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Fig.1:Optimisation parameters from LDA

Fig.3: Clusters realised after the BERT model (All-MiniLM-L6-v2).
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- Estimated term frequency within the selected topic

1. saliency(term w) = frequency(w) * [sum_t p(t | w) * log(p(t | w)/p(t))] for topics t; see Chuang et. al (2012)

) eI o) N 1 (0 o) e o ST STt oy (B0 Fig.4: Comparaison between GPT 4.0. classification and human made classifciation.

Fig.2: Inter-topic distance map wit LDAvis and Top 30 most relevant words.

1. INTRODUCTION 3. RESULTS

 For the review process, distinguishing different types of fields/subfiles inside * Running the topic model on full texts gave more sporadic topics than with the
the discipline helps understand the hidden patterns (Padarian et al., 2020). abstracts.

* If expert-based classification is efficient and conducted according to natura- * LDA presented heterogeneous classes (Fig.2), but only 2 - 3 can be clearly
listic tradition, artificial intelligence can help in classifying. identified.

e Topic model is part of Natural language proccessing which allows to un-  BERT model presented 3 clusters (Fig.3) with: bone surface marks; remote
covers the different topics of a corpus of documents thanks to statistical and sensing, LIDAR, and automatic detection features; recognition and classifi-
machine learning approach (Brandsen, 2023). cation of different artefacts.

* Two different models were tested for topic model and compared to Large  The GPT-4.0 model presented an "ideal" topic selection of 12 labels and
language model (LLM) solution from GPT-4.0. was able to create 15 classes to compare to the human made classification

(Fig.4)
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HELP TO CLASSIFY ARCHAEOLOGICAL SUBDISCIPLINES? 4 DISCUSSION AND CONCLUSION

* Topic modelling with "traditional” models presents the advance of being
transparent and fully parametrisable, but their results in terms of topic clas-

2. MATERIELAND METHODS

DATA sification are not always satisfactory.
* LLMs, such as GPT 4.0, are more powerful and flexible regarding human
Scrapped documents Filtered documents Analysed documents
requests.
1460 731 141 » However, LLMs can be seen as a "black box" where the process and opti-
misation can not be analysed in detalil.
METHODS * The multi-labelling task is very demanding in terms of resources, even for

LLMs, and can not always be performed (Fig.5).

e Latent Dirichlet allocation (LDA), an unsupervised model, was trained for
several parameters (Fig.1), and an optimal K = 16 was selected.

* With its triple-level architecture, Bidirectional Encoder Representations
from Transformers (BERT) was adopted to cluster the different articles.

 GPT-4.0 model from OpenAl was used to classify with supervised and unsu-
pervised methods the documents.
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Fig.5: Error message of GPT 4.0. while trying multi-labeling.
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