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Abstract: In this work, the dynamics of a quantum walker on glued trees is revisited to understand 1

the influence of the architecture of the graph on the efficiency of the transfer between the two roots. 2

Instead of considering regular binary trees, we focus our attention on leafier structures where each 3

parent node could give rise to a larger number of children. Through extensive numerical simulations, 4

we uncover a significant dependence of the transfer on the underlying graph architecture, particularly 5

influenced by the branching rate (M) relative to the root degree (N). Our study reveals that the 6

behavior of the walker is isomorphic to that of a particle moving on a finite-size chain. This chain 7

exhibits defects that originate in the specific nature of both the roots and the leaves. Therefore, the 8

energy spectrum of the chain showcases rich features, which lead to diverse regimes for the quantum 9

state transfer. Notably, the formation of quasi-degenerate localized states due to significant disparities 10

between M and N triggers a localization process on the roots. Through analytical development, we 11

demonstrate that these states play a crucial role in facilitating almost perfect quantum beats between 12

the roots, thereby enhancing the transfer efficiency. Our findings offer valuable insights into the 13

mechanisms governing quantum state transfer on trees, with potential applications for the transfer of 14

quantum information. 15

Keywords: Quantum walk; Quantum State Transfer; Glued trees; Complex Networks 16

1. Introduction 17

Initially introduced by Farhi et al. [1], Continuous-time Quantum Walk (CTQW) 18

is a pivotal paradigm in the development of quantum information theory [2–5]. From 19

a theoretical point of view, CTQW serves as the quantum counterpart to the Classical 20

Random Walk (CRW), a cornerstone concept in classical information theory [6–10]. In a 21

CRW, a "walker" traverses the interconnected nodes of a complex network via a stochastic 22

process, resulting in a diffusive motion. By contrast, CTQW unfolds a scenario where the 23

walker behaves as a quantum entity evolving according to the Schrödinger equation. In this 24

context, it has been demonstrated that the quantum laws governing the walker dynamics 25

facilitate a coherent propagation across a complex network, leading to a novel form of 26

transport that typically outperform CRWs [1,11]. 27

The remarkable potential of CTQW has garnered interest across various scientific 28

communities over the past decades. This concept has found diverse applications in quan- 29

tum information theory, spanning both software and hardware domains. On the software 30

side, CTQW has proven to be crucial for the development of various types of quantum 31

algorithms. Notably, it has demonstrated superiority over classical walks in addressing 32

questions such as the hitting time problem on complex graphs [1,11,12]. This superiority 33

was particularly highlighted in the case of glued trees networks, where a quantum walker 34

was shown to reach the right root from the initial left root exponentially faster than a 35

classical walker [13,14]. Similarly, CTQW has also been instrumental in developing quan- 36

tum computation methods for graph research [1,15–18] (analogous to Grover’s algorithm 37
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[19]), as well as for probing element distinctness [20], matrix product verification [21], and 38

triangle finding [22], among other applications. Meanwhile, on the hardware side, CTQW 39

has also emerged as a valuable tool for the study of quantum transfer of information (or 40

energy). In this context, the central issue is to find the keys leading to the realization of 41

an efficient data transfer from one node to another in a given complex network. To tackle 42

these investigations, many types of network topologies have been considered, includ- 43

ing dendrimers [23–25], Apollonian networks [26], fractal networks [27,28], sequentially 44

growing networks [23–25], and star graphs [29–35], among others. Such theoretical in- 45

vestigations were prompted by the possibility of manipulating genuine physical systems 46

