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This study proposes an approach that considers mitigation strategies in predicting landslide susceptibil-
ity through machine learning (ML) and geographic information system (GIS) techniques. ML models, such
as random forest (RF), logistic regression (LR), and support vector classification (SVC) are incorporated
into GIS to predict landslide susceptibilities in Hong Kong. To consider the effect of mitigation strategies
on landslide susceptibility, non-landslide samples were produced in the upgraded area and added to ran-
domly created samples to serve as ML models in training datasets. Two scenarios were created to com-
pare and demonstrate the efficiency of the proposed approach; Scenario I does not considering landslide
control while Scenario II considers mitigation strategies for landslide control. The largest landslide sus-
ceptibilities are 0.967 (from RF), followed by 0.936 (from LR) and 0.902 (from SVC) in Scenario II; in
Scenario I, they are 0.986 (from RF), 0.955 (from LR) and 0.947 (from SVC). This proves that the ML mod-
els considering mitigation strategies can decrease the current landslide susceptibilities. The comparison
between the different ML models shows that RF performed better than LR and SVC, and provides the best
prediction of the spatial distribution of landslide susceptibilities.
� 2024 China University of Geosciences (Beijing) and Peking University. Published by Elsevier B.V. This is
an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Landslides are among the most common natural hazards that
contribute to widespread loss of life and property each year (Liao
et al., 2022; Abraham et al., 2023). There were 378major landslides
worldwide between 1998 and 2017 that killed 18,414 people and
caused economic losses of up to $8 billion (Liao et al., 2022). Due
to its specific topography, Hong Kong is frequently affected by
landslides (Cheung, 2021; Ng et al., 2021a, 2021b); previous
reports list over 300 landslides that occur annually, most of which
are induced by rainstorms. Hong Kong has a subtropical climate
with an annual average rainfall (AAR) of 2400 mm (Cheung,
2021). According to the Hong Kong Observatory (HKO), annual
rainfall has been increasing at a mean rate of 26 mm per decade
due to climate change (Cheung, 2021; Ju et al., 2022; Xiao et al.,
2022). The increased frequency and severity of rainstorms caused
by climate change have worsened landslide events. Clusters of
urban developments in addition to the high population concentra-
tion and other vulnerable facilities suggest that landslides in Hong
Kong’s urban areas could have serious consequences.

A detailed map of landslide susceptibility is efficient in delin-
eating areas with the most risk to landslides (Dematteis et al.,
2022; Feng et al., 2022). Predicting the susceptibility of a landslide
in specific anthropogenic and environmental situations is the high-
est degree of development in terms of a planning tool for control-
ling landslides and mitigating their consequences (Lombardo et al.,
2021; Park and Lee, 2022). Mapping landslide susceptibility is
another approach for risk mitigation, and published data suggests
that it is a very popular topic in studies on the prediction of land-
slide occurrence and landslide management decisions (Wubalem,
2021).

Geographic information systems or GIS have demonstrated a
remarkable capacity for spatial modelling and analysis of land-
slides, as well as for susceptibility mapping (Ng et al., 2021a,
2021b; Wang et al., 2022). Many GIS-technology-based approaches
that are conducted rely on the complexity of the models and speci-
ficities of the study area; existing approaches can be divided into
physics-based, statistical, and data-driven methods (Li et al.,
2022; Shen et al., 2023; Lyu et al., 2024). Physics-based methods
consider the physical mechanisms that lead to slope failure. How-
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ever, these methods require accurate information regarding the
mechanical properties of the soil constituting the slope. Physics-
based methods tend to be more accurate in describing the develop-
ment of a specific landslide but are less suitable for regional land-
slide evaluations. The GIS-based multi-criteria decision-making
(MCDM) is a typical statistical method used to analyse the relation-
ship between different driving factors and to quantitatively assess
the probability of landslide occurrence in a study area (Salehpour
Jam et al., 2021; Tyagi et al., 2021). Among the MCDM methods,
the analytical hierarchy process (AHP), fuzzy AHP, analytical net-
work process (ANP), and fuzzy logic have been used to calculate
the relative importance of the factors that influence landslides
the most. MCDM methods are primarily based on pair-wise com-
parisons of expert opinions. Data-driven approaches, specifically
the machine learning (ML) methods, constitute a recent popular
approach to solve spatial landslide modelling problems owing to
their simplicity and low cost (Liu et al., 2020).

Compared with statistical methods such as MCDM, hybrid ML-
GIS methods usually provide better performance in generating
landslide susceptibility maps as well as a higher data processing
speed. Moreover, ML methods have proven their efficiency in land-
slide susceptibility evaluation as evidenced by improved global
attention (Park et al., 2021; Khezri et al., 2022; Wang et al.,
2022). Many ML methods have been applied to probability analy-
sis, including ensemble methods, such as random forest (RF) and
adaboost tree (Sun et al., 2020); to linear methods, such as logistic
regression (LR), support vector machine (which is classified into
support vector regression (SVR) and support vector classification
(SVC)); and to neural methods, such as artificial neural networks
(ANNs) and convolutional neural networks (CNNs) (Huang et al.,
2017; Hong et al., 2018; Wang et al., 2020; Ullah et al., 2022).
Pradhan et al. (2021, 2023a, 2023b) proposed a series of explain-
able ML models to predict spatial flood susceptibility. The explain-
able ML models provide interpretations of predictive results from
artificial intelligence models (Al-Najjar et al., 2023; Abraham
et al., 2023). Yi et al. (2020) proposed the SHAP-XGB model to pre-
dict landslide susceptibility taking into account the local geospatial
heterogeneity.

