6.55 V12.0.140 V12.0.140
CUDA driver version 530.30.02 510.85.02 530.30.02 530.30.02
OS RHEL 8.8 RHEL 8.8 RHEL 8.8 RHEL 8.8
CPU 2 x 16c Xeon Gold 2×64c AMD 2 x 16c Xeon Gold 2 x 64c Epyc

6226R @ 2.9GHz Rome@2.6GHz 6226R @ 2.9GHz Milan @ 2.8GHz
CPU RAM 512 GiB 256 GiB 512 GiB 512 GiB



8 L. Van Lanker et al.

5.2 Hydro1D

Hydro1D is a mini-application that solves a hydrodynamic problem. It is mainly
a loop composed of 9 consecutive kernels. Each kernel computes a single cell
per thread, and there is no reuse of data, such as the DRAM bandwidth is the
main limiting factor. We run this application with 50,000,000 cells on the V100
GPU. Figure 4 shows our projection results of the different inner kernels. For
all kernels, the prediction intervals are narrow, and predictions are accurate: the
percentage error ranges from -5.83% to 4.45%.

Fig. 4: Performance projection of Hydro1d kernels.

We may specify that we used the Stream Init bench, instead of the Stream
Triad one, in order to measure the bandwidth to use for the init_tables kernel
as it only writes data, which means a higher bandwidth on the GPU. How-
ever, this initialization kernel remains not really relevant in the whole projection
performance of Hydro1D.

5.3 UVMBench

UVMBench [9] is a test suite composed of diverse mini-apps, which all have dif-
ferent memory patterns accesses, so that they challenge our memory bandwidth
weightings. For this paper, we focus on the polybench 1.0 and KNN mini-apps
with parameter configuration listed in Table 2.

We separate the results in two parts: Figure 5 reports the performance predic-
tion results for standard kernels, and Figure 6 reports the performance prediction
for kernel that under-use GPUs.

The results for standard kernels show that the performance projection in-
terval are mostly correctly predicted. Some projection intervals are wide (e.g.
SYRK, SYR2K, GEMM), which often means that the OI for the DRAM is
high, so that the projection is made by taking the maximum performance in



Predicting GPU kernel’s performance on upcoming architectures 9

Table 2: UVMBench Parameters.
Benchmark Parameters Benchmark Parameters
KNN nb = 16384 COVAR N = 8192 ; M = 2048
2DConv NI,J = 4096 FDT2D NX,Y = 2048
2MM NI,J,K,L = 2048 GEMM NI,J,K = 2048
3DConv NI,J = 1024 ; NK = 256 MVT N = 32768
3MM NI,J,K,L,M = 4096 SYRK N = M = 1024
ATAX NX,Y = 32768 SR2K N = M = 1024
COOR N = 8192 ; M = 2048 GRAMMSC N = 32768 ; M = 131072

Fig. 5: Performance projection of UVMBench for intensive kernels.

Fig. 6: Performance projection of UVMBench for kernels that under-use GPUs.



10 L. Van Lanker et al.

Equation (9), which is quite different from one GPU generation to another, see
Table 1.

Figure 6 shows that when under-using GPUs, several kernels (e.g. corr, or
gram3) do not benefit from running on powerful GPUs due to their lack of
parallelism. Since our performance projection does not take this into account,
the prediction are inaccurate.

5.4 Quicksilver

Quicksilver [18] is a proxy application that solves a Monte-Carlo particle trans-
port problem. The GPU version is made with a unique kernel and works with
unified memory, which may imply memory latency. The application is composed
of loops in which batches of particles are computed in the kernel one after the
other, such that at the beginning of an iteration, a maximum amount of parti-
cles are computed during a single kernel, while at the end only the remaining
particles are computed. Our testing case is the "Coral2_P1_1" problem with
nParticles = 1000000.

Fig. 7: Performance projection of Quicksilver.

Figure 7 presents our projection from the V100 GPU to the other GPUs on
two different key moments of the kernel. The "FullVaults" case appears at the
beginning of the time step when lots of particles are computed during the kernel,
whereas "OtherVaults" is for the other cases. Cases with very few particles (using
less than 30 blocks of threads) are excluded. It has to be noted that Quicksilver
has a very low number of active threads per warp instructions: about 6 over
32, which makes it a very poor performing kernel. Despite not having taken
into account this particular metric for weighting the bandwidths used for the
projection, our prediction remains correct with a MAPE of 5.9 %.

5.5 LULESH

LULESH [10] is a mini-application that models 3D Lagrangian hydrodynamics.
It is composed of a typical loop that iterates on a kernel that computes a time



Predicting GPU kernel’s performance on upcoming architectures 11

Fig. 8: Performance projection of LULESH.

step in which each thread computes a single mesh. The DRAM bandwidth is
here the main restricting factor.