(e.g., spins, photons, or excitons) to realize physical CTQW. Noteworthy is that quantum 47

experiments on either photonic or superconducting platforms were recently developed 48

to corroborate some theoretical predictions of CTQW for the realization of an efficient 49

quantum information transfer [36–39]. 50

Prompted by the use of CTQW as a theoretical tool for hardware development, in the 51

present work we focus on the question of quantum state transfer on a specific family of 52

networks: modular glued trees. Interestingly, several studies have already been realized 53

on glued trees but mainly under the so-called binary architecture, i.e., when each parent 54

node has only two children [13,14]. However, recent studies suggest that a change in the 55

branching rate of these glued trees would lead to an increase in CTQW efficiency. Indeed, 56

this feature has been observed experimentally in a photonic setup where heralded single 57

photons were used as quantum walkers and laser-written waveguide arrays to simulate 58

glued trees. By increasing the branching rate from two to five, it has been shown that 59

the CTQW exhibits improved transport superiority over the CRW [40]. Similar features 60

have been observed on two-fold Cayley trees with a branching rate equal to four [41]. 61

In the present work, the dynamics of a quantum walker in glued trees is revisited by 62

addressing the following question: what is the influence of the architecture of the trees 63

on the efficiency of the quantum transfer between the two roots? Here, one introduces a 64

two-parameter model (N, M) of modular glued-trees in which the degree of the roots N 65

differs from the branching rate M of the other nodes. Therefore, depending on the model 66

parameters, various dynamical regimes emerge due to the richness of the quantum walker’s 67

eigenspectrum. In particular, it will be shown that hybridization between states localized 68

on the roots of the glued trees could favor near-perfect quantum transfer, a fundamental 69

task in quantum information processing [42,43]. 70

The present paper is organized as follows. In Section 2, the modular glued trees are 71

described and the CTQW is defined. Next, one introduces the column subspace to map the 72

CTQW to that on a one-dimensional chain, followed by the corresponding Hamiltonian. 73

Finally, the ingredients needed to characterize the dynamics are described. The problem is 74

investigated numerically in Section 3, where a detailed analysis of the transfer between the 75

tree roots is carried out. Numerical results are finally discussed and interpreted in Section 4 76

based on analytical developments. 77

2. Theoretical background 78

2.1. Glued trees and CTQW 79

Throughout this paper, our attention will be directed towards modular glued trees, 80

distinct from typical binary structures. Traditional binary trees adhere to a hierarchical 81

arrangement where nodes are linked through parent-child relationships, with each parent 82

node having a maximum of two children. In our study, we aim to explore more flexible 83

structures where parent nodes can spawn a greater number of children, thus enhancing 84

the adaptability of the tree. The resulting glued-tree forms the graph GNM(L) illustrated in 85

Figure 1 with parameters N = 5 and M = 3. To describe the architecture of the modular 86

glued trees GNM(L), one introduces a column index s = 1, 2, ..., L, with L an odd integer. 87

Let Lc = (L + 1)/2 denote the central column. The columns s = 1, 2, ..., Lc characterize the 88

leftmost tree whose root is specified by s = 1. Conversely, the columns s = Lc, ..., L refer to 89

the rightmost tree whose root is identified by s = L. The two trees share the same leaves 90
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Figure 1. Representation of the glued tree GNM(L) for N = 5 and M = 3.

in the glued region, leaves which form the column s = Lc. The leftmost root s = 1, whose 91

degree is equal to d1 = N, is connected to N children which form the column s = 2. Each 92

child of the column s = 2 gives rise to M grandchildren which form the column s = 3. 93

Therefore, the degree of each node in the column s = 2 is equal to d2 = M + 1. Similarly, 94

each node of the second column is connected to M nodes which belong to the third column. 95

Consequently, the degree of each node in the column s = 3 is also equal to d3 = M + 1. 96

We continue this way until we reach the column s = Lc which contains the leaves. Each 97

leaf being shared by the two glued trees, their degree reduces to dLc = 2. Finally, starting 98

from the leaves, we then go up the second tree until we reach the rightmost root s = L. 99

The graph GNM(L) is thus symmetric with respect to the central column s = Lc so that the 100

degree ds of the nodes of the sth column is defined as 101

ds = (M + 1)(1 − δs,1 − δs,L − δs,Lc) + N(δs,1 + δs,L) + 2δs,Lc . (1)