Previous studies suggest that it is difficult to select a perfect
algorithm in ML modelling for landslide susceptibility prediction
(Sun et al., 2021; Ng et al., 2021a, 2021b). A range of parameters,
such as data size, reliability, and computation time are considered.
Except for tree-based models (e.g. RF), the performance of linear
models (e.g. LR, SVR, and SVC) is generally contingent to a stan-
dardisation or normalisation process. Moreover, hyper-
parameters are tuned to achieve the optimum predictions (Wang
et al., 2021a; Ma et al., 2022; Lyu and Yin, 2023). Furthermore, per-
formance metrics are often used to evaluate the performance of
various algorithms.

GIS possesses a powerful database function that can be inte-
grated with ML models to produce a robust tool for predicting
landslide susceptibility. A few studies have been conducted in
Hong Kong (Ng et al., 2021a, 2021b; Xiao et al., 2022) but they
do not consider the influence of mitigation strategies on landslide
management nor do they provide a clear description on how to
incorporate ML methods into GIS to estimate landslide susceptibil-
ities. This is a critical aspect for landslide susceptibility prediction.
Landslide susceptibility is continuously affected by present-day
mitigation measures. Thus, during the prediction of landslide sus-
ceptibility, it is also important to consider the influence mitigation
measures might have on landslide management. These measures
are a determining factor in abating landslide occurrence at the
regional level, in addition to helping reduce the risks of fatalities
and reducing economic damage. However, their seamless integra-
tion in assessment models, particularly ML models, remains bur-
densome. This necessitates the development of comprehensive
2

and robust models for tackling this issue and improving risk man-
agement practices.

This study proposes an approach to consider and evaluate the
effect of mitigation strategies on landslide susceptibility in ML
models. The objectives of this study are: (i) to develop an approach
to consider and evaluate mitigation strategies on landslide suscep-
tibility; (ii) to predict landslide susceptibilities by producing non-
landslide samples in upgraded areas to generate a dataset for the
ML training process; (iii) deduce the best ML models to incorporate
into GIS for predicting landslide susceptibilities considering miti-
gation strategies. The major contribution of this study, that sets
it apart from previous research (Ng et al., 2021a, 2021b; Cheung,
2021; Xiao et al., 2022), lies in the innovative evaluation of land-
slide susceptibilities by considering the effects of mitigation strate-
gies in ML. This study proves that mitigation strategies can
substantially decrease current landslide susceptibility—a pivotal
aspect not considered in previous studies. The novelty of this study
can be summarized as follows: (i) landslide susceptibilities are pre-
dicted by considering the mitigation strategies on landslide man-
agement; (ii) the effects of mitigation strategies are evaluated by
producing non-landslide samples in upgraded areas during the
ML training process; (iii) mechanical properties of surface soils
are considered in predicting landslide susceptibilities.
2. Study area and database

2.1. Study area

Hong Kong is located between 22�100N–22�300N and 113�500E–
114�200E; it encompasses a land area of 1106.7 km2 that includes
the Hong Kong Island, Kowloon Peninsula, and the New Territories.
Owing to its unique geology, topography, and the receipt of heavy
rainfall, landslides are a frequent occurrence in Hong Kong. Fig. 1
shows the spatial distribution of landslides from 1985 to 2021.
According to statistics from a Geotechnical Engineering Office
report (GEO, 2000), there were 9843 historical landslide events
from 1985 to 2021, which can be classified into five groups accord-
ing to the displaced volumes: very minor (<5 m3), minor (5–50 m3),
medium (50–100 m3), major (100–500 m3), and very major
(>500 m3). Based on the spatial distribution of these historical
landslide events, the 9843 landslide pixels dataset also constitute
the basis for establishing a ML model to predict landslide suscepti-
bility (GEO, 2000). In addition to landslide records, the database in
ML models includes rainfall, topographical, geological, and anthro-
pogenic conditions.
2.2. Rainfall

Rainfall is among the primary factors that prompt landslides. To
analyse the relationship between landslides and rainfall, the AAR
and various occurrences of landslides between 1985 and 2021
are collected and compared (Fig. 2). The number of landslides
increase with an increase in the AAR; for example, the June 6–9,
2008 rainstorm caused a sizeable number of landslides throughout
the region (Lam et al., 2012). In addition to the amount of rainfall,
its spatial distribution is also critical to the location of landslides.
Based on collected reports of rainfall amounts and rain gauge loca-
tions, the spatial distribution of the AAR can be obtained using GIS
tools. The spatial distribution of the AAR from 2011 to 2021 shows
that Hong Kong Island, the Kowloon Peninsula, and the southern
part of the New Territories recorded between 1732 to 2565 mm
of ARR (Fig. 3). Information on rainfall data and rain gauges were
obtained from the Hong Kong Observatory (HKO) and GEO. The
data sources and descriptions of the rainfall factors are listed in
Table 1.



