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Abstract: 

This review is aimed at researchers in air pollution control seeking to understand the latest 

advancements in volatile organic compound (VOC) removal. Implementing of plasma-catalysis 

technology for the removal of volatile organic compounds (VOCs) led to a significant boost in 

terms of degradation yield and mineralization rate with low by-product formation. The plasma-

catalysis combination can be used in two distinct ways: (I) the catalyst is positioned 

downstream of the plasma discharge, known as the "post plasma catalysis configuration" 

(PPC), and (II) the catalyst is located in the plasma zone and exposed directly to the discharge, 

called "in plasma catalysis configuration" (IPC). Coupling these two technologies, especially 

for VOCs elimination has attracted the interest of many researchers in recent years. The term 

"synergy" is widely reported in their works and associated with the positive effect of the plasma 

catalysis combination. This review paper investigates the state of the art of newly published 

papers about catalysis, photocatalysis, non-thermal plasma, and their combination for VOC 

removal application. The focus is on understanding different synergy sources operating 

mutually between plasma and catalysis discussed and classified into two main parts: the effect 
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mailto:Aymen.assadi@ensc-rennes.fr


Accepted manuscript

of the plasma discharge on the catalyst and the effect of the catalyst on plasma discharge. 

This approach has the potential for application in air purification systems for industrial 

processes or indoor environments. 

Keywords: 

Plasma, Catalysis, Synergy, VOC, Reactor, catalyst, Conversion, Mineralization 

1 . Introduction 

Air pollution is an urgent issue worldwide, and it causes about seven million premature deaths 

annually around the world as reported by the World Health Organization (WHO). Faced with 

this urgent situation, the international community is increasingly focused on curbing air 

pollution and its associated consequences. 

Volatile organic compounds (VOCs) occupy a significant portion of the pollutants released into 

the atmosphere. They are defined as organic substances that readily evaporate at room 

temperature and atmospheric pressure, constitute a substantial portion of airborne pollutants 

(i.e., carbon, hydrogen, and heteroatoms) et al., 2016). Human activities across various 

industries, including petroleum (Rajabi et al., 2020), paints and varnishes (Bauer & Buettner, 

2018), cement production (C. Wang et al., 2018), wood-based furniture (Yuanzheng Wang et 

al., 2021), pharmaceutical formulation and pesticide manufacturing (D. C. He et al., 2022) are 

the primary sources of VOCs emissions. The United States Environmental Protection Agency 

(U.S. EPA) carried out a study called “Total Exposure Assessment Methodology (TEAM),” 

which reported that indoor VOCs concentration is 2 to 5 times higher than outdoor levels. 

Additionally, VOCs can react with carbon monoxide or nitrogen oxides molecules in the 

presence of sunlight to generate ground-level ozone (Xiong & Du, 2020).  The high toxicity and 

the rapid spreading of this kind of chemical pollution can cause several serious problems for 

human health,  including  cancers, allergies, cardiovascular anomalies (Leachi et al. 2020), 

brain diseases, eyes and skin irritations, and severe pneumonia (Ratiu et al. 2021) as 
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presented in the Fig.1 . Recognizing these dangers, environmental regulations are 

increasingly addressing VOC emissions. In March 1999, a European directive was issued, 

aimed to reduce the industrial VOC emissions from organic solvents  (Journal, 2017). Between 

1970 and 2021, the USA successfully reduced their VOCs emissions by approximatively 50%. 

Moreover, for the best execution of the government’s directives, several technologies have 

been adopted to limit the emission of VOCs into the atmosphere. They are divided into two 

approaches: recovery and elimination approach. Destructive techniques comprise biofiltration, 

ozonation, thermal oxidation, catalytical combustion, catalytic and photocatalytic degradation, 

and non-thermal plasma. Among these technologies, catalytic oxidation is mainly investigated 

in the literature. It allows higher VOCs conversion and mineralization. However, it presents 

several failures, including high-temperature requirements, catalytic deactivation after a series 

of reactions, and the ineffectiveness of some chemical compounds. Recently, NTP has been 

approved as an effective process for the remediation of air contaminants at low-temperatures 

and atmospheric pressure. It is considered a green technology that does not require toxic 

chemicals; it operates with a simple setup, and can destroy a large variety of VOCs at low or 

high concentrations (Assadi et al.,2016). Nevertheless, NTP is limited by three significant 

drawbacks: (I) usually, the discharge occurs at high voltage, which presents a direct risk of 

electric shock (II), the production of toxic and undesired by-products such as ozone and NOx; 

and (III) low energy efficiency due to the high applied electric potential. 

Hence, hybrid systems combining plasma and catalysis draw special attention to overcome 

problems previously highlighted. The presence of the catalyst in the plasma discharge (In 

Plasma Catalysis) led to a series of benefits as enhancement of the conversion efficiency and 

mineralization, prevention of catalyst deactivation, reduction of harmful by-products such as 

ozone, lowering energy consumption thanks to low temperatures and optimization of discharge 

voltage applied. These qualities result from the synergetic effect occurring between the two 

processes. In the last decade, several researchers reported the presence of this behavior in 

NTP-Catalysis/Photocatalysis systems, and a number of hypotheses have been suggested 
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highlighting the mutual effect between the catalyst and the discharge(Palau et al., 2015). 

Precedent reviews on VOCs remediation are published with a focus on the application of 

catalysis and plasma separately (C. Yang et al., 2019) (C. He et al., 2019) (Mu & Williams, 

2022). However, recently, some papers have reviewed coupling plasma and catalysis without 

exploring in depth the nature of the interaction discharge - catalyst and potential synergy 

sources. This review paper addresses this gap by summarizing recent research on VOC 

remediation using catalysis/photocatalysis alone, NTP alone, and their combined application. 

We delve into the mutual interactions between the discharge and the catalyst, exploring the 

mechanisms underlying the observed synergistic effect.  

Figure 1.VOCs emission sources and effects on human health. 

2. VOCs removal technologies

 Various techniques were developed to reduce and control VOCs emissions into the 

atmosphere. They are classified into two categories, as defined in Fig. 2: recovery 

technologies and elimination technologies (Parmar & Rao, 2009). Recovery methods consist 
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of the trapping and reconversion of gaseous pollutants to beneficial compounds as solvents 

by adsorption/absorption (W. Zhang et al., 2022) (Pirola &  Mattia, 2021), membrane 

separation (W. Yang et al., 2018) and condensation (H. Wang et al., 2020).  The destruction 

methods include, thermal catalysis (Yuxin Wang et al., 2021)(Weng et al. 2017a), 

photocatalysis (Abou Saoud et al., 2021) (Yanagida et al. 2019), non-thermal plasma (Zadi et 

al., 2020) (Abdelaziz et al., 2013), combustion (W. B. Liet al., 2010), which are based on the 

oxidation process of the target VOC by highly oxidants species , such as hydroxyl radicals and 

reactive oxygen species (ROS). Except for biofiltration (Marycz et al. 2022), which is based on 

using microorganisms to convert the pollutant and to produce energy. Herein, special attention 

will be given to the destruction processes, particularly plasma, catalysis, and their combination. 

Figure 2.Flowchart of VOCs controlling methods. 

2.1. Heterogeneous catalysis 

Catalysis is the heart of chemical processes; since its discovery,  it has been the foundation of 

diverse industrial processes since its discovery, including petroleum refinement (Armor, 2011), 

chemical manufacturing, and environmental technologies for water and air depollution (Junhua 

Li et al., 2013) . It is also one of the twelve principles of green chemistry (Sheldon, Arends, 

and Hanefeld, n.d.). 
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The catalyst, a key player in chemical reactions, significantly reduces the activation energy 

required for these chemical reactions to occur on its surface-active sites. The catalysts’ 

physicochemical properties and elemental composition dictate the types of active sites. Three 

well-known sites come into play in the case of heterogeneous catalysis for VOC elimination: 

Basic sites, acidic sites, and metal sites, as illustrated in Fig. 3. . 

Figure 3. (a) Lewis’s acid sites over Perovskite Oxides catalyst for CH4 combustion (Reprinted with permission 
from (J. Yang et al. 2021). Copyright 2021, American Chemical Society), (b) Pt Metallic site for toluene oxidation 

(Reprinted with permission from (Q. Yang et al. 2022a). Copyright 2021, Elsevier), (c) Acetone adsorption on acid 
-base Lewis pair (Reprinted with permission from (K. Zhou et al. 2019). Copyright 2019, Elsevier),(d) Acetone

decomposition over Au metallic site (Reprinted with permission from(Z. Jiang et al. 2022). Copyright 2021,
Elsevier).

2.1.1. Catalysts used for VOCs oxidation 

Catalytic oxidation of gaseous organic pollutants has been widely reported in the literature; it 

involves a large catalyst family with variable compositions and structures, such as mixed and 

single noble metal-based catalysts and non-noble and metal oxide-based catalysts. 

Table 1. lists some recent works dealing with catalytic VOC removal. 

- Noble metal-based catalyst
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Despite their elevated cost, noble metal-based catalysts  are the most used materials for VOCs 

oxidation due to their high activity, low operating temperature, and best resistance against 

poisoning (Liotta, 2010) (Z. Zhang et al., 2016).  

The chemical elements Ag, Pd, Au, Pt, Ru, and Rh supported on carbon nanotubes (CNT), 

zeolites, or metal oxides compose the core of this catalyst type. Many studies have been 

performed to oxidize VOCs with different noble metal-based catalysts. The authors started with 

the synthesis of the catalyst material, and then they tested its catalytic activity. Zhiwei Wang 

and collaborators prepared a TiO2-supported Pt catalyst via the molten salt method. 

Furthermore, they tested the performance of the catalyst for toluene removal. A total 1000 ppm 

of toluene conversion and high selectivity were achieved at 190°C over a Pt/TiO2 catalyst (H. 

Huang & Deng, 2020). Pd nanoparticles loaded on the surface of silicalite material exhibited 

the best performance toward toluene oxidation at 160°C thanks to the intrinsic properties of 

the catalyst, which combine high adsorption capacity, high Pd0 composition, and suitable 

acidity (L. Wu et al., 2022). Gold-based catalysts are known as efficient materials for VOC 

oxidation, and the presence of Au atoms makes the catalyst less exposed to deactivation 

problems such as coke deposition and sulfur-containing compound poisoning (Assadi et al., 

2014 a, b,c). In a recent paper reporting the synthesis of gold supported on Co3O4-CeO2-Al2O3 

mixed metal oxide supports, the authors indicated that the presence of gold nanoparticles led 

to a remarkable conversion efficiency of formaldehyde even at room temperature (Ilieva et al. 