Each column s contains Ms nodes labeled by the index ℓ = 1, ...,Ms. The number of nodes 102

by column is defined as 103

Ms = (δs,1 + δs,L) + NMLc−2−|Lc−s|(1 − δs,1 − δs,L). (2)

On the glued trees GNM(L), we consider the motion of a quantum walker whose dynamics 104

is described according to a standard CTQW [12,44–48]. Within this model, one associates 105

a local state |ℓ, s⟩ to each node (ℓ, s). The set of states {|ℓ, s⟩} provides a complete and 106

orthonormal local basis for the Hilbert space of the walker. To describe the CTQW, different 107

approaches have been introduced depending on the choice of Hamiltonian [49]. Here, we 108

consider a CTQW generated by the Hamiltonian H = JΛ, where Λ is the Laplacian of the 109
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graph and where J denotes the hopping constant between the linked nodes [1,16]. Within 110

the local basis, the Laplacian matrix is defined as 111

Λℓs,ℓ′s′ =


−ds if (ℓs) = (ℓ′s′)
1 if (ℓs) and (ℓ′s′) are linked
0 otherwise.

(3)

With these notations, the time evolution of the walker’s wavefunction on the graph’s site 112

ψℓs(t) is governed by the Schrodinger equation 113

iψ̇ℓs(t) = J ∑
ℓ′s′

Λℓs,ℓ′s′ψℓ′s′(t). (4)

To analyze the CTQW on the modular glued trees shown in fig. 1, one could opt to directly 114

integrate the complete system of equations provided in Eq. (4). However, in the present 115

work a different approach will be employed due to the consideration of a specific initial 116

condition, as explained in the following section. 117

2.2. Column subspace and restricted Hamiltonian 118

Our main objective here is to study the ability of the walker to traverse the network, 119

i.e., to reach the rightmost root s = L, assuming that it initially started from the leftmost 120

root s = 1. In that case, the Schrödinger equation Eq. (4) can be expressed in a simpler 121

way by mapping the problem onto a one-dimensional CTQW [13,14]. Indeed, the reader 122

can easily convince himself that here, the time evolution of the wave function ψ11 of the 123

leftmost root depends only on the sum of the wave functions of the second column s = 2. 124

In turn, the time evolution of this latter sum only depends on both the wave function ψ11 125

and the sum of the wave functions on the third column s = 3. Following this reasoning up 126

to the rightmost root, it turns out that the Schrödinger equation simplifies by introducing 127

the “column wave functions” as 128

ψs =
1√Ms

Ms

∑
ℓ=1

ψℓs. (5)

Note that ψ1 ≡ ψ11 and ψL ≡ ψ1L correspond to the walker wave functions on the left root 129

and on the right root, respectively. Therefore, within this change of variables, the CTQW is 130

finally described by a set of L coupled differential equations 131

iψ̇1 = −NJψ1 +
√

NJψ2

iψ̇2 = −(M + 1)Jψ2 +
√

NJψ1 +
√

MJψ3

iψ̇3 = −(M + 1)Jψ3 +
√

MJψ2 +
√

MJψ4

...

iψ̇Lc = −2JψLc +
√

MJψLc−1 +
√

MJψLc+1

...

iψ̇L−2 = −(M + 1)JψL−2 +
√

MJψL−1 +
√

MJψL−3

iψ̇L−1 = −(M + 1)JψL−1 +
√

NJψL +
√

MJψL−2

iψ̇L = −NJψL +
√

NJψL−1. (6)

According to Eq. (6), the dynamics of the column wave functions is governed by a Hamil- 132

tonian H which is the restriction of the whole Hamiltonian H to the so-called column 133

subspace [13,14]. This subspace is entirely generated by the set of L orthogonal column 134

vectors |s⟩, with s = 1, ..., L, defined as 135

|s⟩ = 1√Ms

Ms

∑
ℓ=1

|ℓ, s⟩. (7)
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Figure 2. Graphical representation of the restricted Hamiltonian H to the column subspace. This
Hamiltonian defines a tight-binding model on a finite size chain. The nodes s = 1 and s = L refer to
the roots of the glued trees whereas the nodes s = 2, ..., L − 1 correspond to the column states.

