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†LTCI, Télécom Paris, Institut Polytechnique de Paris, France, {mathieu.fontaine,yves.grenier,francois.roueff}@telecom-paris.fr.

Abstract—This paper addresses the challenge of estimating
multiple highly oscillating amplitudes within the nonlinear chirp
signal model. The problem is analogous to the mode detection
task with fixed instantaneous frequencies, where the oscillating
amplitudes signify mechanical vibrations concealing crucial infor-
mation for predictive maintenance. Existing methods often focus
on single-frequency estimation, employ simple amplitude func-
tions, or impose strong noise assumptions. Furthermore, these
methods frequently rely on arbitrarily chosen hyperparameters,
leading to sub-optimal generalization for a diverse range of am-
plitudes. To address these limitations, our approach introduces
two estimators, based on Capon filters and negative log-likelihood
approaches respectively, that leverage locally stationary assump-
tions and incorporate hyperparameters estimation. The results
demonstrate that, even under challenging conditions, these esti-
mators yield competitive outcomes across various noisy scenarios,
mitigating the drawbacks associated with existing methods.

Index Terms—chirp signal, amplitude estimation, locally sta-
tionary process, filtering, hyperparameters estimation

I. INTRODUCTION

Signal amplitude estimation is a common task with applica-
tions in diverse fields such as speech enhancement [1], brain ac-
tivity monitoring [2], and mechanics vibration studies [3], [4].

Current methods typically focus on constant or slowly vary-
ing amplitudes and do not account for highly oscillating am-
plitudes present in practical applications. For instance, in me-
chanics the simultaneous tracking of highly-varying amplitudes,
known as ’order tracking’, is crucial for vibrational analysis in
predictive maintenance [5]. A classical model for order track-
ing representation is the chirp signal, and the amplitude esti-
mation task is broadly categorized into parametric and non-
parametric approaches.

In [6], Friedlander et al. proposed decomposing amplitudes
as a linear combination of parameterized real-valued functions,
establishing a relevant theoretical framework using maximum
likelihood estimation. Other works, such as [7], [8], and [9],
explored various polynomial functions and demonstrated good
performance for signals with constant or slowly varying am-
plitudes. In contrast, [10], [11] used truncated Fourier series
for joint amplitude and phase estimation, though such decom-
position may be limited to periodic amplitudes.

Non-parametric approaches involve the use of carefully de-
signed filters that emphasize spectral content for linear chirp
signals. These methods encompass the Capon filter, also known
as the minimum variance distortionless response (MVDR), as
introduced in [12]. Additionally, techniques like amplitude
and phase estimation of a sinusoid (APES) [13] are employed

for a single frequency, while the matched-filterbank approach
(MAFI) [14], [15] is applied for multifrequency amplitude es-
timation. However, it’s worth noting that these approaches do
not incorporate modelling for non-stationary noise and over-
look considerations for time-varying amplitude. Furthermore,
spectral analysis-based methods have garnered significant atten-
tion, as indicated by [16]. For instance, in the mechanical in-
dustry, a spectrogram-based approach known as the Campbell
diagram has been widely utilized for order tracking. Neverthe-
less, the Campbell diagram proves insufficient for addressing
non-linear speed evolution, which may arise from unexpected
variations in operating conditions, as highlighted by [17].

The exploration of non-linear chirp signals extends to mode
detection intending to estimate their instantaneous phases and
amplitudes, as discussed in [18] and [19]. Additionally, the
application of deep neural networks (DNN) has naturally sur-
faced for the estimation of amplitude in non-linear chirp sig-
nals, as demonstrated in works such as [20] and [21]. How-
ever, while [20] focuses solely on constant amplitude estima-
tion, [21] employs convolutional neural networks (CNN) for
denoising and utilizes the Wigner-Ville distribution exclusively
for estimating a single amplitude.