Fig. 1. Spatial distribution of landslides between 1985 and 2021.
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Fig. 2. Recorded AAR and number of landslides between 1985 and 2021.
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2.3. Topographic conditions

Elevation and slope are typical factors that reflect the topo-
graphical characteristics of the study area. The curvature refers
to the direction of water flow on the surface. The profile and plane
curvatures are parallel and perpendicular to the direction of the
maximum slope, respectively, which helps understand the flow
of water across a surface. Moreover, this aspect is used to define
the compass direction of the slope face, which reflects vegetation
and moisture retention. The topographic wetness index (TWI) is
a measure of surface runoff and water aggregation in a basin,
which can be calculated using Eq. (1),
3

TWI ¼ lnðA=tanBÞ ð1Þ
where A is the area of the upstream catchment and B is the slope
angle in radians. In this study, a digital terrain model (DTM) with
5 m resolution provided by the Survey and Mapping Office of the
Lands Department (SMLD) of Hong Kong was used to extract topo-
graphic characteristics. Using this DTM, maps of the elevation
(Fig. 4a), slope (Fig. 4b), plane curvature (Fig. 4c), profile curvature
(Fig. 4d), aspect (Fig. 4e), and TWI (Fig. 4f) were produced. To con-
sider the influence of road networks and the river system, densities
of the road network (Fig. 4g) and the river system (Fig. 4h) were
obtained using GIS tools. The data sources and descriptions of the
topographic conditions are presented in Table 1.



Fig. 3. Spatial distribution of AAR between 2011 and 2021.

Table 1
Descriptive statistics and sources of the databases considered.

Factor Description Type Statistics Data source/resolution/type

Min Max Mean STD

Average rainfall (mm) Annual average rainfall (2010–2020) N, S 0 2563.89 2058.04 183.64 Rain gauges and annual rainfall
reports from GEO/10 m/raster

Elevation (m) Digital elevation of terrain surface N, S 0 925 108.71 124.30 DTM/5 m/raster
Slope (�) Angle of slope inclination N, S 0 49.04 11.57 8.90
Plane curvature Curvature perpendicular to the slope,

indicating concave or convex surfaces
N, S �1.10 1.48 0.02 0.19

Profile curvature Curvature parallel to the slope,
indicating concave or convex surfaces

N, S �1.84 2.41 0.03 0.21

Aspect Compass direction of slope exposure N, S 0 254 167.46 45.13
TWI Topographic wetness index,

measures water aggregation and
surface runoff

N, S �0.03 23.96 6.97 3.98

Road network density Spatial distribution of road network
density

N, S 0 3391 1876 65.34 SMLD/10 m/raster

River system density Spatial distribution of river system
density

N, S 0 4.86 2.64 2.15 DTM/10 m/raster

Geology Geological conditions in study area C, S / / / / GEO-map/1:100,000/polygon
Land use Land cover of study area C, S / / / / SMLD/-/Polygon
Soil mechanics c Soil cohesion N, S 0 15 9.87 3.99 GEO-map, Geoguide 1/-/Polygon

f (�) Soil internal friction angle N, S 0 44 35.71 8.44 GEO-map, Geoguide 1/-/Polygon
Infrastructure Distance to buildings and metro lines N, S 0 500 126.16 170.60 SMLD/-/Polygon + polyline + point

Note: N, C, and S stand for numerical, categorical, and static variables, respectively. SMLD stands for Survey and Mapping Office of the Land Department.
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2.4. Geologic and anthropogenic conditions

Maps of the geographic and anthropogenic factors controlling
landslides are discussed in this section (Fig. 5). A geology map
(Fig. 5a) with 1:100,000 obtained from GEO was adopted to derive
4

the geological conditions of the region. The geological map was
firstly converted into a raster image to extract the geological con-
ditions at the locations of the landslide pixels. To consider the
influence of faults, contours marking the areas with proximities
of 100, 200, 300, 400, and 500 m to the faults were produced using



Fig. 4. Spatial distribution of topographic variables: (a) elevation; (b) slope; (c) plane curvature; (d) profile curvature; (e) aspect; (f) TWI.
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GIS tools. The geology was classified into eight levels according to
age data. Table 2 provides a detailed description of the geology.
This study innovatively integrates the mechanical properties of
5

surface soil to the regional landslide susceptibility prediction, in
contrast with previous studies that simply adopted regional geo-
logical maps to reflect the geological conditions (Ng et al., 2021a,



Fig. 5. Geographic and anthropogenic factors: (a) geology; (b) soil mechanical properties; (c) land use; (d) distance to infrastructure.

Table 2
Description of geology.

Level Category Area (%) Landslide pixel (%) Description

1 Devonian rocks and soils 1.01 0.03 Devonian quartz sandstone and siltstone
2 Carboniferous rocks and soils 1.32 1.06 Carboniferous metamorphosed sandstone and carbonaceous siltstone
3 Permian rocks and soils 0.19 0.29 Permian calcareous sandstone
4 Jurassic rocks and soils 49.01 47.40 Jurassic sandstone, siltstone and mudstone
5 Cretaceous rocks and soils 31.13 47.89 Cretaceous vitric tuff and rhyolite lava
6 Tertiary rocks and soils 0.10 0 Tertiary calcareous siltstone with rare chert interbeds
7 Quaternary alluvium 10.89 2.51 Quaternary alluvium on valley floors and colluvium on valley sides
8 Reclamation deposits 4.36 0.83 Reclamation deposits dominantly composed of marine sand and rock
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2021b; Xiao et al., 2022). In this study, both, the mechanical prop-
erties of the soil and geological maps of Hong Kong were used in
the ML models. Based on the surface soil type and following previ-
ously established guidelines, the cohesion (c) and friction angle (f)
were classified into three levels (GEO, 2000; Fig. 5b) Table 3 lists
the description of mechanical properties of surface soils. In addi-
tion to geological conditions, anthropogenic conditions such as
land use, buildings, and infrastructure were also considered. The
2019 land use data is classified into seven types (Fig. 5c). Table 4
provides detailed information regarding land use, which were con-
verted into raster data to extract relevant information at the loca-
tion of the landslide pixels. To consider the importance of
Table 3
Description of geotechnical parameters for surface soils in Hong Kong.