With these notations, the column wave function ψs(t) is the representation of the walker 136

quantum state |ψ(t)⟩ in the column basis, that is ψs(t) = ⟨s|ψ(t)⟩. The CTQW is thus 137

generated by the Hamiltonian H expressed as 138

H = −
L

∑
s=1

ds J|s⟩⟨s|+
L−2

∑
s=2

√
MJ(|s⟩⟨s + 1|+ |s + 1⟩⟨s|)

+
√

NJ(|1⟩⟨2|+ |2⟩⟨1|) +
√

NJ(|L⟩⟨L − 1|+ |L − 1⟩⟨L|). (8)

As shown with Eq. (8), the dynamics of the walker is isomorphic to that of a particle 139

moving on a finite size chain according to a standard tight-binding model. This chain, 140

illustrated in Figure 2, involves the nodes s = 1, ..., L associated to the states |1⟩ (the walker 141

is on the root s = 1), |2⟩ (the walker is uniformly delocalized over the column s = 2), |3⟩ 142

(the walker is uniformly delocalized over the column s = 3), ... |L⟩ (the walker is on the 143

root s = L). In a general way, the nodes of the chain are characterized by a self-energy 144

ϵ0 = −(M + 1)J and the hopping constant between nearest neighbor nodes is Φ =
√

MJ. 145

Nevertheless, the chain exhibits defects that originate in the singular nature of both the 146

roots and the leaves of the glued trees. First, two energy defects are localized on the 147

nodes s = 1 and s = L whose self-energy ϵroot = −NJ is shifted from ϵ0 by an amount 148

∆r = (M − N + 1)J. In addition the hopping constant between s = 1 and s = 2, as well as 149

between s = L and s = L − 1, is equal to Φ′ = zΦ with z =
√

N/M. Finally, an energetic 150

defect is located on the central node s = Lc whose self-energy ϵlea f = −2J is shifted by 151

an amount ∆c = (M − 1)J when compared with ϵ0. According to the standard properties 152

of the tight-binding model [50,51], we expect the system to exhibit extended states that 153

correspond to superpositions of forward and backward traveling waves whose energies 154

belong to the allowed band [ϵ0 − 2Φ, ϵ0 + 2Φ]. However, since the chain exhibits defects 155

which break the symmetry of the problem, the Hamiltonian H supports additional states 156

whose properties strongly differ from those of the traveling waves. We will show in the 157

following of the paper that such spectral richness favors the occurrence of specific CTQW. 158

2.3. Quantum dynamics 159

By assuming that the walker is initially on the leftmost root s = 1, its transport across 160

the glued trees is described by the Hamiltonian H (Eq. (8)). To simulate the associated 161

dynamics, H is diagonalized numerically to determine the corresponding eigenvalues {ϵµ} 162

and the associated eigenvectors {|ϕµ⟩}, labeled by the index µ = 1, ..., L. Consequently, one 163

can compute the time evolution operator U (t) = exp(−iHt) written as 164

U (t) = ∑
µ

exp(−iϵµt)|ϕµ⟩⟨ϕµ|. (9)
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From the knowledge of both the time evolution operator and the eigenstates, different
observables can be computed. Here, special attention will be paid to characterizing the
time evolution of the transfer probability PL|1(t), denoted by

PL|1(t) = |⟨L|U (t)|1⟩|2.