As depicted in Figure 8, the projected execution time is often higher than
the actual measured execution time on the target GPUs. The V100 seems to
have a different behaviour than the other GPUs with these kernels, probably
due to it smaller L2 cache size. Indeed, it implies a lower memory reuse for
data that may be in L2 during runs on others GPU architecture. Even if we
correctly calculated that the OI at level L1 is higher on V100, because of more
local memory operations made in the other GPUs, the OI at DRAM level is far
lower on V100 due to more memory transfers between the DRAM and the L2
cache according to the profiler. If we had taken in consideration the cache size,
then the prediction would have been correct, since the DRAM bandwidth is the
main restraining factor for these kernels. Overall, the MAPE is about 20.26 %.

5.6 MiniMDock

MiniMDock [19] is a molecular docking mini-application for which we use the
default input 7cpa ligand and 100 LGA runs. This application makes use of the
shared memory for its main kernel, but also not all threads of a warp are used
during each instruction.

Figure 9 presents the projection of three kernels : two initialization kernels,
calc_initpop and gen_and_eval_newpops, and the computation kernel
one perform_LS. The measured performance on the target GPUs are in the
predicted intervals, except when projecting performance to the H100 GPU.

While bandwidths are modeled assuming that all warp threads are active,
the use of a performance analysis tool shows that, on average, only 26 threads
over 32 per instruction are here active, which leads to inaccurate projections.

The projection error for both the A100s is virtually the same because the
DRAM OI is high (above 1000 FLOP/Byte), which means that the DRAM
bandwidth, which is the main difference between the two A100s, has virtually
no influence in our performance model, hence the same performance projected.



12 L. Van Lanker et al.

Fig. 9: Performance projection of MiniMDock.

6 Related Work

Several approaches have been used to project the performance from one archi-
tecture to another, including simulation, statistical model with machine learning
and analytical model.

Simulators such as Gem5 [5] can accurately estimate the performance of an
application on a target computer architecture. However, such simulation con-
sume extensive resources and they are not viable for large applications. In this
context, less accurate but faster methods such as performance projection models
become interesting. For example, Domke et al. [7] propose a method to easily and
quickly calculate the upper bound in performance improvements when changing
cache components. As a result, modeling the behavior of a CPU only takes a
few hours, instead of months with cycles-accurate simulators.

Simulators like GPGPU-SIM [3] and its extension Accel-Sim [11] reproduce
the behaviour of a GPU by analyzing the instructions of a kernel obtained during
a previous execution on a GPU, and on characteristics of the targeted GPU.
Despite their precision, their large overhead and large size of traces needed to
run such simulations make them impractical for real-life applications.

Instead of simulating the whole GPU and the kernel, which is resource con-
suming, one can reduce the cost of performance projection by using a perfor-
mance model. Micro-benchmarks first characterize the GPU. Then, metrics are
collected by analyzing the kernel, e.g. by executing it. Depending on the number
of parameters to collect and to use, one can construct either machine learning
(ML) models [4] to handle many parameters at a cost of a time-consuming data
collection and a training for each studied GPU, or analytical models [20], which
relies on simplified assumptions where kernels are classified depending on their
main restraining factor. Moreover, CPU performance prediction are good work
starting point. In [2], a machine learning model analyzes cross CPU-GPU appli-
cations first with only a CPU, before projecting their performance on a GPU.
While in [8, 13], the roofline model has been used for projecting an application
performance on CPU architectures, based on its performance on a source CPU.



Predicting GPU kernel’s performance on upcoming architectures 13

7 Conclusion

Throughout this paper, we present a methodology to get a performance interval
of a given kernel for a target GPU by first analyzing the performance of the kernel
on a source GPU. We base our performance prediction on a roofline model with
multiple ceilings that are specific to the kernel. These ceilings characterize the
behaviour of a kernel depending on its instruction mix, cache hits and warp
efficiency. Moreover, we estimate the operational intensity of the kernel on the
target GPU by comparing the assembly instructions of its executable with traces
obtained on the source GPU. We then used a set of modern NVIDIA GPUs
(V100, A100 40 & 80 GB, and H100) to evaluate our methodology on several
mini-apps (Hydro1d, UVMBench, Quicksilver, LULESH and MiniMDock). This
methodology is quite fast to run, since it only requires to profile the kernel of
interest with a sample run on a source GPU to project its performance on other
GPUs. The evaluation shows that we correctly project the performance from the
V100 GPU to the other GPUs on our studied kernels.

In the future, we plan to extend this methodology to predict the performance
of the whole application, and not only of its kernels. Moreover, modifications
may be needed for predicting on AMD and Intel GPUs and also for exploring
the impact of the unified memory.