Soil type Area
(%)

Completely decomposed granites 22.46
Completely decomposed volcanics (tuffs and rhyolites) 45.04
Colluvium (matrix material) 32.50

Note: the relatively wide ranges of the parameters reflect the variable composition of c

6

infrastructure, contours marking the proximity of buildings and
metro lines were produced in GIS using a buffer analysis with dis-
tances of 100, 200, 300, 400, and 500 m. The risk of landslides and
their damaging effects increase as the distance to infrastructure,
buildings, and metro lines decreases. The data sources and descrip-
tive statistics for the geological and anthropogenic conditions are
listed in Table 1.

2.5. Strategies for landslide control

A series of appropriate mitigation strategies to manage land-
slide susceptibility are adopted by the government each year.
Landslide pixels (%) Shear strength parameters

c (kPa) f (�)

39.55 5–15 35–44
38.20 5–10 32–48
22.25 0–10 26–40

olluvial matrix material in Hong Kong.



Table 4
Description of land use.

Level Category Area (%) Landslide pixel (%) Description

1 Water body 1.14 0.02 Streams, nullahs, reservoirs and ponds
2 Forest 4.25 0.74 Woodland and shrubland
3 Grass 48.73 42.08 Grassland, mangrove and swamp
4 Agriculture 16.68 18.26 Agriculture land, fish pods
5 Industry 2.05 0.91 Industrial estates, science and technology parks
6 Transportation 5.84 2.09 Roads and transport facilities, railways and airport, port facilities
7 Residential 21.32 35.90 Private, public and rural residential, govern, institutional and community facilities
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These mitigation strategies generally include strengthening the
source area of landslides, such as upgrading hillside catchments,
upgrading man-made slopes, and controlling the areas of historical
landslides. The upgraded area for 2019 and the recent landslides
from 2020 to 2021 (GEO, 2000) show that the recent landslides
rarely occur in upgraded areas (Fig. 4c). In other words, the
upgraded areas have a lower probability of landslide occurrence.
Therefore, during the prediction of landslide probability, the effects
of upgraded areas to landslide susceptibility should be considered.
Previous studies have not paid attention to this prominent aspect
of landslide susceptibility prediction (Ng et al., 2021a, 2021b;
Xiao et al., 2022). Reasonable consideration of the influence of mit-
igation strategies is critical for predicting the regional susceptibil-
ity of landslides, thereby enhancing risk management capabilities.
3. Methodology

The proposed ML framework for landslide prediction consider-
ing mitigation strategies for landslide control includes three main
parts: data acquisition and processing, ML modelling, and landslide
susceptibility prediction (Fig. 6). The first part is data acquisition
and processing, which involves collecting landslide influencing fac-
tors and data, which includes upgraded areas with historical land-
slides. In Section 2, landslide influencing factors were classified
into rainfall, topographical, geological, and anthropogenic condi-
tions. In this study, a total of 13 influencing factors are used for
landslide susceptibility prediction—namely AAR, elevation, slope,
plane curvature, profile curvature, aspect, TWI, road network den-
sity, river system density, geology, land use, soil properties (cohe-
sion and friction angle), and influences of infrastructures. In
addition, records of historical landslides and upgraded landslide
areas form the basis for establishing ML models. The landslide pix-
els were used to extract information on the influencing factors,
whereas non-landslide pixels were randomly produced with infor-
mation on the influencing factors. It should be noted that the
upgraded areas were used to generate additional non-landslide
pixels to reflect the effects of mitigation strategies on landslide
susceptibility. To consider the effects of mitigation strategies for
landslide control on landslide susceptibility, two scenarios are con-
sidered. In Scenario I, landslide control is not considered whereas
in Scenario II, landslide control is considered. Both scenarios were
simulated and compared, and landslide and non-landslide pixels
were used to produce a dataset that was split into training and test
subsets in a 7:3 ratio.

Based on the established datasets, the next step involves train-
ing ML models in order to predict landslide susceptibility. In this
study, the RF, LR, and SVC ML models were adopted. The perfor-
mances of the different models were evaluated and compared
using performance metrics, including the accuracy, recall, preci-
sion, F1-score, the receiver operator characteristic (ROC) curve,
and the area under curve (AUC). Landslides from 1985 to 2021
were used to train the ML models. The trained models were uti-
lized to predict the spatial distribution of landslide probabilities
7

based on the GIS platform. Finally, historical landslides were used
to validate the predicted results.