This paper focuses on the estimation of multifrequency
highly oscillating aperiodic amplitude signals with an under-
lying nonlinear chirp signal. We introduce two approaches
based on the frequency of interest. The first is a maximum log-
likelihood estimation (MLE) that parameterizes unknown am-
plitudes using a truncated Fourier series in addition to a low-
degree polynomial, compensating for potential non-periodicity.
The second approach is a multifrequency locally stationary
Capon estimation solved as an optimization problem. We will
propose data-driven approaches to select the hyperparameters
for all the mentioned methods. The paper is structured as fol-
lows: Section II introduces the non-linear chirp signal model
and notation. Section III describes state-of-the-art amplitude
estimators and our proposed extensions, while Section IV fo-
cuses on hyperparameter estimation. In Section V, we conduct
experiments on simulated non-linear chirp signals with various
noises, followed by concluding remarks in Section VI.

Notation. By convention, a vector in Km is seen as a column
vector, that is, we identify Km to Km×1. We use lowercase
bold-face symbols to denote vectors and upper case bold-face
symbols for matrices. Let A ∈ Cm×n be a complex matrix.
We denote by A⊤, AH, A the transpose, conjugate transpose
and conjugate of matrix A respectively. Besides, we denote by



Estimator[H]{θ}, an Estimator of θ with hyperparameters
H .

II. MODEL DESCRIPTION

We consider a continuous-time signal x represented as a
sum of K signals of interest, perturbed by an additive noise:

x(t) =

K∑
k=1

sk(t) + ε(t), t ∈ R. (1)

Each of the components sk is an AM-FM (amplitude-modulated
and frequency-modulated) function, commonly referred to in
the signal literature as the non-linear chirp mode [18]

sk(t) = ak(t) cos (2π (Λk(t) + ϕk(t))) . (2)

Here, the time-varying amplitude ak(t)∈ R+ and phase
ϕk(t)∈ [0, 2π) are unknown real-valued parameters. The in-
stantaneous frequencies are given by the derivatives λk(t) :=
Λ′
k(t), k = 1, . . . ,K and are of the form λk(t) = fkr(t),

where fk is an order and r(t) is the angular speed. Since the
fk’s are known and the angular speed is observed, in contrast
to the classical mode detection problem, the instantaneous fre-
quency does not need to be estimated. On the other hand, the
additive noise may not be white or even weakly stationary,
since in real data, it is impacted by the angular speed, which is
time-varying. A more plausible assumption is to have discrete
samples of ε centred and locally stationary in the sense of [22].

In practice, we do not have access to the continuous process
x(t), and observe a finite sample denoted by {x[τ ]}Tτ=0 ∈
RT+1, obtained with frequency sampling Fs, that is, x[τ ] =
x(τ Fs) for all τ = 0, 1, . . . , T . We similarly define sk[τ ], ε[τ ],
ak[τ ] and Λk[τ ].

III. PARAMETERS ESTIMATION

A. Campbell diagram

The Campbell diagram is the state-of-the-art method for
vibrational analysis of mechanical systems [23]. The goal of the
method is to estimate the amplitude absolute values at the given
frequency trajectories λk = {λk[τ ]}Tτ=0 with k ∈ {1, . . . ,K}
over the time samples τ ∈ [0, T ] using Short-Time Fourier
Transform (STFT).

Recall that for a fixed frequency λ and time τ0 the STFT
of the discrete signal {x[τ ]}Tτ=0 is defined as

x̂[τ0, λ] =

T∑
τ=0

x[τ ]w[τ − τ0] e
− iλτ

for some window w, s.t. w ≥ 0 and
∑T

τ=0 w[τ ] = 1.
Given a frequency trajectory {(τ ; λk[τ ])}Tτ=0, we can define

Campbell diagram as

Campbell[w]
{
|ak[τ ]|Tτ=0

}
:= 2|x̂[τ, λk[τ ]]|Tτ=0.

In other words, the Campbell diagram is double of the square
root of the spectrogram, evaluated at the frequency trajectory
{(τ ; λk[τ ])}Tτ=0.

B. Multi-frequency Capon estimator

The single-frequency Capon estimator [12] aims to select
the spectral content at a particular frequency λ by filtering the
input signal. The optimal finite impulse response (FIR) filter h
is designed to minimize the power of its output while ensuring
that the filter does not distort the frequency λ [24].

In such an approach we assume that the spectral content
of interest is located around λ, whereas the rest is noise.
If the valuable spectral content spans multiple frequencies
{λ1, λ2, . . . , λK}, it is natural to consider a set of filters

H =
[
h1 . . . hK

]
∈ C(M+1)×K ,

where each of the filters hk ∈ CM+1 highlights a spectral
content at a given frequency λk, suppressing the content at the
other K − 1 frequencies {λ′k}k′ ̸=k∈{1,...,K}.