2022).  

X. Zhang et al. demonstrated the excellent effect of loading Ag nanoparticles on a zirconium-

based metal-organic framework (MOF) structure toward toluene conversion. The authors 

expected the high lattice oxygen and Ag content on the surface to be the reason for the 

enhanced activity (Xiaodong Zhang et al., 2020).  

According to Sun et al., the incorporation of sub-nanometer Rh on TiO2 support led to a 

complete oxidation of formaldehyde at ambient temperature, in contrast with the TiO2 support 

alone, for which no activity was recorded. The different characterization methods showed the 
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Rh species’ high dispersion , allowing the dissociative adsorption of O2 and, therefore, the 

reactivity toward HCOOH conversion (X. Sun et al., 2018).  

- Mixed noble metal catalyst

Mixing noble metals in an optimal ratio improves their catalytic activity and eliminates the high-

cost problem of certain metals. 

He et al. synthesized monometallic Pt, Pd, and bimetallic Pt-Pd nanoparticles loaded on MnO2 

nanospheres to test their catalytic activity toward toluene removal. They concluded that the 

catalyst with a Pt/Pd molar ratio of 7:3 showed the best catalytic performance compared to the 

Pt and Pd monometallic catalysts with 100, 85, and 80% of toluene conversion at 175 °C, 

respectively. They associated the obtained result with the Oads/Olatt optimal molar ratio reached 

due to mixing two metals (Jiaqin He et al., 2021). 

A recent study elucidated a synergy in oxidation of formaldehyde by combining platinum and 

gold nanoparticles on the surface of TiO2. They confirmed from different characterization 

techniques the role of Au and Pt nanoparticles in enhancing the reducibility and the mobility of 

oxygen species, which is the key to catalytic surface reactions (Ye et al., 2022). 

Ag-Pd/MnO2 catalyst prepared by the galvanic replacement method was tested for toluene 

oxidation. The researchers stated the effect of mixing the two metals on improving the lattice 

oxygen at the surface and, therefore, the oxidation of toluene at low temperatures compared 

to a Pd/MnO2 catalyst (Y. Li et al., 2019). 

- Non-noble metal-based catalyst

A considerable number of studies on the use of catalysts such as transition metals or metal 

oxides as a good alternative toward VOC conversion were carried out. Non-noble metal 

elements have the advantage of being less expensive, more durable, and resistant to 

deactivation by coke formation. The synthesis method of the catalyst material is crucial for its 

catalytic activity. Aggett et al. prepared CeO2 catalysts from two Ce precursors with different 

oxidation states (Ce4+ or Ce2+) using the precipitation method. Then, they evaluated the 
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performance of the corresponding catalysts toward propane oxidation. The Ce4+ exhibited a 

high conversion percentage of propane due to its morphology and high surface area (Aggett 

et al., 2021). Despite the efficiency of CeO2 as a catalyst, its nanostructure played an essential 

role in preventing coke formation. Y. Zhang et al. investigated the effect of the CeO2 structure 

on coke deposition. The order of coke accumulation was established as follows: CeO2-C 

structure (Cubic shaped) > CeO2-O structure (Octahedral-shaped) > CeO2-R structure (Rod-

shaped) > CeO2-S structure (Sphere-shaped); they assigned this trend to the high 

concentration of oxygen vacancy on spherical CeO2 catalyst (Ying Zhang et al., 2022)  

Manganese oxides MnOx are among the materials investigated in the literature for organic 

pollutant elimination. Its catalytic activity is commonly associated with diverse structures and 

oxidation states (S. Mo et al., 2020).  L. Chen et al. reported the impact of redox reaction 

temperature during the synthesis of α-MnO2 catalyst on the toluene oxidation. They found that 

the catalyst prepared at 60 °C showed a high toluene conversion yield, which was probably 

assigned to the surface defects observed for this material (L. Chen et al., 2021). 

The ABO3 perovskites (Fig. 4) have gained recognition for their catalytic activity in VOCs 

oxidation. A group of researchers has specifically highlighted the relationship between LaCO3 

perovskite structure and its performance in toluene oxidation. They provided evidence that the 

sample contains abundant surface reactive species, including adsorbed oxygen and Co3+

(Xuejun Zhang et al., 2019).  

Figure 4. ABO3 Perovskite structure (yellow = A, cyan = BO6 and red = O) (Reprinted with permission 
from(Mamba et al. 2022). Copyright 2022, Elsevier) 
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Furthermore, Weng et al. prepared a stable and performant mixed metal oxide catalyst 

supported on acidic zeolite (MnxCe1-xO2/HZSM-5) to overcome the catalyst deactivation during 

the removal of chlorinated volatile organic compounds (CVOCs). They explained the 

synergetic impact between the acidic zeolite sites and the oxide ions supported on the surface 

to convert chlorobenzene and remove the deposited chlorinated byproduct (Weng et al., 

2017b). 

 Noble metal-based catalyst 

Catalyst Support Reactor VOCs Temperature Flow rate Conversion Reference 

Pd Silicalite-1 

Continuous- flow 

fixed-bed quartz 

tubular microreactor 

Toluene (1000 ppm) 190 °C 16.7 ml/min 90 % 
(L. Wu et al. 

2022) 

Pd NC/BN a 

Continuous flow 

fixed-bed quartz 

microreactor 

o-xylene (1000 

ppm) 
210°C 30 ml/min 80% 

(H. Chen et al. 

2022) 

Pd 
Al2O3CoMn2

O4 

U-shaped quartz 

tubular reactor 
Toluene (50 ppm) 165°C 30 ml/min 100 % 

(Jiaqin He et al. 

2022) 

Pd UiO-66 b 
Single-pass flow 

reactor 
Toluene (1000 ppm) 235°C 50 ml/min 90 % (Bi et al. 2022) 

Pd Al2O3 

Con- 

tinuous flow fixed 

bed reactor with 

Ethyl acetate (500 

ppm) 
300°C 250 ml/min 100 % 

(M. Ma et al. 

2021) 

Pd Ti-SBA-15 c 
Single-pass flow 

reactor 
Styrene (50 ppm) 225 °C 50 ml/min 100 % (Wen et al. 2021) 

Pt CeO2-TiO2 

Fixed- 

bed quartz micro-

reactor under 

Benzene (1000 

ppm) 
160 °C 75 mL /min 100 % 

(Yijun Shi et al. 

2022) 

Pt TiO2 
Fixed-bed quartz 

reactor 
Benzene (100 ppm) 200 °C 200 ml/min 100 % 

(J. Kim et al. 

2022) 

Pt Y-zeolite- 
Continuous flow 

fixed bed reactor 
Toluene (1000 ppm) 160°C 200 ml/min 100 % 

(H. Chen et al. 

2022) 

Pt CeO2-NH 

Fixed-bed quartz tube 

reactor 
Toluene (1000 ppm) 220°C 80 ml/min 100 % 

(Q. Yang et al. 

2022b) 

Pt ZrO2 

Tubular flow quartz 

microreactor 
Toluene (1000 ppm) 250 ◦C 100 ml/min 97% 

(Drozdek et al. 

2022) 

Au Co3O4-CeO2-

Al2O3 

Continuous flow 

equipment with a 

four-channel 

isothermal stainless-

steel reactor 

Formaldehyde (120 

ppm) 
25°C ND 95% (Ilieva et al. 2022) 

Au Ami-SiO2 

Fixed bed tubular 

reactor 
Toluene (178 ppm) 175°C 40 ml/min 53% 

(Sanghuaypai, 

Sirikanjanawanit, 

and Sukpirom 

2022) 

Ag Co3O4 

Fixed-bed quartz 

reactor using 
Benzene (500 ppm) 204 °C 100 ml/min 100% (Fang et al. 2022) 

Ag CeO2 

Fixed-bed reactor 

equipped with an 
Toluene (1000 ppm) 240 °C 50 ml/min 100% 

(Yuxin Wang et 

al. 2021) 
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 Table 1. Experimental conditions and VOCs conversion performances at the different kinds of catalyst materials. 

a NC/BN: Nitrogen doped carbon/Boron nitride, b UiO-66: Zirconium-based metal organic framework (MOF), c Ti-

SBA-15: Titanium ordered mesoporous silica, ND: not defined.  

From this part of the review and Table 3, Noble metal and mixed noble metal-based catalysts 

were extensively investigated in the removal of aromatic VOCs such as toluene, benzene, and 

xylene. This can be explained by the high efficiency of this kind of catalyst and its resistance 

to the deactivation problems(Q. Li et al., 2019). 

open tube furnace 

was 

Ag TiO2 Quartz tube 
n-butanol (1000 

ppm) 
225°C 200 mL/min 100% (Bhat et al. 2021) 

Ag UiO-66 

derivative 

Fixed bed 

microreactor 
Toluene (1000 ppm) 295 °C 50 ml /min 100% 

(Xiaodong Zhang 

et al. 2020) 

Rh TiO2 

fixed-bed mi- 

croreactor made of 

quartz tube 

Chlorobenzene (500 

ppm) 
350 °C 100 ml/min 100% (Liu et al. 2019a) 

Rh TiO2 

Continuous-flow 

fixed bed reactor 

Formaldehyde (140 

ppm) 
20 °C 50 ml /min 100 % 

(X. Sun et al. 

2018) 

 Mixed noble metal-based catalyst 

Pt–Pd MnO2 U-tubular reactor Toluene (50 ppm) 175 °C 30 ml/min 100 % 
(Jiaqin He et al. 

2021) 

Pt –Au TiO2 Batch reactor 
Formaldehyde (200 

ppm) 
25 °C -  100 % (Ye et al. 2022) 

Pt−Ru ZrO2 

Continuous-flow 

fixed-bed reactor 
Toluene (50 ppm) 160 °C 30 mL/min 100 % 

(M. Wang et al. 

2020) 

Pd–Au CeO2–Y2O3 

Continuous flow 

fixed bed 

microreactor 

Benzene (13 ppm) 150° C ND 100 % (Ilieva et al. 2018) 

Ag-Pd MnO2 

Fixed bed 

continuous-flow 

reactor 

Toluene (260 ppm) 185°C ND 100 % (Y. Li et al. 2019) 

 Non-Noble metal-based catalyst 

CeO2 No support 

Contin- 

uous flow fixed bed 

microreactor 

Propane (5000 ppm) 600 °C 50 mL /min 100 % 
(Aggett et al. 

