
HAL Id: hal-04613983
https://hal.science/hal-04613983

Submitted on 17 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

ACM REP24 Tutorial: Reproducible distributed
environments with NixOS Compose

Dorian Goepp, Fernando Ayats Llamas, Olivier Richard, Quentin Guilloteau

To cite this version:
Dorian Goepp, Fernando Ayats Llamas, Olivier Richard, Quentin Guilloteau. ACM REP24 Tutorial:
Reproducible distributed environments with NixOS Compose. 2024, pp.1-3. �hal-04613983�

https://hal.science/hal-04613983
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


ACM REP24 Tutorial: Reproducible distributed environments with

NixOS Compose

Dorian Goepp1, Fernando Ayats Llamas1, Olivier Richard1, and Quentin Guilloteau3

1Univ. Grenoble Alpes, Inria, CNRS, LIG, F-38000 Grenoble, France
3University of Basel, Basel, Switzerland

1 Abstract

Developing software environments for experiments is an iterative, tedious, and time consuming process, even
more when aiming for reproducibility. A widespread approach is to rely on self-contained software environments
called images, be it containers, virtual machines, or tarballs (as used on Grid’5000). Practitioners usually build
their image multiple times, adding every time a forgotten dependency or fixing a previously added one. Worst,
the build process of such image often does not stand the test of times: when we update the apt repositories
and install packages in a dockerfile näıvely, the downloaded package version will evolve over time and the image
shall eventually fail to build when the package repositories are no longer supported upstream. In the case of
Grid’5000, the building time of such images takes around ten minutes for full system tarballs, which does not
encourage the experimenters to follow good reproducible practices when setting them up. As a result, those
images cannot be rebuilt nor modified by someone else.

In this tutorial, we introduce the users to NixOS Compose [5], a tool based on Nix [3] and NixOS [4] to
generate and deploy reproducible environments on distributed platforms. We will first present Nix and the
notions required to use NixOS Compose. As NixOS Compose can target several platforms, the users will set up
their environment with lightweight containers (docker) on their local machines, allowing them to iterate quickly
on their environment description. Once the environment ready with containers, users will be able to quickly
test it on the Grid’5000 testbed [1] using kexec, before generating a full system tarball.

2 Topic & Relevance

As the scientific community is traversing a reproducibility crisis, and the computer science field does not make
an exception, there is a global trend to improve the reproducibility practices of scientists and professionals.
This task has proven harduous for distributed software environments due to their complexity and their frequent
requirement for complicated software stacks. All it takes is one missing dependency in these stacks to lead to
difficult or even non-reproducible results in the future.

Functional package managers such as Nix [3] and Guix [2] address this issue by capturing every application’s
dependency. Such tools aim to rigorously describe a software environment, while keeping this information
lightweight compared to opaque container or virtual machine images. Our tutorial focuses on Nix, the NixOS
Linux Distribution [4] and our tool: NixOS Compose [5].

The NixOS Linux distribution, which extends the Nix paradigm to the whole operating system, improves
the Quality-of-Life of experimenters who also need to control the entire system (kernel, firmware, services, etc.).
Also, building deployment images for any kind of system and environment (such as Kubernetes or Grid’5000) is
a time-consuming iterative process. Hence the introduction of NixOS Compose (based on NixOS). It captures
the definition of a distributed system that can be realised locally with lightweight tools (containers and Virtual
Machines) as well as remotely on physical hardware (e.g., Grid’5000). Practitioners run systems locally in the
development phase, allowing a fast iteration cycle and then can later generate images and deploy remotely in
the experimental phase. This tool aims to reduce the friction of developing clean, reproducible, distributed
environments while allowing virtually anywone to achieve the same system configuration.

We believe this tutorial will benefit AMC REP attendees, assisting them in improving the reproducibility
of their experiments and executions in single nodes or distributed setups.

1



3 Format, Audience & Content

Format: The tutorial will last two slots of 3 hours (6 hours in total), and will be in English. The first
slot will introduce Nix and its concepts through examples and common usage. In the second slot, the attendees
will use NixOS Compose to produce a distributed environment for an experiment. Attendees will be granted a
temporary access to the Grid’5000 testbed to deploy their environment on physical machines.