This probability measures the likelihood of a walker originating from the leftmost root of 165

the glued tree to successfully traverse and arrive at the rightmost root at time t. Unveiling 166

this probability provides fundamental information about the efficiency of quantum walker 167

transport in the interconnected framework of glued trees. 168

3. Numerical results 169

In this section, the previous formalism is applied to the description of the CTQW 170

between the two roots of the glued trees. First, the spectral properties of the Hamiltonian 171

H will be studied. Then, a detailed analysis of the walker’s dynamics will be presented, 172

to assess its ability to traverse the graph and reach the rightmost root. Note that each 173

simulation is carried out by considering the hopping constant J as the reference energy unit 174

(i.e. J = 1). 175

3.1. Spectral properties of the Hamiltonian H 176

In Figure 3, we illustrate the M dependence of the energy spectrum of the Hamiltonian 177

H for L = 9. The degree of the roots is fixed to N = 6 whereas the branching rate of the 178

“child” nodes varies from M = 1 to M = 20. The allowed band is defined by the grey zone. 179

Figure 3 clearly shows the occurrence of specific states that lie outside the allowed band, 180

and three different situations arise depending on the M values. Indeed, one first observes 181

the existence of unique state whose energy is equal to zero whatever M (see black curve). 182

This state is always located above the allowed band provided that M > 1. Note that for 183

M = 1, the zero energy corresponds exactly to the upper boundary of the allowed band. 184

2 4 6 8 10 12 14 16 18 20
M

−30

−25

−20

−15

−10

−5

0

ε µ
/J

Figure 3. M dependence of the energy spectrum for L = 9 and N = 6. The grey zone defines the
allowed band. Blue curves are used for eigenstates contained in the allowed band. These states
are all spatially delocalized on the effective chain. Conversely, red, magenta and black curves
illustrate eigenstates outside the band which are spatially localized. For an illustration of the spatial
delocalization of the eigenstates, see Figure 4.

Then, depending on the value of M, two other states can get out the allowed band. 185

For instance for M = 3, in addition to the zero energy state, the spectrum supports 186

two quasi-degenerated energy levels that lie below the allowed band (see red lines in 187

Figure 3). The lower boundary of the band being equal to −7.46J, the energies of the quasi- 188

degenerated states are equal to −8.00J and −7.97J, respectively. In that case, the square 189

modulus of the wave functions |ϕµ(s)|2 on each site “s” of the effective chain is illustrated 190
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Figure 4. Eigenstates’ weights |ϕµ(s)|2 on the sites s of the chain. The three columns respectively
represent the results obtained for three values of M = 3, 6, and 15 (with fixed parameters L = 9,
N = 6). The first row illustrates the shape of the localized states detected, while the second row
showcases the delocalized eigenstates (in shades of blues). Regardless of the value of M, a zero-energy
eigenstate localized at the center of the chain is always observed (see black curves in (a), (c), and (e)).
When M = 3 in (a), two quasi-degenerate localized states are also present (shown in solid and dashed
red curves), emerging below the allowed band. When M = 15 in (e), two other quasi-degenerate
localized states are also present (shown in solid and dashed magenta curves), emerging above the
allowed band. Note that the spatial shape of the quasi-degenerate localized eigenstates almost
superimpose (see red curves in (a) and magenta curves in (e)), which makes them hard to distinguish.

in Figure 4. As shown in Figure 4a, the zero energy level (black curve) corresponds to 191

a state that is localized on the center of the chain s = Lc. The weight of the state on the 192

central node is equal to 0.5. This state thus refers to a quite smooth localization of the 193

walker around the central leaves of the glued trees. In a marked contrast, the two low 194

energy levels characterize states localized in the neighborhood of the side nodes s = 1 and 195

s = L (red solid and dotted lines). They thus refer to states localized on the roots of the 196

glued trees. The weight of the states on the side nodes is approximately equal to 0.25. Note 197

that, the detailed analysis of the wave functions reveals that these two states correspond to 198

a symmetric and to an anti-symmetric superposition of two states localized on each root 199

of the graph. Moreover, they oscillate from one node to another, indicating that the real 200

part of their wave vector is equal to π (not drawn by considering the square modulus). 201