2021) 

CeO2-S No support Quartz tube Styrene (200 ppm) 150°C 50 mL /min 100 % 
(Ying Zhang et al. 

2022) 

MnO2 No support 

Fixed-bed quartz 

reactor 
Toluene (1000 ppm) 210°C 500 ml/min 97% 

(L. Chen et al. 

2021) 

LaCoO3 No support Fixed bed reactor  Toluene (500 ppm) 260°C 100 ml/min 100 % 
(Xuejun Zhang et 

al. 2019) 

CoMn 2O4 Carbon 

nanotubes 

 

Quartz reactor with 

Formaldehyde (100 

ppm) 
133°C 100 ml /min 90% 

(Y. Zeng et al. 

2021) 

CrOx Al2O3  Methanethiol (nd) 375° C  100 % (J. Lu et al. 2020) 

MnxCe1–

xO2 
HZSM-5 

Quartz fixed-bed 

reactor 

Chlorobenzene 

(1000 ppm) 
250 °c ND 90 % 

(Weng et al. 

2017b) 
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The mechanism of VOCs degradation varies from one catalyst to another depending on 

several parameters, including, catalyst composition, affinity of VOCs molecules with the 

catalyst and the conditions of the reactions. Thus, it is crucial to elucidate the reaction 

mechanism involved. 

2.1.2.  Catalytic oxidation mechanism of VOCs 

2.1.2.1. Chemical reaction step: 

The elucidation of the mechanisms involved in VOCs oxidation is of the great interest in 

preparing highly active and selective catalysts. Nevertheless, the reactivity of the catalyst 

surface with VOCs molecules depends on many parameters, such as the chemical 

composition of the catalyst and the pollutants, the design and morphology of the catalyst 

surface, and the support. Zou et al. reported the oxidation mechanism of toluene over PtCo3-

C catalyst (Fig. 5). It was proposed that the first steps consist of the simultaneous adsorption 

of toluene and oxygen molecule on PtCo3-C surfaceUnder heating of the catalyst, the surface 

adsorbed oxygen species were generated and the conversion of the adsorbed toluene to 

several intermediates, including benzaldehyde, benzoic acid and maleic anhydride was 

initiated. These intermediates completely oxidize into H20 and CO2 (Zou et al., 2022). Tingyu 

Zhu and coworkers  carried out a study on the benzene oxidation mechanism over a MnOx/TiO2 

catalyst. From in situ FTIR analysis, a possible reaction mechanism was proposed and shown 

in Fig. 6. Firstly, Benzene reacted with the Mn center, leading to the formation of two 

conjugated phenolate structures. The oxygenated group is considered as an electron donor 

and ortho-para  positioned director; the phenolate intermediates could easily undergo an 

oxidation to form Para and Ortho–benzoquinone. The catalyst and the active oxygen promoted 

the ring openning, allowing further the generation of small molecules such as CO, CO2, and 

H2O (J. Zeng et al., 2015). In another study, Haghighi and collaborators investigated the 

mechanism of P-xylene abatement over Pd/ceria -clinoptilolite material . In this mechanism, it 

was supposed that p-xylene could be adsorbed on both Pd and Ceria inside the zeolite pores 

(Imessaoudene et al., 2022). At the same time, Pd is oxidized by oxygen molecules adsorbed 
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on its surface to form Pd-O that can be further reduced by xylene. Fig.7 shows clearly the role 

of surface oxygen species on xylene oxidation. The lattice bulk oxygen diffused to the surface 

of the ceria and reacted with the adsorbed xylene. The dissociative adsorption of the molecular 

oxygen promoted the provisioning of bulk oxygen in order to keep the cycle continuity (Asgariet 

al., 2013). 

 

Figure 5. Plausible catalytic mechanism for the catalytic oxidation of toluene over the PtCo3 catalyst (Reprinted 
with permission from (Zou et al. 2022) Copyright 2021, Elsevier) 

 

 

Figure 6. Possible mechanism for Benzene decomposition over MnOx/TiO2 catalyst (Reprinted with permission 
from(J. Zeng et al. 2015) Copyright 2015 Elsevier) 
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Figure 7. Reaction channel for xylene oxidation over nanostructured Pd/CeO2(30%)–clinoptilolite (Reprinted with 
permission from (Asgari, Haghighi, and Shafiei 2013) Copyright 2013 Society of Chemical Industry) 

Acetaldehyde is an oxygenated VOC released typically from biomass combustion, and its 

catalytic degradation has been reported by many researchers. Zeyu Zhao experimented with 

the degradation of Acetaldehyde over a MnO2 catalyst (Fig. 8); the first step consisted of the 

adsorption of Acetaldehyde on MnO2, and under dry conditions, the hydrogen atom of the 

aldehyde interacted with the oxygen atom of MnO2 surface, leading to the formation of acetate 

and format intermediates, which decomposed after to CO2 and H2O. The presence of water 

vapor enhanced the oxidation of Acetaldehyde at moderate temperatures due to the 

generation of hydroxyl active bonds, which reacted efficiently with the pollutant  (Zhao et al., 

2022). 
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Figure 8. Mechanism of Acetaldehyde molecule over MnO2 catalyst under dry and humid conditions (Reprinted 
with permission from (Zhao et al. 2022) Copyright 2021, Elsevier) 

The catalytic abatement of chlorinated VOC has been widely discussed in the literature. Zhu 

and coworkers investigated the oxidation mechanism of chlorobenzene over nobles’ metals 

(Pd, Pt, Ru, Rh). They supposed the adsorption of CB on the catalyst surface with the breaking 

of C-Cl bonds, and the formation of surface phenolate species would be the first step. Then, 

o-benzoquinone or p-benzoquinone was formed after phenolate oxidation. A nucleophilic 

attack occurred through oxygen or chlorine species and promoted the maleate or maleic 

anhydride formation. Finally, the above species were eventually oxidized to CO2, CO, H2O, 

HCl, and Cl2 (Liu et al., 2019b). Kai Shen and coauthors elucidated trichloroethylene (TCE) 

oxidation over the MnOx-CeO2 catalyst. . The rate-determining step was the dissociative 

adsorption of the C–Cl bond over CeO2, then the total oxidation of TCE fragments compounds 

by active oxygen species present on the surface of MnOx and CeO2, as shown in the Fig. 9 

(K. Shen et al., 2022). 

 In addition to the conventional catalytic oxidation of VOCs, photocatalysis has demonstrated 

potential for odor and volatile organic compound removal, which will be discussed deeply in 

the next paragraph.  



Accepted manuscript

  

Figure9.Catalytic cycle of TCE degradation over MnOx/CeO2 (Reprinted with permission from (K. Shen et al. 2022) 

Copyright 2022, Elsevier) 

2.2. Photocatalysis  

2.2.1. Principle 

Photocatalysis, or photocatalytic oxidation process (PCO), is one of the effective and 

economical technologies used for air treatment. It can easily decompose VOCs in the gas 

phase into less toxic compounds such as H2O and CO2 (Belkessa et al., 2023) (Y. Shen et al., 

2022). Despite the advantages cited above, photocatalysis  has disadvantages, such as 

catalyst deactivation and limitations on active sites (Ahmad et al., 2016). The Photocatalysis 

process takes place in the following steps: Firstly, the valance band (VB) electrons absorb UV 

photons. Therefore, the excited electrons cross the energy gap and migrate to the conduction 

band (CB). Thus, electron -hole pairs in CB and VB are generated, respectively (Lacombe & 

Keller 2012). The second step considers the reaction of the generated electron and hole with 

adsorbed O2 and water molecules to produce the superoxide radical O2
°- and the hydroxyl 

radical OH° (Kenfoud et al., 2021; Baaloudj et al., 2021). Finally, the target molecules undergo 

an oxidation reaction on the catalyst surface by the produced oxidizing agents (Shayegan,  et 

al., 2018) (Fig. 10). 
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Figure10.Photocatalysis principle. 

2.2.2. Photocatalysts for VOCs removal 

A significant amount of research is currently being conducted on developing photoactive 

catalysts for VOCs degradation. As summarized in Table 2, semiconductor-based catalysts 

are widely investigated, such as (TiO2, ZrO2, WO3, and ZnO) (Bellè et al., 2022) (Rangkooy et 

al., 2019) (Rangkooy et al., 2021), which combine several captivantes characteristics such as 

availability, suitable electronic properties, high adsorption ability, enhanced photoactivity, and 

stability (Baaloudj et al., 2021b). However, they have some limitations, primarily due to 

electron-hole recombination and inactivity in visible light. Therefore, many researchers are 

focused on developing highly photoactive materials in a broad UV-Vis spectrum. The common 

method primarily involves doping the existing metal oxide catalyst with transition metals, noble 

metals, and metal oxide. TiO2 remains the pioneer of semiconductor catalysts because it is 

chemically stable and durable, has a high oxidation power, and is inexpensive. Recently, Bellè 

et al. investigated the degradation of gaseous toluene on TiO2 photocatalyst in a plug flow 

reactor. According to the result, 90% of toluene conversion was reached under UVA irradiation 

(Bellè et al., 2022).  

Qiu et al. reported an efficient elimination of low toluene concentration under simulated sunligh 

irradiations on Fluorine ion doped TiO2-SiO2 (Qiu et al., 2018). The fluorine doping led to the 
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formation of oxygen vacancies and Ti3+, which act as charge-trapping agents, resulting in the 

reduction of the hole–e- recombination. Further, the electrons of doped material located 

energetically below the CB of TiO2 reduce the energetic gap of the combined catalyst, allowing 

excitation even under visible light. Other doping atoms and oxides are explored in the literature, 

including noble metals (T. Xu et al., 2020), transition metals, and metal oxide dopants 

(Rangkooy et al., 2019).  

Nonthermal plasma (NTP) is an emerging technology for VOCs destruction, and numerous 

studies have been conducted on it for over twenty years. 

  Metal / Mixed metal oxide photocatalyst 

Catalyst Support 
Reactor 

configuration  
VOCs 

Flow 

rates  

Light 

source 

Conversion 

(%) 
Reference 

TiO2 Mesh 
Annular PFR 

reactor 
Toluene (10 ppm) 

1250 

ml/min  
UVA 90 

(Bellè et al. 

2022) 

TiO2 
Porous Glass 

Fiber Cloth 

Batch reactor  

Glass vial  

2-Propanol (300 

ppm) 

-  
UVA 100 

(Yanagida et al. 