Let HM be the set of all FIR filters with support
[−M/2, . . . ,M/2]. For h ∈ HM we denote by h the corre-
sponding vector of CM+1 stacking the non-zero filter coeffi-
cients from top to bottom. The response of h ∈ HM at fre-
quency λ is given by

h∗(λ) =

M/2∑
m=−M/2

h(m) e−2 iπλm = ζ(λ)Hh,

where ζ(λ) = [eiπλM , . . . , e−iπλM ]⊤ ∈ CM+1. Single-
frequency Capon filter is a FIR filter with a minimal output
power with a transfer function equal to one at a frequency λ. It
is defined as the solution of the following minimization problem

arg min
h∈HM

E
[
|h ∗ x[τ ]|2

]
u.c. ζ(λ)Hh = 1. (3)

To generalize this approach to a time-varying setting with
multiple instantaneous frequencies {λ1[τ ], . . . , λK [τ ]} we pro-
pose to use a filter hk of minimal power with the transfer func-
tion equal to one at the frequency of interest λk[τ ] and zero
at the other frequencies λk′ [τ ], k′ ̸= k. Therefore,

hoptk [τ ] = arg min
h∈HM

E |h ∗ x[τ ]|2 u.c. Zτ,M h = ek. (4)

where ek is the kth canonical vector and Zτ,M is K×(M+1)
matrix

Zτ,M =
[
ζ(λ1[τ ]) ζ(λ2[τ ]) . . . ζ(λK [τ ])

]H
.

To explain the usefulness of the optimal filter hoptk for es-
timating |ak[τ ]|, we use that ak[τ ′] and ϕk[τ

′] are approx-
imately constant equal to their values at τ ′ = τ for τ ′ ∈
[τ −M/2, τ +M/2]. This leads to approximating the signal
model (1) locally on this interval by

x[τ ′] ≈
K∑

k=0

ak[τ ]ℜ
[
e2 iπλk[τ ] (τ

′−τ)+2 iπΛk[τ ]+iϕk[τ ]
]
+ ε[τ ′].

Then for any h ∈ HM satisfying the constraint of (4),

h ∗ x[τ ] ≈ ak[τ ]

2
e2 iπ{λk[τ ] (τ+M/2)+Λk[τ ]+ϕk[τ ]} +h ∗ ε[τ ],



It follows that

E |h ∗ x[τ ]|2 ≈ 1

4
|ak[τ ]|2 +Var(h ∗ ε[τ ]). (5)

Therefore the argmin in (4) aims to reduce the second term
to the smallest possible value and thus recover the first term
only, which is the parameter of interest (up to the factor 1/4).

However, in practice, we do not have access to the expec-
tation in (4) and must solve an empirical version of this op-
timization problem, which we now derive. Let us define the
backward (τ,M)-local sample

x−
τ,M =

[
x
[
τ + M

2

]
. . . x

[
τ − M

2

] ]⊤ ∈ CM+1

from time τ + M
2 back to τ − M

2 . Note that, for any h ∈ HM ,
denoting Γ−

τ,M = E
[
x−
τ,Mx−H

τ,M

]
, we have

E
[
|h ∗ x[τ ]|2

]
= hH Γ−

τ,M h .

Using Theorem R35 in [24] one can deduce that hoptk is well
defined and problem (4) possess unique solution given by
hopt
k [τ ] = Hopt

τ,M ek, where we set

Hopt
τ,M =

(
Γ−
τ,M

)−1

ZH
τ,M

(
Zτ,M

(
Γ−
τ,M

)−1

ZH
τ,M

)−1

.

Moreover, the corresponding minimum is
hopt
k [τ ]H Γ−

τ,M hopt
k [τ ], which reads

e⊤k

(
Zτ,M

(
Γ−
τ,M

)−1

ZH
τ,M

)−1

ek .