3.1. Determination of influencing factors

The influencing factors are important for the performance of ML
models because they affect the reliability of the predictions. The
determination of robust influencing factors is critical to obtain an
acceptable prediction result. In order to support the selected influ-
encing factors, previous studies on landslide susceptibility assess-
ments were investigated. Table 5 lists the explanatory features
used in previous studies. To avoid a collinearity problem with mul-
tiple determined influencing factors, pairwise correlations among
the determined influencing factors on landslide susceptibility were
conducted in Fig. 7. The values in the pairwise correlation matrix
can reflect the relationships among these factors. The values close
to 1 refer to a strong positive correlation between two influencing
factors, while the values close to 0 indicate an independent rela-
tionship between two influencing factors. Based on the previous
studies, the values excess than 0.7 may lead to a multi-
collinearity issue in the dataset (Chen et al., 2018). As shown in
Fig. 7, the correlation values of all the influencing factors are less
than 0.7. The result indicates that the determined influencing fac-
tors are independent each other.

3.2. ML models

In this study, three ML models, namely RF, LR, and SVC were
used to predict landslide susceptibility. The prediction of landslide
susceptibility is considered as a binary classification problem, with
each sample resulting in either a positive (landslide) or negative
(non-landslide) prediction. The analysis was conducted by apply-
ing the Python programming environment and ML package
scikit-learn.

3.2.1. Random forest
RF is a popular ML approach for classification and regression

problems that operates on more than one decision tree. The input
variables are classified into a large number of random trees, and
the output is the class determined by the largest selection. During
training, RF produces a multitude of trees, and each tree is trained
according to a random subset of input data. When conducting pre-
dictions, each tree yields its own decision, and the final decision is
determined by the unweighted majority vote from all trees. RF is
one of the preferred methods because of its high accuracy and
speed (Ng et al., 2021a, 2021b; Wang et al., 2022).

3.2.2. Logistic regression
LR is one of the most widely used statistical ML methods for

classification problems. The basic idea behind LR is to produce dis-
crete binary outputs using a linear regression formula that
expresses a dependent variable in terms of several independent
variables (Xiao et al., 2022). Before the application of LR, the first
step is the standardisation of the input variables, which can
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decrease the numerical differences among the input features,
resulting in better predictions. In this study, the information of
the features xitrain from the training samples was used to standard-
ise the features xitext from the test sample, as follows:
8

xitest ¼ xitrain � x
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1

xitrain�x
�ð Þ2

n�1

s ð2Þ



Table 5
Assessment factors adopted in various studies on landslide susceptibility.

Annual
average
rainfall

Elevation Slope Plane
curvature

Profile
curvature

Aspect TWI Road
network
density

River
system
density

Geology Land
use
type

Soil
properties

Distance to
Infrastructures

Huang et al., 2023
p p p p p p p p p p p

Nwazelibe et al., 2023
p p p p p p p p p p p

Tyagi et al., 2023
p p p p p p p p

Xiao et al., 2022
p p p p p p

Ullah et al., 2022
p p p p p p p p p p p p

Li et al., 2022
p p p p p p p p p

Ng et al., 2021a
p p p p p p p

Salehpour Jam et al., 2021
p p p p p p p p

Wang et al., 2021b
p p p p p p p p p p p

Wubalem, 2021
p p p p p p p p

Sun et al., 2020
p p p p p p p p p p p p

Yi et al., 2020
p p p p p p p p

Hong et al., 2018
p p p p p p p p p p p

Chen et al., 2018
p p p p p p p p p p p

Chen et al., 2017
p p p p p p p p p p

Huang et al., 2017
p p p p p p

Fig. 7. Pairwise correlations among selected influencing factors.
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where x
�
is the mean value of the training sample, n is the number of

test sample. This process allows the training samples to remember
the information from the test samples. To achieve a better predic-
tion, the input variables were processed with polynomial analysis.
LR is suitable for landslide probability prediction since it has the
ability to process both numerical and categorical variables
(Budimir et al., 2015; Xiao et al., 2022).
3.2.3. Support vector classification
SVMs are another classical and popular ML method that can be

divided into support vector regression (SVR) and support vector
classification (SVC). The SVC is used to solve classification issues
and is widely applied in various fields due to its ability to deal well
with complex classification problems. SVC aims to find a linear
hyperplane created by support vectors, which can be divided into
negative and positive samples with the maximummargin. The ker-
nel functions play a significant role in SVC by bridging linear and
nonlinear problems using nonlinear decision boundaries. During
the application of SVC, the same standardisation defined by Eq.
(2) was used to standardise the input variables.
3.3. Difference between scenarios I and II

To demonstrate the efficiency of the proposed approach, both
scenarios I and II were simulated and compared to consider the
effects of mitigation strategies on landslide susceptibility. Scenario
I that includes historical landslides from 1985 to 2021 (including
9843 landslide and 19,686 non-landslide samples) was envisaged
as not considering mitigation strategies. The landslide samples
are usually fewer, maybe half as many as the non-landslide sam-
ples in this study. The Scenario II was hypothesised as considering
the mitigation strategies in the upgraded landslide area. To guaran-
tee the accuracy of the trained models, the number of the samples
in Scenario II is same as in Scenario I. To evaluate the effects of mit-
igation strategies on landslide susceptibility, non-landslide sam-
ples were produced in the upgraded area and added to the
randomly created samples to serve as ML models in training data-
sets. The upgraded area includes the upgraded hillside catchments,
upgraded man-made slopes and controlled area (Fig. 4c, Table 6). A
Table 6
Description of upgraded area with non-landslide samples.