Finally, as displayed in blue solid lines on Figure 4b, the remaining energy levels located 202

inside the allowed band define extended states. They approximately correspond to the 203

stationary waves that are observed in a confined environment. Note that these extended 204

wave functions do not vanish on the nodes s = 1 and s = L. They have almost the same 205

weight on the sides of the chain, a weight approximately equal to 0.08. 206

As shown in both Figures 3 and 4, a different situation arises for M = 6. Of course, the 207

zero energy level is still above the allowed band. It corresponds now to a state that is more 208

strongly localized around the center of the chain (see Figure 4c), as its weight on the central 209

node s = Lc reaches 0.71. Conversely, all the other energy levels belong to the allowed 210

band. Therefore, as illustrated in Figure 4d, they refer to extended stationary waves. The 211

weight of the wave functions on s = 1 and s = L now varies from one state to another over 212

one order of magnitude. It approximately extends from 0.02 to 0.2. 213

Finally, for M = 15 an even different situation appears, as illustrated in both Figures 3 214

and 4. One still recovers the zero energy level that remains above the allowed band, even 215

if this latter now refers to a very strong localization on the center of the chain (black lines 216
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on Figure 4e), as its weight on s = Lc is now equal to 0.87. In addition, the spectrum 217

exhibits two quasi-degenerated energy levels that lie above the allowed band (solid and 218

dotted magenta lines on Figure 3). The upper boundary of the band being equal to −8.25J, 219

the energies of the quasi-degenerated states are equal to −5.34J and −5.33J, respectively. 220

Figure 4e reveals that these quasi-degenerate levels characterize states localized on the side 221

nodes s = 1 and s = L (magenta dotted lines). They thus refer to a strong localization on 222

the roots of the glued trees, the weight of the states on the side nodes being approximately 223

equal to 0.46. As for M = 3, the study of the wave functions reveals that these two states 224

correspond to symmetric and anti-symmetric superpositions of two states localized on each 225

root of the graph (not observable in Figure 3 due to squared modulus). 226

3.2. Time evolution of the transfer probability PL|1(t) 227

Numerical simulations have been conducted to analyze the time evolution of the 228

transfer probability PL|1(t). These simulations reveal that the transfer dynamics strongly 229

depend on the branching parameter M, which is intimately associated with the presence (or 230

absence) of localized states. As described in the previous sub-section, three main situations 231

will also emerge depending on the M-parameter, and these will be detailed in the following 232

paragraphs. 233

last_fig/propas_L9_N6_M3-a.pdf last_fig/propas_L9_N6_M2.pdf

Figure 5. Time evolution of the transfer probability PL|1(t) for (a) M = 3 and (b) M = 2. The size
of the chain is L = 9 and the degree of the roots is N = 6. Blue dashed lines define the smoothed
probability PL|1(t) extracted from numerical calculations, while orange lines correspond to the
theoretical expression given in Eq. (28).

The first dynamical regime emerges when M < 4, corresponding to the specific case 234

where two spatially localized eigenstates exist below the allowed band (highlighted in 235

red in Figures 3 and 4). The transfer probability observed in this regime is illustrated in 236

Figure 5a for M = 2 and Figure 5b for M = 3 (with fixed parameters L = 9 and N = 6). 237

In Figure 5, we clearly observe that the time evolution of the probability PL|1(t) exhibits a 238

rather singular pattern: a periodic slowly varying part of sine nature influenced by high- 239

frequency noise. The long time period is approximately 240J−1 and 2250J−1 for M = 2 240