Hence our Capon estimator follows by replacing Γ−
τ,M in this

expression by its empirical estimate Γ̂τ,M,L defined as the
(M + 1) × (M + 1) Toeplitz matrix associated to the local
empirical auto-covariance function (see [25]) estimated from
the sample x[τ ′], τ ′ ∈ [τ − L/2, τ + L/2], by

γ̂τ,L(ℓ) =
1

L

L∑
τ1,τ2=0
τ1−τ2=ℓ

x [τ + τ1 − L/2]x [τ + τ2 − L/2] .

Therefore we define the multi-frequency Capon estimator as

1

2

√
e⊤k

(
Zτ,M

(
Γ̂τ,M,L

)−1

ZH
τ,M

)−1

ek ,

denoted by Capon[M,L]{|ak[τ ]|Tτ=0} in the following.

C. Maximum likelihood estimator

Note that each of the non-linear chirp modes in (2) can be
rewritten as

sk[τ ] = ack[τ ] cos (2πΛk[τ ])− ask[τ ] sin (2πΛk[τ ]) ,

where ack[τ ] = ak[τ ] cos (2πϕk[τ ]) and ask[τ ] =
ak[τ ] sin (2πϕk[τ ]). The maximum likelihood estimation
(MLE) presented further is suited to estimate ack[τ ] and ask[τ ].
Having estimated these parameters one can recover |ak[τ ]|
and ϕk[τ ] ± π by taking the modulus and the argument of

ack[τ ]+i ask[τ ]. To estimate the unknown parameters amk [τ ],m ∈
{c, s} we approximate them as linear combinations of some
well-chosen real-valued functions [ψj [τ ]]

J
j=1 := ψ[τ ] ∈ RJ .

amk [τ ] ≈
J∑

j=1

αm
j,kψj [τ ] = (αm

k )
⊤
ψ[τ ] .

In the following we choose to take for the vector of functions
τ 7→ ψ[τ ], a basis of polynomials up to degree JP jointly with
a Fourier basis with fundamental frequencies n/p with p = T

Fs

and n = 1, . . . , JF , hence J = 1 + JP + 2 JF and, for jp =
0, . . . , JP and jf = 1, . . . , JF , ψjp [τ ] = τ jp , ψJP+2jf−1[τ ] =

cos
(
2π

jf
p τ
)

and ψJP+2jf [τ ] = sin
(
2π

jf
p τ
)

. We typically
use JP much smaller than JF . Indeed the quality of a finite
Fourier expansion to approximate a given function depends on
the smoothness of the corresponding periodic extension and
the polynomial part of the approximation aims to smooth out
the discontinuities of the derivatives of order up to JP of this
periodic extension at the extreme points of the time interval of
observation. Using the previous approximations, we get that

x[τ ]− ε[τ ] ≈ α⊤g[τ ], (6)

where vector α =
[
(αc)

⊤
, (αs)

⊤
]⊤

∈ R2JK with

αc/s =

[(
α

c/s
1

)⊤
, . . . ,

(
α

c/s
K

)⊤]⊤
∈ RJK , and, analo-

gously, g[τ ] =
[
gs[τ ]⊤,gc[τ ]⊤

]⊤
with

gc[τ ] =
[
ψ[τ ]⊤ cos(2πΛ1[τ ]), . . . ,ψ[τ ]

⊤ cos(2πΛK [τ ])
]⊤
,

and gs[τ ] similarly defined with cosines replaced by sines.
Writing Eq. (6) for all τ = 0, . . . , T , we have

x ≈ Gα+ ε , (7)

where x = [x[τ ]]
T
τ=0 ∈ RT+1, ε = [ε[τ ]]

T
τ=0 ∈ RT+1 and

G = [g[τ ]]
T
τ=0 ∈ RT+1×2JK . The MLE is obtained by maxi-

mizing the likelihood associated to this model with a Gaussian
white noise ε leading to the linear regression estimator (see [6])

MLE[JP , JF ]{α} =
(
G⊤G

)−1
G⊤x. (8)

This estimator can be used although the noise is not truly
Gaussian nor white, a case often referred to as the misspecified
case in the statistical literature. Note that the obtained estimator
is based on an approximation of the time functions of interest
using certain bases expansions hence can also be regarded as
a non-parametric regression projection estimator, [26].