2019) 

TiO2 /MnO2 ND 

Con- 

tinuous-flow 

fixed-bed reactor 

as 

Toluene (30 ppm) 

1 L/min 

VUV 96 

(Yingguang 

Zhang et al. 

2019) 

TiO2/WO3 ZSM-5 zeolite 

Continuous 

cylindrical 

photocatalytic 

Xylene (50 ppm) 

0.5 L/min  

UVA 41.46 

(Rangkooy, 

Ghaedi, and 

Jahani 2019) 

TiO2 /Bi2O3 ND 
Continuous planar 

reactor  

Formaldehyde (4 

ppm)  

6.6 l/min  
UVC 96 

(Y. Sun et al. 

2022) 

ZnO/WO3 Y-zeolite 
Cylindrical quartz 

glass reactor  
Styrene (20 ppm) 

0.5 l / min 
UVA 75 

(Rangkooy et al. 

2021) 

  Doped metal oxide photocatalyst 

Ir-TiO2 ND 
Packed-bed 

reactor filled 

Toluene (1900 

ppm) 

350 

ml/min 
UVC 97 (Ho et al. 2022) 

F-TiO2/SiO2 Glass 
Flat interlaid 

reactor 
Toluene (15 ppm) 

80 mL/ 

min 
Visible 90 (Qiu et al. 2018) 

N-TiO2 
carbonaceous 

microsphere 

Continuous flow 

reactor 

Acetaldehyde 

(500 ppm) 

20 

mL/min 
Visible 25 

(G. Lu et al. 

2021) 

Ag-TiO2 ND 
Airtight reactor  Formaldehyde 

(0.5ppm) 

-  
Visible 91.3 

(X. Jiang, Xu, 

and Yu 2019) 

Pt – TiO2 ND 
Stainless steel 

cylinder 

Toluene (0.2 

ppm) 

2 l/min  
VUV 45.8 

(T. Xu, Zheng, 

and Zhang 2020) 

Mn-TiO2 ND 

Four openings 

PIREX glass 

reactor 

Ethanol (400 

ppm) 

- 

UVA 35 
(Stucchi et al. 

2018) 

Cu-TiO2 
Optical fiber 

tissue 

Continous planar 

reactor  

Butane-2,3-dione 

(5.6 ppm) 

33 l /min  
UVA 4 

(Abou Saoud et 

al. 2021) 

Au-TiO2 ND 
Batch sealed 

quartz reactor 
Toluene (80 ppm) 

- 
Visible  57.3 

(Yunyang Wang 

et al. 2019) 
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   Table 2. Experimental conditions and VOCs conversion performances at the different kinds of photocatalysts 
material.  

ND: not defined.  

2.3. Non-thermal plasma discharge for VOC removal 

Nonthermal plasma has drawn particular attention in the last decade among the technologies 

adopted for VOC remediation. . Many studies have highlighted the interest of this technology 

due to its higher energy efficiency, operation under normal temperature and pressure 

conditions, suitability for low VOCs concentration, and simple implementation process (S. Li et 

al., 2020a).  

Plasma discharge can be defined as the fourth state of matter. Applying the potential difference 

between two electrodes in gas generates a plasma discharge. In other words, it is an ionized 

gas with various species, including electrons, photons, neutral, ions, metastable, and 

molecules, which are neutral electrically (Usman Hassan Dahiru and Kingdom 2023). The 

average electron temperature in non-thermal plasma is around 104-105 K (1-10eV), much 

higher than the gas temperature usually kept at room temperature (Schiavon et al., 2017).  

2.3.1. NTP discharge types  

For VOCs abatement, several kinds of NTP are developed, including dielectric barrier 

discharge (DBD) (Abou Saoud et al. 2020a); (Xiaohong Yao et al., 2018);(S. Li et al., 2022a) ; 

corona discharge (CD) (Tao et al., 2022) (Du et al., gliding arc (GA) (Kong et al., 2019), glow 

discharge (GD)(B. Chen et al., 2022) and microwave discharge (WD)(Q. Feng et al., 2021). 

- Corona Discharge (CD) 

A corona discharge appears when the action of the critical inhomogeneous electric field ionizes 

the gas surrounding a conductor. It is a self-sustaining discharge characterized by its luminous 

"corona effect," which depends on the geometry of the electrode (edges, wires, corners) (Fig. 

11a). 

Several CDs exist depending on the power source (pulsed corona discharge) and on the 

electrode polarity (positive and negative CD). Also, sometimes it is named according to the 
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shape of electrodes (pin to plate, multi-needle-plane, wire to cylinder …)  et al., 1991) (Wan et 

al., 2011) 

- Gliding arc discharge 

Gliding arc plasma consists of two symmetric electrodes placed perpendicularly to the centric 

gas carrier source (Fig.11b) (Fridman et al., 1998). The high voltage applied between the two 

electrodes generates an arc that glides along the electrodes in the presence of dynamic flow 

(L. Lin et al. 2006).  

- Glow discharge (GD) 

GD, commonly known as low-pressure discharge (<10milibar), is generated between two 

electrodes after applying the potential difference (Fig.11c). The atoms of the gas are ionized, 

giving the corresponding cations and a free electron. Furthermore, the free electrons are 

accelerated under the electric field, resulting in more and more ionization and excitation 

reactions. The excitation collisions and the radiative deexcitation from higher energetic levels 

result in the apparition of plasma light "glow" (Moon et al., 2004). 

- Dielectric barrier discharge (DBD)  

The dielectric barrier discharge (DBD) is the most popular NTP technology for VOCs 

abatement reported in the literature. Its success is due to its stability and the operating 

conditions (typically under normal atmospheric pressure and temperature) (Y. Zhu et al., 

2023). The general concept of DBD plasma consists of dielectric material such as ceramic, 

glass, plastic, or mica sandwiched between a high voltage (HV) electrode and a ground 

electrode (GE) (Fig.11d).   (Juan He et al., 2022). When the high voltage and frequency are 

applied, the gas inside is brought to its breakdown voltage,  forming a discharge with a typical 

gap of 0.1 to 10 mm (Dou et al., 2008) (Subrahmanyam et al., 2006). 

DBD reactors can have several configurations depending on the electrode configuration, 

including surface DBD, planar DBD, and cylindrical DBD, as demonstrated in Fig. 12.  
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Now that the various discharges configuration have been discussed, it is necessary to discuss 

how they play a role in VOCs degradation, focusing on the mechanism involved and the recent 

studies on the subject. 

 

Figure 11.non thermal plasma discharges types: (a) Corona discharge (Reprinted with permission from (Birania 
et al. 2022) Copyright 2022 , Wiley), (b) Gliding arc discharge (Reprinted with permission from (Fridman et al. 

1998) Copyright 1999, Elsevier), (c) Glow discharge (Reprinted with permission from (Birania et al. 2022) 
Copyright 2022 , Wiley) , (d) DBD discharge (Reprinted with permission from (Dalvand E., Ebrahimi, and 

Pouryoussefi 2018) Copyright 2017, Elsevier) 

 

(b) (a) 

(c) 

(d) 
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Figure12.DBD plasma configurations  

 

2.3.2. Mechanism of VOCs degradation under Plasma discharge  

The degradation mechanism of several kinds of VOCs molecules in NTP plasma has been 

further studied. As in the case of the catalysis, the chemical composition of the target pollutant 

plays a crucial role in the degradation pathway and the reactions involved. From the summary 

table presented below (Table 3), aromatic hydrocarbons and chlorinated VOCS were the 

common molecules investigated (W. Zhou et al., 2021) (Saleem et al., 2021). The degradation 

of VOCs via plasma discharge occurs mainly through electron impact, ion collisions, and the 

interaction with the generated reactive species (as O, OH° and nitrogen metastable N2 (A3∑+
u)) 

in the discharge zone (Sultana., 2015). The mean energy of electrons in NTP plasma discharge 

can reach 10 eV (T. Zhu et al, 2017). It can easily break some molecule bonds as methyl group 

in the case of toluene (C–C: bond energy 4.4 eV, C–H: bond energy 3.7 eV, C=C: bond energy 

5.4 eV, C–H: bond energy 4.6 eV in the ring) (Fig.13),  leading to the formation of free radicals 

or initiates the ring opening, which subsequently triggers a series of reactions to produce small 
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inorganic molecules (NOx, COx, and H2O) or Macromolecules due to the recombination of 

actives components in the plasma phase(Fenglei et al., 2020). (S. Liet al., 2020). 

 

Figure13. Possible mechanism of toluene degradation (Reprinted with permission from (Fenglei et al. 2020) 
Copyright 2020, Elsevier) 

Michel Ondarts and coworkers report the role played by the reactive species generated in 

plasma discharge (i.e., O°, OH°, nitrogen metastable) on the degradation of toluene in corona 

plasma discharge. The following reactions were mostly expected in the case of toluene 

destruction(S. Li et al., 2022a):  

𝐶6𝐻5𝐶𝐻3 +  𝑂 → 𝐶6𝐻5𝐶𝐻𝑂2 + 𝐻                     k= 3.9 × 10−22  cm3/ molecule.s           (1) 

𝐶6𝐻5𝐶𝐻3 +  𝑂𝐻 → 𝐶6𝐻5𝐶𝐻2 + 𝐻2𝑂                 k= 5.71 × 10−12 cm3/ molecule.s          (2) 

𝐶6𝐻5𝐶𝐻3 +  𝑁2 (𝐴3 ∑ +𝑢) → 𝑝𝑟𝑜𝑑𝑐𝑢𝑡 + 𝑁2     k= 6 × 10−11  cm3/ molecule.s              
(3)    

The ions impact pathway was expected to be negligible (Ondarts et al. 2017) 
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Chlorinated compounds including Trichloroethylene (TCE) and chlorobenzene were also 

widely studied and decomposed by NTP plasma systems. The vast number of intermediates 

generated and the interaction with plasma species multiply the reaction channels. For TCE, 

the degradation mechanism starts with the abstraction of Cl under the action of energetic 

electrons and reactive species. The dissociation energy of the C–Cl bond (3.5 eV) is lower 

than that of the C = C bond (6.3 eV) and C– H bond (4.3 eV). The intermediates generated 

were further converted to CO2, CO, HCl, Cl2, and H2O by the oxygenated species (O and OH) 

(T. Chang, Ma, et al., 2022). 

The combination of plasma and catalyst exhibits high efficiency in the removal of VOCs with a 

synergetic effect. For this reason, a large number of studies have focused on this configuration, 

and the succeeding section will present a body of knowledge on the subject.   