Acknowledgments. We thank the University of Oregon and the OACISS team for
the use of their machines.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Abdelkhalik, H., et al.: Demystifying the Nvidia Ampere Architecture through
Microbenchmarking and Instruction-level Analysis (2022)

2. Ardalani, N., et al.: Cross-architecture performance prediction (XAPP) using CPU
code to predict GPU performance. In: Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO) (2015)

3. Bakhoda, A., Yuan, G.L., Fung, W.W.L., Wong, H., Aamodt, T.M.: Analyzing
CUDA workloads using a detailed GPU simulator. In: IEEE International Sympo-
sium on Performance Analysis of Systems and Software (2009)

4. Benatia, A., Ji, W., Wang, Y., Shi, F.: Machine Learning Approach for the Pre-
dicting Performance of SpMV on GPU. In: IEEE 22nd International Conference
on Parallel and Distributed Systems (ICPADS) (2016)

5. Binkert, N., et al.: The gem5 simulator. ACM SIGARCH Computer Architecture
News (2011)

6. Ding, N., Awan, M., Williams, S.: Instruction Roofline: An insightful visual perfor-
mance model for GPUs. Concurrency and Computation: Practice and Experience
(2022)

7. Domke, J., et al.: At the locus of performance: Quantifying the effects of copious
3D-stacked cache on HPC workloads. ACM Transactions on Architecture and Code
Optimization 20(4), 1–26 (2023)



14 L. Van Lanker et al.

8. Gavoille, C., et al.: Relative Performance Projection on Arm Architectures. In:
Euro-Par 2022: Parallel Processing. Lecture Notes in Computer Science

9. Gu, Y., Wu, W., Li, Y., Chen, L.: UVMBench: A Comprehensive Benchmark Suite
for Researching Unified Virtual Memory in GPUs (2020)

10. Karlin, I., Keasler, J., Neely, R.: Lulesh 2.0 updates and changes. Tech. rep. (2013)
11. Khairy, M., Shen, Z., Aamodt, T.M., Rogers, T.G.: Accel-Sim: An Extensible Sim-

ulation Framework for Validated GPU Modeling. In: ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA) (2020)

12. Konstantinidis, E., Cotronis, Y.: A quantitative roofline model for GPU kernel
performance estimation using micro-benchmarks and hardware metric profiling.
Journal of Parallel and Distributed Computing (2017)

13. Kwack, J., et al.: Roofline analysis with Cray performance analysis tools (CrayPat)
and roofline-based performance projections for a future architecture. Concurrency
and Computation: Practice and Experience (2019)

14. McCalpin, J.D.: Memory bandwidth and machine balance in current high per-
formance computers. IEEE Computer Society Technical Committee on Computer
Architecture (TCCA) Newsletter (1995)

15. NVIDIA: CUDA C++ Programming Guide, https://docs.nvidia.com/cuda/cuda-
c-programming-guide/index.html

16. NVIDIA: Nvidia Nsight Compute, https://docs.nvidia.com/nsight-
compute/NsightCompute/index.html

17. Petitet, A., et al.: HPL – a Portable Implementation of the High-Performance
Linpack Benchmark for Distributed-Memory Computers (2008)

18. Richards, D., Brantley, P., Dawson, S., Mckenley, S., O’Brien, M.: Quicksilver,
version 00 (2016), https://www.osti.gov/biblio/1313660

19. Thavappiragasam, M., et al.: Performance portability of molecular docking miniapp
on leadership computing platforms. In: IEEE/ACM International Workshop on
Performance, Portability and Productivity in HPC (P3HPC) (2020)

20. Wang, Q., Chu, X.: GPGPU Performance Estimation With Core and Memory
Frequency Scaling. IEEE Transactions on Parallel and Distributed Systems (2020)

21. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual perfor-
mance model for multicore architectures. Communications of the ACM (2009)

22. Yang, C., Kurth, T., Williams, S.: Hierarchical Roofline analysis for GPUs: Acceler-
ating performance optimization for the NERSC-9 Perlmutter system. Concurrency
and Computation: Practice and Experience (2020)

23. Yang, C., Wang, Y., Kurth, T., Farrell, S., Williams, S.: Hierarchical roofline per-
formance analysis for deep learning applications. In: Intelligent Computing: Pro-
ceedings of the 2021 Computing Conference, Volume 2. pp. 473–491 (2021)

24. Yang, C., et al.: An Empirical Roofline Methodology for Quantitatively Assessing
Performance Portability. In: IEEE/ACM International Workshop on Performance,
Portability and Productivity in HPC (P3HPC) (2018)