Upgraded area Area (km2) Non-landslide sample

Scenario I Scenario II

Upgraded hillside catchments 4.146 142 854
Upgraded man-made slopes 9.267 318 1908
Controlled area 18.454 633 3800

Fig. 8. Partially enlarged schematic: (a) Scenario I; (b) Scenario II (conside
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partially enlarged schematic of the datasets and the classified
study area is presented in Fig. 8, while Table 7 depicts the differ-
ence between scenarios I and II. Here, in Scenario I, the non-
landslides samples are produced as double as landslide samples
across the study area. In Scenario II, the non-landslide samples
include two parts, which are 13,124 (two-thirds of the total num-
ber of landslides) non-landslides in study area and 6562 (one third
of the total number of landslides) non-landslides in the upgraded
area.

3.4. Data exchange between ML and GIS

Both landslide and non-landslide samples were applied to
extract information on the control indices, which produced GIS
databases. The databases containing information on the factors
influencing landslides and non-landslides were converted into
CSV files for the implementation of the ML methods. Based on
training and testing from ML modelling, the best models from
these two scenarios were selected to predict the landslide proba-
bilities of the grid points in the study area. The study area was
divided into 118,008 grids with a size of 100 m � 100 m using a
fishnet created in GIS. Generally, a 30 m resolution is used to gen-
erate landslide susceptibility, and the accuracy of landslide suscep-
tibility increases with a relatively smaller grid size (Liao et al.,
2022). However, with a 30 m resolution, the number of grids
exceed 400,000 in the study area. Classifying the study area with
30 m grids to compute the landslide probabilities was also
attempted, but it is difficult to process such a large amount of data.
In the previous publication from Xiao et al. (2022), the grids were
classified with a size of 750 m � 600 m to predict the spatial dis-
tribution of slopes in Hong Kong. Moreover, it should be noted that
the classified grid is not used to represent landslides. The landslide
probability of each point in a specific grid was predicted, based on
the probabilities between two adjacent points obtained by the
Kriging interpolation analysis. The grids with centre points were
used to conduct interpolation analysis to obtain landslide suscep-
tibility maps.

4. Model evaluation and analysis

4.1. Tuning of hyper-parameters

Hyper-parameters are referred to as the non-constant variables
in MLmodels. To obtain the optimum prediction from the MLmod-
els, the hyper-parameters should be firstly tuned to generate the
optimum model. The hyper-parameters for RF, LR, and SVC were
determined using a grid search approach based on a 10-fold
cross-validation of the training samples. The hyper-parameters of
the classifier models for the two considered scenarios are listed
ring landslide control); (c) fishnet grid with points in the study area.



Table 7
Difference between Scenarios I and II.

Scenarios Landslide
samples

Non-landslide samples

I 9843 19,686 (double landslides) in study region without
upgraded area

II 9843 13,124 (two-thirds of landslides) in study area and
6562 (one third of landslides) in upgraded area
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in Table 8. The input variables for the LR and SVC were processed
through standardisation, prior to training the models. The RF, LR,
and SVC were retrained after determining the optimum hyper-
parameter combinations.

4.2. Performance evaluation

Performance metrics, such as accuracy, recall, precision, F1-
score, ROC curve, and AUC, were used to evaluate and compare
the performances of the different ML models. The number of land-
slides classified as landslides was defined as true positive (TP), the
number of non-landslides classified as non-landslides correspond-
ing to true negative (TN), the number of landslides classified as
non-landslides was defined as false positive (FN), and the number
of non-landslides classified as landslides was false negative (FP). A
detailed definition of the evaluation of performance metrics can be
found in previous publications (Cheung, 2021; Ng et al., 2021a,
2021b).

The ROC curve, which compares the true positive rate (TPR)
with the false positive rate (FPR), is used to measure the perfor-
mance of a binary classifier. The TPR is the ratio of TP to all actual
positive samples (TP + FN), whereas the FPR is the ratio of FP to all
actual negative samples (TN + FP). The AUC of the ROC curve pro-
vides an overall evaluation of model performance. The greater the
AUC, the better the model performance. The performance evalua-
tion of machine learning models includes the ROC curves
(Fig. 9a) and performance matrixes (Fig. 9b). Based on the perfor-
mance evaluation, the RF model appeared to be the optimum, with
test AUC values of 0.8713 and 0.8953 for scenarios I and II, respec-
tively, followed by the LR (0.7774 and 0.8103 for scenarios I and II,
respectively), and SVC (0.7754 and 0.8011 for scenarios I and II,
respectively). Compared to other landslide susceptibility studies,
differences in performance are apparent. Some ML models
achieved AUC values above 0.98 (Xiao et al., 2022). However, the
performance metrics are in a similar range as in the study by Ng
et al., (2021a, 2021b), whose winning model achieved an AUC
value of 0.89, and an accuracy of 0.82. With the spatially homoge-
neous distribution of the sample data, the ML models achieved
acceptable performance. Fig. 9b shows the accuracy, recall, preci-
sion, F1-score, and AUC. It can be seen that the accuracy of RF is
the highest, followed by LR and SVC in scenarios I and II. RF yielded
Table 8
Tuned hyperparameters of each classifier machine learning model.