 

Figure14.Degradation pathway of Chlorobenzene in DBD discharge under dry and humid conditions (Reprinted 
with permission from(W. Zhou et al. 2021) Copyright 2020, Elsevier) 
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DBD Plasma discharge 

VOCs 

Discharge 

Type 

 

Back ground gas 

 

Reactor 

 

Conversion 

(%) 
By-products O3 (ppm) Reference 

Cyclohexane 

(220 ppm) 

Volumic DBD 

Dielectric: 

quartz 

Dry air,  

Humified air,  

N2 

 

two coaxial 

quartz tubes 

98.2 % 

3kJ/L 
H2, CO, CO2, C1-C4 < 10ppm 

(Usman H. Dahiru et al. 

2021) 

Chlorobenzene 

(750 ppm) 

 

DDBD 

Dielectric: 

quartz 

Dry air 
Multi stack 

reactor 

82 % 

4.5kJ/L 
NO2, Carbone BP 160 ppm (W. Zhou et al. 2021) 

Toluene 

(8.6 ppm) 

Volumic DBD: 

Dielectric: 

quartz 

CH4 coaxial DBD 
85.9 % 

60kJ/L 
H2, LHC ND (Saleem et al. 2021) 

Hexane 

(350 ppm) 

Volumic DBD 

Dielectric: 

Glass 

Air, N2 

 

coaxial 

quartz 

tubes reactor 

94.4 %  

6kJ/L  
H2O, CO2 

7 ppm 

In dry air 

(Usman H. Dahiru, 

Saleem, Al-sudani, et al. 

2022) 

Methanol 

(260 ppm) 

Volumic DBD 

Dielectric: 

Glass 

Dry air, 

Humid air,  

N2 

 

coaxial DBD 

96.7 % 

8.5kJ/L 

Dry air 

 

CO2, CO, O3, CH4, 

H2, LHC 
10 ppm 

(Usman H. Dahiru, 

Saleem, Zhang, et al. 

2022) 

Benzene 

(350 ppm) 

Volumic DBD 

Dielectric: 

Glass 

Dry air, 

Humid air 

 

two coaxial 

quartz tubes 

93.7 % 

6kJ/L 

CO2, CO, O3, CH4, 

H2, LHC 
7 ppm 

(Usman H. Dahiru, 

Saleem, Al-Sudani, et al. 

2022) 

Formaldehyde 

(100 ppm) 

DBD 

Dielectric: 

alumina 

Air 
Rectangular 

box reactor 

95.12 % 

2.5kJ/L 
NOx, O3, CO2 2253 (Asilevi et al. 2020) 

Acetone 

(80 ppm) 

DBD 

Dielectric: 

Aluminum 

powder 

Air 
Cylindrical 

reactor 

90% 

24.3kJ/L 

 

Formaldehyde, 

Methanol, 

Ketene, 

Acetaldehyde, 

Formic acid,  

Acetic acid, CO2 

ND (X. Li et al. 2019) 

Naphthalene 

(20 ppm) 

SDBD 

Dielectric: 

Mica sheet 

Humid air 
Cylindrical 

reactor 

94% 

6kV 
NOx, O3 50 ppm 

(Abdelaziz, Ishijima, and 

Seto 2018) 

 

Toluene 

(100 ppm) 

Pulse 

modulated 

DBD 

Dielectric: 

quartz 

Air 

multistage 

rod-type 

reactor 

62.9 % 

2.3kJ/L 

benzyl alcohol, 1,4-

benzenediol,2-

methyl-, phenol,3-

methyl-4-nitro-, 

and 3-methyl-5-

nitrophenol, COx, 

O3, HCOOH 

1160 ppm (N. Jiang et al. 2020) 

n-Hexane 

(50 ppm) 

DBD discharge 

Dielectric: 

quartz 

Air, N2, He 

Twelves 

parallel 

dielectrics 

quartz 

98 % 

1.629kJ/L 

air 

H2O, CO2, NOx, O3 
120 ppm 

In dry air 
(Son et al. 2021) 

Toluene 

(300 ppm) 

DDBD 

Discharge 

Dielectric: 

quartz  

 

Air 

coaxial 

cylindrical 

double 

dielectric 

barrier 

discharge 

100% 

0.9kJ/L 
CO2, CO 480 ppm (S. Li et al. 2022b) 

Corona plasma discharge 

Toluene 

(400 ppm) 

Negative DC 

corona 

discharge 

Air 

Wire-plate 

rectangular 

box reactor 

54.2 % 

ND 

 

CO2, CO ND (Guan et al. 2022) 

Toluene 

(150 ppm) 

negative DC 

corona 

discharge 

Air 

Wire to 

cylinder 

discharge 

chamber 

91.5 % 

2500 J/l 

formic acid, acetic 

acid, maleic 

anhydride and 

benzaldehyde 

2000 ppm (T. Ma et al. 2018) 

TCE 

(1000 ppm) 

pulsed corona 

discharge 
Air 

Wire to 

cylinder 

100 % 

0.15 kJ/l 
ND ND 

(Kuznetsov, Filatov, and 

Uvarin 2019) 

TCE 

(58 ppm) 

 

corona 

discharge 
Humid air 

Wire to 

cylinder 

90.7% 

ND 

 

2,2-Dichloroacetyl 

chloride 

(CHCl2COCl), 

carbonyl chloride 

(COCl2), hydrogen 

chloride (HCl) and 

CO2 

ND (Z. G. Li and Zhao 2019) 

Toluene 

(100 ppm) 

DC corona 

discharge 
Dry air 

multi-wire-

plate 

Rectangular 

box 

52% 

8.1kJ/L 
CO, CO2 ND (Xiaomei Yao et al. 2020) 

Gliding arc plasma 

Benzene 

(70 ppm) 
Gliding arc Air 

plate gliding 

arc 

(PGA) 

reactor 

73 % 

7.5kJ/l 
CH4, CO2 ND (Rad et al. 2019) 
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Naphthalene 

(0.8 ppm) 
Gliding arc N2 

AC gliding-

arc reactors 

93% 

ND 
ND ND 

(Sasujit, Dussadee, and 

Tippayawong 2019) 

Toluene 

(1400 ppm) 
Gliding arc Ar , O2 

Three 

electrode 

reactor 

87 % 

ND 

Benzene 

Butadiene Acetone 

Benzaldehyde CO 

CO2 

ND 

 

(Lestinsky, Grycova, and 

Pryszcz 2018) 

 

Table 3.Recents works on VOCs removal by NTP technologies. 

2.4. Plasma-catalysis coupling for VOCs removal  
2.4.1. Plasma-catalysis configuration  
- PPC and IPC mode  

The combination of plasma and catalysis processes operates in two different modes: (i) post-

plasma catalysis (PPC), in which the catalytic reactor is located downstream of the NTP 

reactor. (ii) In plasma catalysis (IPC), the catalyst is introduced in the discharge zone, and the 

reaction occurs in the same reactor (X. Feng et al., 2018). (Figs. 15a and b). 

The catalyst's presence downstream of the plasma reactor improved process performance. 

Firstly, generated species in the discharge area (first stage) such as ozone, radicals, electrons, 

ions, and excited species, induce a fundamental change in the background gas composition 

reaching the catalyst vessel (second stage) and contribute to the elimination of the residual 

pollutant at the catalyst surface(Yu et al., 2020; Baaloudj et al., 2022). Secondly, the catalyst 

located after the discharge plays a vital role in eliminating the by-products. For instance, the 

ozone generated in plasma can be eliminated and converted by the catalyst to atomic oxygen, 

further interested in VOC oxidation. Chang et al. highlighted the effect of the MnCo/HZ-5 

catalyst placed post-NTP discharge on lowering the ozone concentration from 733.60 ppm to 

226.33 ppm (T. Chang et al., 2019). Furthermore, Norsic et al. eliminate all gaseous ethanol 

in the PPC system, and the calculated carbon balance approaches 100 percent, which explains 

why the presence of the catalyst downstream of the NTP discharge is important for by-product 

inhibition (Norsic et al., 2018).  

Tian Chang and coworkers treated trichloroethylene (TCE) in a PPC system over an Mn-

Ce/HZSM-5 catalyst. The plasma reactor consists of a corona discharge vessel with a multi-

pin-to-plate configuration. The catalyst was placed downstream of the discharge reactor at a 

temperature of 400°C. Almost total degradation of TCE was reached with CO2 and CO 
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selectivities of 52.84% and 22.74%, respectively. Furthermore, Ozone depletion and utilization 

in the catalyst stage were also confirmed. Indeed, ozone produced by the discharge can be 

decomposed into oxygen species by an Mn-based catalyst, which is involved in the oxidation 

of TCE and intermediates (T. Chang et al., 2021). 

Qianqian Yan et al. were able to convert 98 % of toluene and reach 50 % of COx selectivity in 

a DBD plasma reactor followed by α-MnO2 /Cordierite honeycomb monolithic catalyst 

(CHM)(Yan et al., 2024). 

The DBD reactor comprises a quartz tube with an aluminum foil wrapped around it as a 

grounding electrode, and a stainless-steel rod placed inside the tube as a high-voltage 

electrode. The catalyst is introduced into the catalytic reactor and positioned downstream of 

the DBD reactor. The authors noticed ozone reduction and particulate matter, confirming the 

catalytic treatment's benefit coupled with the plasma discharge process (Yan et al., 2024).  

 

 

Figure15.NTP-catalysis configuration 

The combination of plasma and catalysis processes led to a beneficial effect, a phenomenon 

widely reported widely in the literature as a synergetic effect (X. Feng et al., 2018), holds 

significant promise. The term 'synergy ', derived from the Greek word for 'teamwork' (Younus 

et al., 2019), in this context, signifies that the performance achieved by the plasma-catalysis 

combination surpasses the sum of plasma and catalysis performed individually, thereby 

piquing our curiosity about its potential. 

(a) 

(b) 
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Assadi et al. have made significant contribution to our understanding of the synergetic effect. 

Their investigation into the degradation of the gaseous trimethylamine by DBD plasma-coupled 

photocatalysis in one cylindrical reactor vessel revealed a synergetic effect for all experimental 

conditions studied. They attributed this behavior to several hypotheses, including plausible 

TiO2 activation by the plasma UV and acceleration of by-product desorption by the reactive 

species generated in the plasma phase (Assadi et al. 2015). 

Furthermore, Zhu et al. and coworkers demonstrated the positive effect of incorporating 

Au/CeO2/Al2O3 nanocatalyst in the plasma discharge zone toward toluene removal. The 

removal efficiency of plasma alone in the condition considered is only 5 % and 67 % by the 

catalyst alone, while the combination of the plasma and catalysis in a hybrid reactor led to a 

complete removal of toluene with a high mineralization percentage approaching 90%. 