IV. HYPERPARAMETERS CHOICE

All estimators of Section III depend on hyperparameters, as
they need to adapt to the unknown smoothness of the functions
t 7→ ak(t) and t 7→ ϕk(t), k = 1, . . . ,K (in addition to the
unknown distribution of the noise n(t)). For each estimator, the
optimal hyperparameters are the ones that minimize the risk
(e.g. the MSE), the corresponding estimator being referred to
as the oracle estimator. However computing the MSE requires
the ground truth and in practice one has to use empirical



counterparts. We propose two approaches in our context: 1) a
universal cross validation (CV) criterion which can be applied
to all estimators of Section III and 2) the Akaike Information
Criterion (AIC) that only applies to the MLE of Section III-C.
A. V-Fold Cross-Validation

We can obtain estimators of ak[τ ] and ϕk[τ ], k = 1, . . . ,K,
τ = 0, . . . , T , for each of the methods described in Section III
with their respective hyperparameters. We now explain how to
compute the CV criterion possibly applicable to any method
able to produce such estimators.

As in the V-Fold CV we split the data D = {(τ, x[τ ])}Tτ=0

into randomly shuffled train and validation groups Dtrain(v)
and Dval(v), v = 1, . . . , V so that {Dval(v)}v=1,...,V form a
partition of D and Dtrain(v) = D \Dval(v). For each v, in
the signal formed from Dtrain(v) we replace missing values
(that fall into Dval(v)) by zeroes. We obtain a signal x(v)[τ ]
and produce estimates â(v)k [τ ] and ϕ̂(v)k [τ ], yielding the signal
estimates

ŝ
(v)
k [τ ] = â

(v)
k [τ ] cos

(
2π
(
Λk[τ ] + ϕ̂

(v)
k [τ ]

))
.

Then the cross-validation metric associated to the current
method and current hyperparameters is defined as the squared
errors between the observed signal and the reconstructed sig-
nal averaged on the validation groups:

E =
1

T + 1

V∑
v=1

∑
(τ ;x[τ ])∈Dval(v)

(
x[τ ]−

K∑
k=1

ŝ
(v)
k [τ ]

)2

.

B. Akaike Information Criterion for MLE

As explained in Section III-C, Estimator MLE[JP , JF ] can
be interpreted as a Gaussian likelihood maximizer. Observing
that for given JP and JF , the dimension of the estimated
parameter is d = 1+2K(1+JP +2 JF ) (that is the dimension
of α in (7) plus 1 for the dimension of the unknown variance
of n(t)). It is then straightforward to derive

AIC[JP , JF ] = 2 d+ (T +1)

(
log

(
2π

∥x−Gα̂∥2

T + 1

)
+ 1

)
,

where α̂ = MLE[JP , JF ]{α} as defined by (8).

V. NUMERICAL EXPERIMENTS

A. Experimental setup

To evaluate proposed estimators we consider a simulated sig-
nal s[τ ] with K = 4 highly-oscillated amplitudes and ϕk[t] ≡ 0.
s[τ ] is sampled for 10 seconds with frequency Fs = 10kHz.
The signal s[τ ] is crafted to resemble a real-life vibrational
signal, such as the one in Fig. 1.

We compare three different settings where the signal is
perturbed by additive noise. These include white Gaussian
noise, AR1 noise with a leading coefficient φ = 0.9, and a
noise comprising white Gaussian noise and descending lines.
For each of the cases, we consider scenarios with high (SNR
= 0dB) and low (SNR = 10dB) levels of noise, where SNR
stands for the signal-to-noise ratio 10 log10

∑T
τ=0

∑K
k=1 |ak[τ ]|2∑T

τ=0 |ε[τ ]|2 .

(a)

Fr
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y

(b) (c)

Rotational speed
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nc

y

Fig. 1. Upper row: spectrogram of simulated signal perturbed by (a) white
noise (SNR = 0dB), (b) AR1 noise (SNR = 0dB), (c) white noise (SNR =
0dB) and descending lines with constant amplitude. Lower row: spectrogram
of the vibrational measurements of a gearbox in case of ascending rotational
speed. Values and units are omitted for the sake of confidentiality.
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Fig. 2. CV and AIC curves for the white noise setting (SNR = 0dB).