Algorithm Hyperparameters Definition

RF n_estimators The number of decision tre
min_samples_leaf The number of minimum sa
max_depth The maximum depth for a d
criterion The function for determinin
class_weight The way to reach a best cla
learning_rate The contribution of each de

LR Cs The penalty parameter dete
penalty The norm of penalty (Lasso
degree Features of polynomial

SVC gamma Influences of a plausible lin

11
the highest recall, precision, and F1-score, followed by LR and SVC.
Moreover, a comparison between scenarios I and II showed that
the test performance metrics for Scenario II were better than those
of Scenario I. The models trained in Scenario II performed better
than those trained in Scenario I. This indicates that mitigation
strategies should be considered for landslide control.
4.3. Predicted landslide susceptibility

The RF, LR, and SVC models were implemented with 13 land-
slide influencing factors to produce landslide susceptibility maps
for scenarios I and II in Hong Kong. Fig. 10 depicts the spatial dis-
tribution of landslide susceptibilities in Scenario I as predicted by
the RF (Fig. 10a), LR (Fig. 10b), and SVC (Fig. 10c) ML models. As
shown in Fig. 10, the landslide susceptibility predicted by the RF
ranges from 0 to 0.986, followed by the LR (from 0 to 0.955) and
SVC (from 0 to 0.947). Fig. 11 shows the spatial distribution of
landslide susceptibilities in Scenario II as predicted by the RF
(Fig. 11a), LR (Fig. 11b), and SVC (Fig. 11c). As shown in Fig. 11,
the landslide susceptibility predicted by the RF ranged from 0 to
0.967, followed by the LR (from 0 to 0.936) and SVC (from 0 to
0.902). The comparison between these two scenarios indicates that
the largest susceptibilities predicted in Scenario II are less than
that in Scenario I. This implies that when considering mitigation
strategies for landslide control in the prediction, the landslide sus-
ceptibility magnitudes tended to decrease. This phenomenon is
further illustrated at the locations of historical landslides (Figs. 10
and 11), where most historical landslides were located within the
areas identified by the RF model as high landslide susceptibility
zone. Areas with high landslide susceptibilities were located on
Hong Kong Island, the Kowloon Peninsula, and the south of the
New Territories, where the buildings and population are densely
concentrated. Moreover, the largest landslide susceptibility values
were predicted as 0.967 in RF, 0.936 in LR and 0.902 in SVC at point
B (shown in Fig. 11), where the Tung Lo Wan landslide in 2008
were happened. These maps indicate the risk of landslides at speci-
fic locations depending on the corresponding influencing factors.
Therefore, it is necessary to analyse the contribution of each influ-
encing factor to landslide susceptibility.
4.4. Contribution from influencing factors

The contribution of the factors influencing landslide susceptibil-
ity show that the AAR has the largest contribution (11.06%, with a
fluctuation range of 1.2%) (Fig. 12). Rainfall provided greater con-
tributions than other control indices. Topographical conditions
such as elevation, slope, aspect, TWI, road network and river sys-
tem densities also contributed significantly to landslide suscepti-
bility. Soil mechanical properties had a relatively smaller
contribution to landslide susceptibility than the other controlling
Value

Scenario I Scenario II

es in the forest 125 150
mples leaf in the forest 10 10
ecision tree can obtain 19 21
g the quality of a split entropy entropy
ssifier balanced balanced
cision tree in the forest 1 1
rmined the tolerance of error 0.5 10
regression) L2 L2

5 4
e of calculation 0.001 0.0001
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factors influencing infrastructure exhibited the largest fluctuation
range (1.7%) because the influence of infrastructure was quantified
by distances of 100, 200, 300, 400, and 500 m to buildings and
metro lines. This type of infrastructure value results in a fluctuat-
ing contribution to landslide susceptibility.
5. Discussion

5.1. Validation

5.1.1. Validation against historical landslides
The generated landslide susceptibility was classified into five

risk levels, from very low to very high, to reflect the risk to trigger
landslides. Previous studies have used several methods to classify
landslide susceptibility, such as quantiles, natural breaks, equal
intervals, and standard deviations. The natural break classification
method is widely used. The ratios of the area corresponding to dif-
ferent landslide susceptibility levels according to the results
obtained from the RF, LR, and SVC models in scenarios I and II
are shown in Fig. 13. Here, the area classified as having the highest
landslide susceptibility level was the largest in the case of RF, fol-
lowed by those from the LR and SVC models. Moreover, the ratios
of the lowest level predicted from Scenario I were less than those
from Scenario II, and the ratios of the highest level predicted from
Scenario I were larger than those from Scenario II. The results indi-
12
cate that Scenario II decreases the predicted landslide susceptibil-
ity by realistically considering the mitigation strategies, unlike
Scenario I where the landslide susceptibility is overestimated.

The densities of historical landslides at different risk levels were
determined to validate the predicted landslide susceptibility. Den-
sity, here, is defined as the ratio between the number of pixels at a
specific risk level and the total number of pixels at a specific risk
level, as illustrated in Eq. (3). The density of historical landslides
in areas with different risk levels, where the highest risk typically
has the largest density of historical landslides, has the highest
value in the case of the RF, followed by LR and SVC in both, scenar-
ios I and II (Fig. 14). This implies that most historical landslides
were located in areas with the highest risk. Generally, if more land-
slides are reported in high-risk areas and fewer landslides are
reported from low-risk areas, the better the prediction ability of
the model. Therefore, the results indicate an acceptable prediction
ability of the proposed model based on machine learning and GIS.