Additionally, the formation of secondary intermediates was inhibited, and catalyst poisoning 

was avoided (B. Zhu et al., 2020). As demonstrated in the summary Table 4, several 

researchers confirm the diminution of the ozone concentration after the incorporation of the 

catalyst in the plasma zone (Zadi et al., 2020) (Abou et al., 2018) (Assadi et al., 2015).  

For instance, Pan and Chang reported the beneficial effect of integrating La2CoMnO6 

perovskite in a DBD reactor (packed bed DBD). It has been observed that the La2CoMnO6 

catalyst is totally ineffective for toluene removal at temperatures below 150 °C. Otherwise, the 

catalyst’s exposure  to the discharge led to a real boost in the degradation efficiency, with 

100% toluene removal and 96.8% mineralization efficiency (Pan and Chang 2019).   
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Table 4. Plasma-catalysis combination for VOCs removal 

a Ozone concentration in plasma alone; b Ozone concentration in the presence of the catalyst; c Synergetic factor: the ratio of the removal efficiency of the 

combined system on the sum of the removal efficiency of plasma alone and catalysis alone

Catalyst Discharge type VOCs 
Reactor type Flow rates RE plasma 

alone 

RE catalysis 

alone 

RE 

combined 
Ozone (ppm) 

Synergetic 

factor c Reference 

SrTiO3/rGO 

UV 
DBD 

Toluene 

(100 ppm) 

Cylindrical quartz 

tube 

3 L/min  
90.9 3 100 Nd 1.06 

(Mohammadi et al. 

2020) 

SiO2-TiO2 

UVA 
DBD 

Propanoic acid 

(3.24 ppm) 

Co-axial Cylindrical 

quartz tube reactor  

33 L/min 

35 50 96 

21a 

6 b 1.12 (Zadi et al. 2020) 

Au/CeO2/Al2O3 DBD 
Toluene  

(100 ppm) 

Co-axial cylindrical 

reactor  

0.2 L/min  

67 5 100 Nd 1.38 (B. Zhu et al. 2020) 

La2CoMnO6 DBD 
Toluene 

(150 ppm) 

fixed-bed quartz 

reactor  

1.2 L/min  
82 0 100 Nd 1.21 

(Pan and Chang 

2019) 

1 wt% Au/Al2O3 DBD 
Toluene (800 

ppm) 

Cylindrical reactor  0.06 L/min  
60 0 96 Nd 

1.6 (Quoc An et al. 

2011) 

TiO2/GFT 

UVA 
DBD 

Trimethylamine 

(57 ppm) 

Co-axial cylindrical 

reactor 

33 to 166 L/min  

39 34 91 
215a 

150b 
1.24 (Assadi et al. 2015) 

TiO2/GFT 

UVA 
DBD Butyraldehyde 

(50ppm) 

Co-axial cylindrical 

reactor 

33 L/min 

7 28 40 
30a 

23b 
1.14 (Abou et al. 2018) 

TiO2/GFT 

UVA 
DBD Ammonia (50ppm) 

Co-axial cylindrical 

reactor 

33 L/min 

20 51 80 
30a 

23b 
1.12 (Abou et al. 2018) 

WO3/TiO2 

UVA 
DBD Acetaldehyde (1425 

ppm) 

Quartz cylindrical 

reactor  

Nd 

1.75 14.03 19.29 Nd 1.22 (D. Li et al. 2022) 

CoMn/TiO2 DBD Chlorobenzene (300 

ppm) 

Cylindrical packed-

bed reactor 

2 L/min  

2.3  78.3 97.1 Nd 
1.20 

(Song et al. 2018) 

Pt/Al2O3 Corona discharge  butyl-acetate (120 

ppm) 

Wire cylinder 

packed reactor  

20 L/min 

10 18 42 Nd 1.5 
(Demidiouk, Moon, 

and Chae 2003) 

1 wt.% Pd/Al2O3 DBD Propene  

(1000 ppm) 

Cylindrical reactor  1 L/min 
1 90 100 Nd 

1.09 (Pham, Bui, and 

Khacef 2018) 
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2.4.2. Plasma-catalysis hybrid reactor for VOC degradation 

The reactor geometry plays a crucial role in  the degradation performance of VOCs; in this 

section, special attention will be given to the plasma-catalyst hybrid reactor working 

simultaneously to abate gaseous contaminants.  

Assadi and coworkers published several works on the degradation of VOCs using a variety of 

reactor configurations, among them the cylindrical pilot reactor(Assadi et al., 2014) (Fig.16a) 

which can be used to perform photocatalysis alone due to the presence of the UV lamp, 

contained in the reactor allowing the illumination of the catalyst wrapped against the internal 

reactor walls. This configuration also allows a facile generation of DBD surface plasma with an 

outer electrode covering the outside cylindrical tube and an inner grid High voltage electrode 

(Abou Saoud et al., 2020a)(Abou Saoud et al., 2020b). Coupling photocatalysis and DBD 

plasma simultaneously in the same reactor vessel was tested several times and high 

mineralization and degradation rates were achieved. The planar configuration can also be used 

as a photocatalytic reactor and as a plasma DBD–photocatalytic reactor was used to treat 

Butyraldehyde pollutants in the airstream. DBD/photocatalyst mode exhibited good CO2 

selectivity and low ozone concentration with an enhanced decomposition rate, leading to a 

synergetic effect (Gharib-Abou Ghaida et al., 2016).  

 

 

(b) (a) 
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Figure16.(a) Cylindrical hybrid plasma – photocatalysis reactor, (b) Planar hybrid plasma – photocatalysis reactor 

Antoine Rousseau and collaborators reported the performance of a U-shaped reactor used as 

an in-situ mode coupling DBD plasma and catalysis for the degradation of toluene. The reactor 

consists of a Pyrex tube U-shaped containing a tungsten wire electrode as the working 

electrode and a hollow brass cylinder as the counter electrode enrolled along the catalyst bed 

zone, as demonstrated in the figure.17 (Jia et al., 2018) 

 

 

Figure17. U shape hybrid plasma- catalysis reactor , reprinted from (Jia 
et al. 2018) 

 

It was reported in the literature that Packing DBD reactors with porous (Al2O3 , SiO2) or non-

porous material (ZrO2) enhances significantly the characteristics of the discharge and improves 

the performance of the reactor in point of view of the degradation efficiency and mineralization 

(Veerapandian et al., 2017). The packing material possesses different shapes and sizes, 

primarily added in the form of spheres or cylinders. L. Sivachandiran designed a MnXOY-coated 

glass beads packed bed non-thermal plasma reactor to convert isopropanol. It consists on a 

lab scale-reactor made of Pyrex glass tube. As described in the Fig.18, copper wire fixed inside 

the glass tube used as an HV electrode, and an external copper grid electrode wrapped outside 

the principal tube acting as a ground electrode leading to a discharge gap of 5.3 mm. This 

discharge zone was filled with Pyrex glass beads coated with MnO2 (Sivachandiran et al., 

2015). 
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Figure18. MnxOy packed bed non thermal plasma reactor for isopropanol conversion (Reprinted with permission 
from (Sivachandiran, Thevenet, and Rousseau 2015) Copyright 2015, Elsevier) 

 

Recently, A great interest was given to the catalytic–plasma reactor based on a honeycomb 

catalyst configuration for VOCs removal (Nguyen, Yoon, et al 2022)(Nguyen, Dinh, et al 

2022)(Hossain et al 2021). For instance, Shirjana Saud and coworkers investigated the 

degradation of gaseous diluted ethylene in 4 honeycomb PdO/ZSM-5/monolith catalysts 

packed in tubular polycarbonate tube and sandwiched between mesh electrodes , which act 

alternatively as ground or high voltage (HV) electrode (Saud et al. 2023). 97 % of Ethylene (30 

ppm)  was achieved at a specific discharge energy of 56 J/L and a temperature of 25 °C.  

The mechanism involved in the hybrid plasma-catalyst process is still complex and based on 

the interactions between the catalyst and the discharge simultaneously, depending on the 

reactor configuration and the catalyst position. Based on a few studies, the mechanism 

involved will be discussed in the next paragraph. 

 
 

Figure19. Non thermal plasma - honeycomb PdO/ZSM-5/monolith catalysts reactor for 
diluted ethylene removal (Reprinted with permission from (Saud et al. 2023) Copyright 
2022, Elsevier). 
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2.4.3. Mechanism of VOCs removal in plasma-catalytic systems  

The comprehension of the mechanism and reactions involved in VOCs removal in a combined 

plasma-catalytic system is crucial for developing efficient and economical processes for VOCs 

remediation (Maxime et al., 2014). The multiple nanoseconds scale reactions of atoms and 

molecules involved in the plasma phase, such as dissociation, excitation, and ionization, 

complicate the identification of the degradation pathway (Samukawa et al., 2012). For VOCs 

oxidation over the catalyst surface, three well-known mechanisms are mainly evoked, like 

Mars-VanKrevelen (MVK) (Z. Huang et al., 2021), Langmuir-Hinshelwood (LH) (C. Feng et al., 

2023), and Eley-Rideal (ER) processes. Thus, the action of plasma species and environment 

on the catalyst surface could impact the catalyst activity and induce change in the oxidation 

mechanism. Mutually, the presence of the catalyst inside the discharge zone could affect the 

plasma behavior.  

Tian Chang and coworkers demonstrated the efficiency of NTP coupled with Mn/N-doped 

carbon catalyst for total toluene degradation (98%); the authors emphasized the critical role of 

catalyst presence under the discharge zone(T. Chang et al., 2024). It was established that 

toluene was firstly degraded in the gas phase by the collision with plasma active species (e.g., 

O3, O+, N*, and O.) and energetic electrons. Several by-products formed in this phase, and the 

unreacted toluene undergoes a catalytic oxidation into CO2 and water over the catalyst surface. 

Additionally, the catalyst exhibited efficient ozone decomposition into oxygen-active species, 

which profits from the catalytic degradation of VOCs(Belkessa et al., 2023). Yuliang Shi 

investigated propane decomposition in a DBD plasma reactor combined with Pt/CeMnyOx 

catalyst, and a synergetic mechanism was proposed. Through the surface analysis and 

characterizations of the catalyst as XPS and In-situ DRIFTS experiments, authors suggested 

that the first decomposition steps of propane started with the dehydrogenation reaction over 

the catalyst surface, which produces propylene. Then, the adsorbed oxygen species formed 

by the discharge promote the further degradation of propylene and other by-products, including 

acrolein and acrylic acid, into Cox and water vapor(Yuliang Shi et al., 2024). Furthermore, it 
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was noticed that the increase in plasma discharge time reduces the number of intermediates 

on the catalyst surface, which is correlated with the synergy effect with the catalyst. 