This tutorial would work in an hybrid format.

Audience: Attendees will need a Linux or MacOS laptop with an Internet connection, as well as root privileges
on their machine (required to install Nix). No knowledge of Nix nor NixOS is needed, but basic knowledge of
the Linux environments and tools as well as basic notions of functional programming would be beneficial.

Content: In this tutorial, attendees will (i) learn about Functional package managers and Nix, (ii) create
reproducible packages with Nix, (iii) bundle packages in a reproducible and sharable software environment
with Nix, (iv) create reproducible docker image from Nix packages, (v) create reproducible NixOS image, and
(vi) use NixOS Compose to create and deploy reproducible and distributed NixOS environments on Grid’5000.

4 Previous Editions

History: There are have been four previous editions for the Nix tutorial: https://nix-tutorial.gitlabpages.
inria.fr/nix-tutorial/index.html. And two previous editions of the NixOS Compose tutorial: https:

//nixos-compose.gitlabpages.inria.fr/tuto-nxc/.

Novelty: We will present NixOS Compose and take an example of distributed experiment to build a repro-
ducible environments.

5 Organizers

Dorian Goepp has learned the hurdles of reproducibility in distributed systems through five years as a
robotics research engineer, following his first M.S. in advanced robotics (EMARo) obtained in 2015. Since 2023,
he is pursuing a Ph.D. in Computer Science at the University of Grenoble (France) on the topic of tools for
reproducibility for distributed systems.

Fernando Ayats Llamas is a Research Engineer at Inria, working on packaging and continuous integration
for supercomputers. He completed his MSc in Research in Computer Systems Engineering at the University of
Cádiz (2023). He is also highly interested in functional package managers and reproducible software deploy-
ments.

Olivier Richard is an Associate professor at Grenoble Alpes University. His research interests are focused
on system architecture for high performance computing and large distributed system. He also works on tools
and methods to enhance experiments’ reproducibility in these domains. He co-designed the Grid’5000 national
testbed (head of Grenoble’s site since 2003).

Quentin Guilloteau holds a Ph.D. in Computer Science from University Grenoble Alpes in France (2023).
He is currently a Post-doc at the University of Basel in Switzerland working on multi-level scheduling. He is
also interested in reproducible research and autonomic computing in HPC.

Acknowledgments

Jonathan Bleuzen, Adrien Faure, and Millian Poquet helped writing this tutorial.

References

[1] D. Balouek, A. Carpen Amarie, G. Charrier, F. Desprez, E. Jeannot, E. Jeanvoine, A. Lèbre, D. Margery,
N. Niclausse, L. Nussbaum, O. Richard, C. Pérez, F. Quesnel, C. Rohr, and L. Sarzyniec. Adding virtual-
ization capabilities to the Grid’5000 testbed. In I. I. Ivanov, M. van Sinderen, F. Leymann, and T. Shan,
editors, Cloud Computing and Services Science, volume 367 of Communications in Computer and Informa-
tion Science, pages 3–20. Springer International Publishing, 2013.

2

https://nix-tutorial.gitlabpages.inria.fr/nix-tutorial/index.html
https://nix-tutorial.gitlabpages.inria.fr/nix-tutorial/index.html
https://nixos-compose.gitlabpages.inria.fr/tuto-nxc/
https://nixos-compose.gitlabpages.inria.fr/tuto-nxc/


[2] L. Courtès. Functional package management with guix. arXiv preprint arXiv:1305.4584, 2013.

[3] E. Dolstra, M. de Jonge, and E. Visser. Nix: A Safe and Policy-Free System for Software Deployment.
page 14, 2004.

[4] E. Dolstra and A. Löh. Nixos: A purely functional linux distribution. SIGPLAN Not., 43(9):367–378, sep
2008.

[5] Q. Guilloteau, J. Bleuzen, M. Poquet, and O. Richard. Painless transposition of reproducible distributed
environments with nixos compose. In 2022 IEEE International Conference on Cluster Computing (CLUS-
TER). IEEE, 2022.

3


	Abstract
	Topic & Relevance
	Format, Audience & Content
	Previous Editions
	Organizers