Density ¼ Number of pixels at specific risk level
Total pixels at specific risk level

ð3Þ
5.1.2. Validation against points in upgraded areas
The landslide probabilities of the points in the upgraded areas

were extracted to reflect the effects of the mitigation strategies
on landslide control. The landslide probabilities of 20 points ran-
domly produced in the upgraded area in scenarios I and II are
shown in Fig. 15, where for the same point, the landslide probabil-
ities predicted from Scenario II are less than those from Scenario I
when using the same ML model. The comparison between scenar-
ios I and II indicate that the consideration of mitigation strategies
for landslide control can realistically decrease landslide suscepti-
bility. As part of the management of landslide susceptibility in
the region, various countermeasures have been adopted to control
landslide hazards, which substantiate the observed decreasing
trend in predicted landslide numbers. The results from Scenario
II demonstrate the pertinence of predicting landslide probability
by considering mitigation strategies.

5.2. Guidance for landslide management

Areas with high landslide susceptibility tend to be located on
the Hong Kong Island, the Kowloon Peninsula, and the south of
the New Territories, which have a dense distribution of both, build-
ings and population. Strict and scientific landslide control mea-
sures, such as landslide monitoring and detection, should be
implemented in areas with high landslide susceptibility (Cheung,
2021; Ng et al., 2021a, 2021b). The AAR is the most important driv-
ing factor contributing to landslide susceptibility. With a potential
increase in rainfall intensity due to climate change in the coming
years, it is essential to improve rainfall forecasting and early warn-
ing for the spatial distribution of rainfall. In this respect, the GEO
operates on an extensive network of automatic rain gauges that
provide real-time rainfall data to support landslide warning sys-
tems. Moreover, factors that are influenced by topography are also
responsible in contributing to landslide susceptibility; thus, a
detailed natural terrain inventory should be implemented to iden-
tify and assess sites that are prone to landslides (Ng et al., 2003).

5.3. Limitations

The prediction method based on ML and GIS in this study can be
easily implemented in other landslide-prone areas to develop
regional and spatial landslide prediction models. A major obstacle
is data scarcity. Compared with the relatively abundant and easy-
to-obtain data on rainfall and geological conditions, databases for



Fig. 10. Landslide susceptibility maps in Scenario I predicted by (a) RF, (b) LR, and (c) SVC.

Fig. 11. Landslide susceptibility maps in Scenario II predicted by (a) RF, (b) LR, and (c) SVC.
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landslides or the categories of engineering slopes are limited and
not always available, which may limit the application of the pro-
posed approach. Furthermore, assessing landslide susceptibility is
complex due to the combined effects of natural and social factors.
Thus, the selected 13 influencing factors may be insufficient to
fully reflect the factors controlling landslide susceptibility. For
instance, rather than remaining passive, anthropogenic activities
can resist and adapt to natural hazards. However, this study did
not consider influencing factors that qualify as countermeasures
or social and economic resilience, because they cannot be clearly
defined; for instance, mitigation strategies have not been consid-
ered an influencing factor in this study. The mitigation strategies
13
are reflected by the difference of non-landslide samples in scenar-
ios I and II. The number of non-landslide samples may lead to
uncertainties of results. Moreover, the study area was classified
with 100 m grids, and each grid with a center point (Fig. 16). The
landslide probability of each point was predicted, after which the
probabilities between two adjacent points were obtained by inter-
polation analysis. By using the interpolation analysis, we can
obtain the spatial distribution of landslide susceptibilities. This
process may induce uncertainties in the results. In addition, the
hyper-parameter values of all ML models cannot cover all possible
conditions because they are constrained to empirical ranges,
resulting in an unfair model comparison.
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6. Conclusions

This study proposes an approach to consider mitigation strate-
gies on landslide susceptibility prediction in ML models. An inte-
grated approach, which incorporates ML models (e.g. RF, LR, and
SVC) into GIS was adopted to predict the spatial distribution of
landslide probabilities in Hong Kong. Landslide influencing factors
including rainfall, topography, geology, anthropogenic conditions,
and mechanical properties of soil, were used to establish a data-
base within a GIS platform. To consider the effects of the mitigation
strategies for landslide control on landslide susceptibility, two sce-
narios were simulated and compared; Scenario I does not consider
control and Scenario II considers landslide control. The major con-
clusions drawn from this study are summarised as follows.

(1) The landslide susceptibilities were predicted by considering
landslide mitigation strategies. The mitigation strategies
were reflected by the difference of non-landside samples in
scenarios I and II. The effects of mitigation strategies for
landslide control were evaluated by producing non-
landslide samples in the upgraded area as well as randomly
created samples to serve as ML model training datasets.

(2) The comparison between scenarios I and II indicate that mit-
igation strategies for landslide control could decrease land-
slide susceptibility. When considering landslide control,
the landslide susceptibilities predicted in Scenario II were
lower than those obtained from Scenario I. This invoked
interest in considering mitigation strategies within the ML
models for landslide control.

(3) Among the considered landslide controlling factors, rainfall
contributed the most to landslide probability prediction,
whereas soil mechanical properties contributed the least.
This is mainly because shallow soil is vulnerable to rain-
storms as its strength decreases with increasing water
content.

(4) The RF, LR, and SVCmodels were incorporated into the GIS to
predict landslide susceptibilities in scenarios I and II in Hong
Kong. Validation against historical landslides demonstrated
that RF performed the best, followed by LR and SVC, in pre-
dicting landslide susceptibilities. The integration of ML and
GIS provide excellent predictions of the spatial distribution
of landslide susceptibility, making it a powerful tool for
landslide susceptibility management.
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