 Most of the studies on this topic have evoked the synergetic effect exhibited by the combined 

process. However, its origin still needs to be better understood. 

Figure 20. Mechanism of VOCs degradation under plasma -catalysis (Vandenbroucke et al. 2011) Copyright 
2018, Elsevier) 

3. Synergetic effect sources of plasma-catalysis

The presence of the catalyst in the plasma discharge zone improves the degradation 

performance of VOCs synergistically compared to the two processes operating separately. The 

literature announces several hypotheses to explain this trend, including the effect of the 

discharge on the catalyst's structure and composition (Neyts et al., 2015).. 

This section of the review will highlight recent studies on the effect of plasma discharge on 

prepared catalysts. 

3.1. Effect of the plasma on the catalyst 



Accepted manuscript

Conventional thermal preparation methods of heterogenous catalysts required extreme 

conditions, such as high temperature and pressure and  toxic solvents and additives 

(Campanati et al., 2003). Therefore, Plasma can be used as an interesting alternative to 

prepare a highly active catalyst with the desired structure and composition only under mild 

conditions.  

The impact of plasma discharge on conventionally prepared catalysts was largely highlighted 

in the literature. The treatment of the catalyst under discharge allows the surface modification 

by altering the roughness, the particle sizes, and oxygen vacancies. Plasma may also lead to 

surface functionalization depending on the discharge atmospheres (Neyts, 2016). 

3.1.1. Catalyst surface activation 

The effect of Pt/ CeO2 catalyst treatment under DBD plasma discharge on its catalytic activity 

toward thermal toluene oxidation was studied by B. Wang et al. It was demonstrated that the 

sample exposed to the DBD discharge exhibits higher activity than the non-treated one. The 

characterization techniques show the modifications that occurred on the catalyst surface after 

DBD exposition: The surface roughness investigations provide more evidence that the catalyst 

is rougher after plasma bombardment. Additionally, better Pt nanoparticle dispersion and high 

oxygen vacancy concentrations are expected for the plasma treated catalyst, which results in 

lowering the activation energy and enhancing catalytic performance for toluene degradation 

(Bangfen Wang et al., 2018a). For instance, Shang et al. highlighted in their works the effect 

of the atmospheric pressure glow discharge plasma jet in enhancing the dispersion of Ni atoms 

in Ni/Y-Al2O3 catalyst and, therefore, boosting its catalytic activity (Shang et al., 2009). The 

characteristics of the catalyst under plasma discharge are mostly modified as demonstrated 

by D. Mo and Ye. After plasma treatment of the activated carbon fibers with TiO2, more 

adsorbed oxygen species are observed compared to the untreated one, which can explain the 

enhanced photocatalytic activity towards gaseous formaldehyde.  (D. Mo &Ye, 2009)  
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Figure 5. Toluene conversion at different catalyst (Reprinted with permission from (Bangfen Wang et al. 2018b) 
Copyright 2018, Elsevier) 

 

 

 

 

Table 5. Characteristics of plasma treated and non-treated catalysts (Reprinted with permission from (Bangfen 
Wang et al. 2018b) Copyright 2018, Elsevier)   

3.1.2. Catalyst regeneration  

The catalyst deactivation phenomenon mostly limits catalytic reactions. This loss of activity is 

caused by chemical, thermal, and mechanical routes. Chemical deactivation refers to 

poisoning the catalyst active sites after the chemisorption accumulation of reactant compounds 

or by-products (Bartholomew, 2001). Furthermore, the accumulation of vapors as water vapors 

films leads to the blocking of active surfaces and causes severe deactivation. A Catalyst 

exposed for a long time to high temperatures is subject to surface degradations such as loss 

of catalytic surface area, pores size changes and active phase- solid support fragility (Jaison 

et al., 2023). The mechanical failures induced by crushing and abrasion cause irreversible loss 

of catalytic activity. Therefore, catalytic activity recovery is essential for the sustainable use of 

the catalyst. The plasma discharge process could be an exciting catalyst regeneration process 

(Kaliya Perumal Veerapandian et al., 2021). In a plasma-catalysis coupled system, the 

enhanced performances and the synergetic effect are mostly related to the in-situ regeneration 

of the catalyst by the reactive plasma species and the local heat provided by the discharge.  

Catalyst OSC surf (µmol O g-1) OSC Pt (µmol O g-1) Ea (kJ mol-1) 

Pt/ CeO2 124.87 25.46 79.1 

(Pt/ CeO2)-P 137.86 26.48 63.8 
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For instance, H. H. Kim et al. studied Au/TiO2 catalyst regeneration by non-thermal plasma 

route. The result shows the effectiveness of the oxygen DBD plasma for removing adsorbed 

toluene on the catalyst surface and recovering catalyst activity (H. H. Kim et al., 2007). In other 

work, Zhu et al. confirmed the ability of pulsed plasma discharge to regenerate completely Au-

based catalysts for CO conversion  (B. Zhu et al., 2017).   

 

 

Figure 6. Catalyst regeneration by plasma 
discharge (Reprinted with permission from (B. Zhu 

et al. 2017) Copyright 2017, Springer Science ) 

 

Abou Saoud et al. studied the regeneration of TiO2 coated on glass fiber tissue after poisoining 

by photocatalytic removal of DMDS and Butyraldehyde mixture. The regeneration monitored 

under the DBD air stream for 30 min allows the recovery of 23 % from the fresh catalyst (Abou 

Saoud et al., 2017). 

3.1.3. Effect of plasma ionic wind on reactants adsorption  

The produced ions in plasma discharge near the electrode’s surface move towards the ground 

electrode under the action of the electric field and the momentum transfer between molecules 

located in the flow (Defoort et al.,, 2017). Thus, an electrohydrodynamic (EHD) force is 

produced, commonly known as the ionic wind (Fig.23) (Sato et al., 2019). The wind velocity  

depends mainly on the electrode’s geometry, typically around 10 m/s (Hyun Ha Kim et al., 

2016). 
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Figure 7. Ionic wind generation in surface DBD plasma (Reprinted with permission from (Sato et al. 2019) 
Copyright 2019, Nature ) 

Several works mentioned the effect of the ionic wind generated in plasma discharge on 

promoting gaseous molecule adsorption in a catalyst located in the plasma zone. For example, 

Y. Feng et al. demonstrated that mercury adsorption is enhanced by the action of the ionic 

wind. The EHD force causes several fluid disturbances, such as non-uniform fluid velocity and 

high Reynolds number, leading to the mass transfer improvement and, therefore, the best 

mercury adsorption was observed (Y. Feng et al., 2020). In their works, Lin et al. have reported 

the improvement of NOx catalaysis due to the ionic wind effect, which enhanced diffusion of 

gaseous NOx towards La0.8K0.2MnO3 perovskyte type catalyst (H. Lin et al., 2007).  

3.2. Effect of the catalyst on plasma discharge  

The introduction of the catalyst inside the plasma discharge zone induces several effects on 

the characteristics of the discharge and enhances the performance of plasma-catalyst hybrid 

systems for VOCs conversion,  

3.2.1. Plasma energy improvement  

J. Li et al. conducted a comparative analysis of toluene degradation in DBD plasma alone and 

a combined plasma/CuO foam catalyst. The authors confirmed the beneficial impact of 

incorporating the catalyst in the discharge zone. Notably, the breakdown voltage for the DBD 

alone system was 18kV, while it was around 12kV for the combined system. The figure below 

illustrates the higher intensity and the brightness of the discharge in the plasma-catalyst reactor 

compared to the DBD alone (Ju Li et al., 2019). 
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In another study, it was conclusively demonstrated that the presence of the catalyst in the 

plasma volume amplified the contact points, thereby enhancing the electric field and the local 

electron energy (Pan & Chang, 2019). The introduction of the Ag/ZSM-5 catalyst in the plasma 

zone induces significant changes in plasma discharge characteristics, particularly in the 

current-voltage waveforms due to the surface streamers produced by the Ag/ZSM-5 catalyst 

(Fig.24).  

Shirjana Saud demonstrated the effect of the presence of the catalyst on the enhancement of 

plasma energy inside the reactor. It was demonstrated through Lissajous curves with and 

without catalyst that the specified input energy inside the reactor was higher in the presence 

of the catalyst at the same applied voltage (Fig.25a-b) from (Saud et al., 2022) 

Additionally, packing material has a higher dielectric constant than air, which enhances the 

local electric field and the electron energy (Yu et al., 2020)(Gadkari & Gu, 2018).  

 

Figure 8. Voltage vs Current waveform 
in air alone and with the presence of the 

catalyst at 20 kV (Reprinted with 
permission from (Yu et al. 2020) 

Copyright 2020, Elsevier ) 

 

 

Table 6. Effect of catalyst packing on the plasma characteristics as Power, electron density and electron energy 
(Reprinted with permission from (Gadkari and Gu 2018) Copyright 2018, PHYSICS OF PLASMAS) 

 

DBD configuration Power density (W m-3) Electron density (cm-3) Electron energy (eV) 

No packing 4×105 2.3×1010 2.19 

Partial packing 5.64×105 2.2×1010 3.21 

Full packing 7.13×105 5.8×106 7.33 
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Figure 9. (a) Variation of specific input energy with and without the catalyst  (b) voltage−charge  Lissajous curves 
at 14 kV (total flow rate = 2 L/ min; C2H4 = 250 ppm; RH = 100%; catalyst = 10 g; acquired average mode of eight 

samples for the oscilloscope) (Reprinted with permission from (Saud et al. 2022) Copyright 2022, American 
Chemical Society )  

 

3.2.2. Formation of micro-discharge 

The formation of micro-discharge in packed plasma reactors is mostly evidenced in the 

literature through several tools such as high-resolution camera imaging or numerical 

simulations (S. Li et al., 2020b)(Qu et al., 2021). Porous material inside the discharge reactor 

is most likely to generate micro-discharge inside the pores. The increase in the number and 

the intensity of micro discharge induces an increase of electron temperature and energy. 