The performance of the estimators is assessed through 100
Monte-Carlo simulations. To choose the optimal hyperparam-
eters for the estimators, we use the universal CV criterion
for the Campbell estimator and AIC for the MLE (see Fig.
2 as an example). For MLE we consider polynomial degree
JP ∈ {3, 4, 5} and degree of Fourier basis JF ranges from 10
to 100 with the step of 10. For Campbell, we use a sliding Hann
window of size L between 256 and 2048. We use the Capon es-
timator with window size LCV , obtained with CV for Campbell
estimator, and various covariance matrix sizes M . The Capon
estimators displayed in Fig. 3 correspond to M = 96 in white
noise (0 db setting) and M = LCV in AR noise (0 db setting).

Obtained amplitude estimates âk,I [τ ] are compared via the
mean-squared error (MSE) over the K = 4 amplitudes, start-
ing at τ = τ0

MSEI =
1

K(T − τ0 + 1)

K,T∑
k=1,τ=τ0

(ak[τ ]− âk,I [τ ])
2
,

where âk,I [τ ] is obtained either using the oracle or adaptively
chosen hyperparameters by CV or AIC (I = Oracle/HypOpt).
To assess the overall estimators’ performance in a fair setting,
we compute the MSE (Table I) after 1s (τ ≥ τ0) of signal to
avoid extremely close amplitudes at the start of the sample.
Note that the Capon estimator is omitted in Table I as its results
are comparable to Campbell’s. Fig. 3 however investigates
amplitude estimation in the first second for all methods.

B. Results and discussion

As we can see from the results of Table I, MLE outper-
forms the Capon estimator in almost all the cases, providing
accurate estimates of highly varying amplitude. It is worth not-
ing a small margin between the oracle estimators and the ones
obtained with CV and AIC, indicating the robustness of the



TABLE I
COMPARISON OF THE MSE (MEAN ± STANDARD DEVIATION) FOR MLE

AND CAMPBELL ESTIMATORS IN VARIOUS NOISE SETTINGS.

Noise type SNR Method MSEHypOpt ↓ MSEOracle ↓

White
0 dB MLE 0.075 (±0.008) 0.065 (±0.007)

Campbell 0.100 (±0.013) 0.085 (±0.008)

10 dB MLE 0.033 (±0.007) 0.029 (±0.002)
Campbell 0.044 (±0.005) 0.038 (±0.003)

White + lines
0 dB MLE 0.118 (±0.011) 0.113 (±0.011)

Campbell 0.169 (±0.022) 0.143 (±0.011)

10 dB MLE 0.092 (±0.005) 0.083 (±0.006)
Campbell 0.116 (±0.009) 0.101 (±0.006)

AR1
0 dB MLE 0.299 (±0.073) 0.226 (±0.054)

Campbell 0.438 (±0.138) 0.282 (±0.052)

10 dB MLE 0.127 (±0.028) 0.109 (±0.022)
Campbell 0.193 (±0.044) 0.126 (±0.021)
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Fig. 3. First row: amplitude (a4[τ ]) estimation with MLEAIC under white
noise setting (SNR = 0dB). Second and third rows: close-up comparison of
amplitude estimation (first 2 seconds) under various noise settings (SNR =
0dB): (i) estimation of a4[τ ] under the white noise; (ii) estimation of a1[τ ]
under AR noise.

methods. However, MLE suffers from the explosion at the be-
ginning of the signal, in the ill-posed setting of closely-located
amplitudes. To address this, the start of the signal can be effec-
tively estimated by Campbell, and the estimate can be refined
by Capon with a properly chosen covariance matrix size M .
In the presence of AR noise, Capon accurately captures the
signal’s shape, resulting in a lower bias in the estimates. More-
over, compared to CampbellCV , Capon and MLEAIC demon-
strate lower variance in all the cases.

VI. CONCLUSION

The paper proposes two adaptive methods for the estimation
of highly oscillating amplitudes in nonlinear chirp signal with
known frequencies. The developed methods show robustness
under various noise settings and the ability to accurately esti-
mate non-trivial highly-varying amplitudes. To tune the hyper-
parameters of the estimators we propose efficient approaches
for finding optimal hyperparameters that result in estimators
exhibiting performance comparable to that of oracle estimators.
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