Therefore, the breaking of VOCs adsorbed inside these pores is easily promoted. Yu-Ru Zhang 

and coworkers established a link between the dielectric constant of the catalyst and micro-

discharge formation inside the pores via numerical modeling. They demonstrated that for 

catalysts with high dielectric constants, the plasma formation inside the pores is almost 

impossible, as summarized in the Fig. 26  (Y. R. Zhanget al,, 2016). To support the idea of the 

micro discharge formation effect on the VOCs removal efficiency, Guan et al. studied the 

degradation of toluene in DC corona discharge with porous PTFE materials coated on the 

grounded electrode. Toluene removal is enhanced with an increasing the number of PTFE 

pores. The authors explain this trend by arguing that pores can expand the discharge zone, 

leading to more collisions between reactive species and toluene molecules. Additionally, micro-

discharges initiate more ionization reactions, which could produce reactive entities, such as 

atomic oxygen and OH° radical mostly involved in VOCs abatment (Guan et al., 2022).  
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Figure 10. Effect of the dielectric constant on the  micro discharges formation  inside the pores (Reprinted with 
permission from (Y. R. Zhang, Neyts, and Bogaerts 2016)  Copyright 2016, American Chemical Society ) 

  

Active species generated in the gas phase discharge lose their energy by inter-species collision 

or with reagent molecules in the gas phase (Whitehead, 2019). For instance, OH radical 

lifetime is typically reduced by 5 in the presence of pollutant reagent in the plasma zone (Hibert 

et al., 1999). Thus, it limits the diffusion of these species to the catalyst surface and, 

consequently, their reactivity with the VOCs adsorbed. Hence, the generation of micro-

discharge provides these strong oxidative species inside the pores near the target pollutant 

(Whitehead, 2019).  

3.2.3. Effect of catalyst on ozone valorization 

In the previous sections, the mutual effects of plasma-catalysis are discussed. Herein, the 

influence of plasma-catalyst combination in the same zone on the surface catalytic reactions 

will be detailed via the effect of the catalyst on ozone valorization.  

Plasma discharge as DBD allows the generation of ozone, the most common by-product. The 

ozone is produced following two important steps:  

• The oxygen in the carrier gas is ionized by plasma electrons leading to the formation 

of O (1D) and O (3P), which corresponds to  the excited-state and ground-state oxygen 

atoms, respectively (Holzer et al., 2002). 

𝑒 + 𝑂2 → 𝑂(1𝐷) +  𝑂(3𝑃)                                                                                                  (4)  

 

𝑂(1𝐷) + 𝑀 →  𝑂(3𝑃) + 𝑀′                  k5 = 2.6 × 10−11 cm3/ (s mol), for M = N2                    (5) 
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                                                 k5 = 4.0 × 10−11 cm3/ (s mol), for M = O2. 

                                                           

• The ground-state oxygen atom produced via equations 4 and 5 reacts with the O2 

molecule in the presence of the third molecule to form the ozone molecule through 

equation 6  (Holzer et al., 2002). 

𝑂(3𝑃) + 𝑂2 + 𝑀 →  𝑂3 + 𝑀′            k6= 6.0 × 10−34 cm6/ (s mol2)                                       (6) 

Ozone is a strong oxidant agent, but the chemical reactions of VOCs with ozone are  kinetically 

unfavorable compared to atomic oxygen (T. Changet al., 2022). For instance, the reaction rate 

of toluene with ozone in the gas phase at 298 K  is about 1.2 × 10−20 cm3 molecule−1 s−1, which 

is largely lower than the reactivity with an oxygen atom (5.7 × 10−12 cm3 molecule−1 s−1)(Harling 

et al., 2009).  The incorporation of some catalyst in the plasma discharge considerably reduces 

ozone production either by atomic oxygen adsorption in the catalyst surface and therefore 

limiting the production of ozone, or by the decomposition of formed ozone molecules at the 

surface of the catalyst (Baowei Wang et al., 2017).  

J. Wu et al. performed toluene decomposition in a plasma catalysis hybrid system with Ni, Fe, 

Mn, Ce, and Cu oxides based catalysts. It was concluded that NiO/y-Al2O3 shows the best 

performance toward toluene destruction and ozone decomposition (J. Wu et al., 2013). The 

presence of the catalyst in the discharge zone allows a supplementary way for atomic oxygen 

production in addition to the classical way based on inter-species collision in plasma discharge 

or oxygen dissociation. In recent work, X. Zeng et al. investigated the effect of Cu-doped MnO2 

catalyst in a stage plasma-catalysis system toward KetoneVOCs degradation. The same study 

confirmed the effect of Cu-doped MnO2 catalysts in ozone destruction. For exemple, at 630 J/L 

injected energy, the ozone concentration decreased by 100% over Cu0.133-Mn catalyst, which 

exhibits the best degradation performance (X. Zeng et al., 2020a). 

MnO2 is widely reported as a promising catalyst for ozone depletion, and Oyama and his 

coworkers first elucidated the corresponding mechanism. Three main steps are proposed:  
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O3 + * →  O2 + O*                                                                                            (7) 

O* + O3 → O2+ O2*                                                                                           (8) 

O2* → O2+ *                                                                                                     (9) 

Where * refers to the active site. 

 

 

Figure 11.(a) Ozone decomposition cycle over MnO2 catalyst (Reprinted with permission from (B. Xu et al. 2022)  
Copyright 2022, American Chemical Society ), (b) Effect of Cu-MnO2 based catalyst on the decomposition of 
ozone in plasma discharge (Reprinted with permission from (X. Zeng et al. 2020b) Copyright 2019, Elsevier) 

4. Limitations and challenges: 

 

Implementing a plasma-catalysis system for VOCs remediation has often demonstrated its 

performance on a laboratory scale with low or moderate concentrations of pollutants and low 

flow rates. However, its use at the industrial level is still a big challenge. The representative 

VOCs concentrations from industrial sources are around 100 to 1000 ppm, and to achieve a 

specific removal efficiency, high energy demand would be required, which inevitably increases 

the quantity of undesirable and toxic by-products such as O3, NOx, and CO (H. L. Chen et al., 

2009). For instance, ozone concentration generated by plasma discharge is proportional to the 

specific energy density (SED) (Nur et al., 2016). Thus, for industrial applications, energy 

consumption and by-product formation are essential before implementing a plasma-based 

reactor. 

Furthermore, the catalyst suffers from deactivation due to the accumulation of organic matter 

as carbonaceous, sulfur-containing, and chlorinated compounds, which drastically reducing 

(a) 

(b) 
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the process performances(T. Changet al., 2022). Therefore, industrial processes must take 

into account this problem. .  

Finally, the design and ongoing maintenance of such industrial plants are very costly, which 

can be considered as a real challenge for chemical engineers. 

Despite the above limitations, the plasma-catalysis process remains a very promising 

technology. It doesn’t require the use of solvents or toxic chemicals and is suitable for a wide 

range of pollutants. Therefore, increasing efforts across several fields of technologies, 

including chemistry, physics, and mechanics, is the key to achieving a highly performant 

process with fewer limits. 

For practical application, it is recommended that case studies be carry out under real 

conditions, focusing on the feasibility, overall cost, performance and safety.  

5. Conclusion and outlook:  

The recent works on VOCs removal by non-thermal plasma, catalysis, and their combination 

are discussed in this review paper. The current environmental issues facing the world led to 

the growth of the interest in this research area, which promises fantastic discoveries and 

facilitates the development of highly performant systems for air depollution. Heterogenous 

catalysis has always played a significant role in the chemical processes in both the laboratory 

and the industrial sector. But sometimes, it suffers from certain limitations, such as catalyst 

deactivation, the high temperature needed, and low selectivity. Non-thermal plasma alone has 

been integrated as a new water and air depollution technology with multiple advantages. 

Unfortunately, the plasma discharge is energy-consuming and generates ozone as a long-lived 

species. Thus, integrating the catalyst in the plasma (IPC) suppresses some limitations 

mentioned above and boosts the removal of VOCs. 

As highlighted in numerous examples in this review, the interaction between the non-thermal 

plasma and catalysis demonstrated a powerful synergetic effect. This effect translates into 

superior process performances, including high conversion and mineralization efficiency, by-
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product limitation, and catalyst conservation. Furthermore, plasma-catalysis coupling 

significantly reduces process costs and enhances energy efficiency, making it a viable option 

for domestic and industrial applications.  

At the nanoscale level, the synergetic combination of plasma and catalysis is no more no less 

than the mutual interaction between the catalyst and plasma environment. On one side, it was 

demonstrated that the rich plasma environment led to several catalyst changes through the 

surface activation by the plasma species as electrons and reactive oxygen or nitrogen species. 

It is also suggested that the morphology of the catalyst can be altered during the discharge. 

Moreover, the catalyst deactivation issue can be resolved via in situ regeneration, which is 

allowed by the direct exposure of the catalyst to the discharge. Conversely, depending on the 

material structure and composition, the catalyst may affect the discharge entirely. For instance, 

the catalyst’s presence enhances the electric field and the electron energy. In addition, the 

catalyst pores promote the formation of a micro discharge, leading to more reactive species 

formation. The catalyst is of great interest for reducing and valorizing the by-product, especially 

ozone. As is known, the hybrid systems plasma catalysis improves the mineralization 

efficiency. The synergy effect interaction between plasma and catalyst is crucial in optimizing 

existing processes regarding efficiency and cost. Therefore, it is necessary to explore in greater 

detail the interacting phenomena occurring at different scales using both experimental and 

theoretical approaches. To this end, several methods could be adopted, starting with in-situ 

probing of the plasma gas phase environment, catalytic reactions over the surface, and 

monitoring structural or chemical changes of the catalyst surface.  

Furthermore, simulation and modeling are of great interest in understanding and providing 

design input for developing a new efficient plasma-catalytic process. Now that the synergy of 

the combined process has been demonstrated at the lab scale, future work under real 

conditions on a larger scale will be welcome to ensure its successful industrialization. To date, 

no study has investigated bacterial disinfection under a plasma-catalysis process. Thus, it must 

be a real prospect for new studies in the field.  
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Moreover, in the context of global warming, the control of CO2 emission has become a hot 

topic. Therefore, plasma-catalytic technologies could be an interesting technology for CO2 

removal and valorizing.  

Finally, this subject is a complex matrix that necessitates the collaboration of several 

disciplines, such as chemistry, physics, electrical, and mechanical science. This 

interdisciplinary approach is crucial for gaining a comprehensive understanding of the subject 

and for developing more efficient applications. It also underscores the broad impact of the 

audience's work, extending beyond their specific field and contributing to the larger goal of 

environmental preservation.  
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