(Figure 5a) and M = 3 (Figure 5b), respectively, while the high-frequency noise evolves 241

on a timescale of a few J−1. Based on this observation, the transfer probability could be 242

roughly decomposed as a bi-partite signal: 243

PL|1(t) ≈ PL|1(t) + ∆P(t), (10)

where PL|1(t) represents the "smoothed probability," corresponding to the periodic slow- 244

varying part of the signal, and ∆P(t) represents the high-frequency noise. Through nu- 245

merical investigation, we observed that the long time period defining PL|1(t) follows the 246

formula T = 2π/∆ϵ, where ∆ϵ is the difference between the energies of the two quasi- 247
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degenerate states below the allowed band. We then obtained an estimate of the smoothed 248

probability as: 249

PL|1(t) ≈
∣∣∣∣∣Loc. States

∑
µ

exp(−iϵµt)⟨L|ϕµ⟩⟨ϕµ|1⟩
∣∣∣∣∣
2

, (11)

resulting from a restriction of the time evolution operator (see Eq. (9)) to only the two 250

localized eigenstates present below the allowed band (highlighted in red in Figures 3 251

and 4). The resulting signal PL|1(t) is represented with dashed blue lines in both panels of 252

Figure 5. We observe that PL|1(t) accurately describes the averaged periodic behavior of 253

the true signals over long time periods. However, the high-frequency noise plays a crucial 254

role in interpreting the emergence of high transfer probability peaks in the exact transfer 255

probability. For instance, in Figure 5a, the first true maximum value of the exact signal 256

PL|1(t) is 0.81 (at t = 118J−1), while the maximum of the smooth probability is much lower, 257

around PL|1(t) ≈ 0.28. Similarly, in Figure 5b, the first true maximum value of PL|1(t) is 258

0.95 (at t = 990J−1), while the smooth probability yields a maximum of PL|1(t) ≈ 0.5. In 259

this dynamic regime, the high-frequency noise plays a significant role in the emergence of 260

effective transfer from the left to the right root of the networks. 261

262

0 10 20 30 40 50
t(J−1)

0.0

0.2

0.4

0.6

0.8

1.0

P
L
|1

(t
)

(a)
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Figure 6. Time evolution of the transfer probability PL|1(t) for L = 9 and N = M = 6 over a timescale
equal to (a) 50J−1 and (b) 400J−1.

The second type of regime occurs when 4 ≤ M ≤ 10, and no quasi-degenerate eigen- 263

states extend beyond the allowed band. In this scenario, a completely different behavior 264

emerges compared to the previous regime, as illustrated in Figure 6 for L = 9, N = 6, 265

and M = 6. Here, the time evolution of the probability PL|1(t) results from the coherent 266

propagation of the walker, behaving like a wave packet undergoing multiple reflections 267

at the roots of the glued trees. Initially zero, PL|1(t) exhibits a first peak at time t = 2.2J−1
268

(see Figure 6a), signifying the direct propagation of the walker from the leftmost root to the 269

rightmost root. According to the properties of the tight-binding model, the walker has a 270

group velocity approximately equal to v ≈
√

2Φ [52]. With Φ =
√

MJ, the time required to 271

traverse between the two roots is τ ≈ (L − 1)/v ≈ 2.3J−1, in reasonable agreement with 272

the observations. As time progresses, the walker oscillates between the two roots, resulting 273

in the emergence of a series of peaks. However, the amplitude of these peaks is not unity 274

due to several influencing factors. First, dispersion causes the initial wave packet to irre- 275

versibly spread out. Second, the chain possesses defects leading to reflection/transmission 276

processes, thereby introducing additional peaks. As depicted in Figure 6b, over a longer 277

time scale, the probability does not converge but exhibits a series of peaks, most of which 278

have an amplitude smaller than or close to 0.4. Nevertheless, the figure distinctly show- 279

cases the occurrence of intense peaks distributed almost periodically. These peaks denote 280

quantum recurrences that occur at specific revival times [52–57]. Typically, seven peaks 281

have amplitudes larger than 0.9. Notably, on the considered time scale, PL|1(t) reaches a 282

maximum value of 0.9973 at t = 207.55J−1. At this instance, a perfect transfer of the walker 283
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between the two roots of the glued trees becomes apparent. 284
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Figure 7. Time evolution of the transfer probability PL|1(t) for (a) M = 15, (b) M = 16. The size of the
chain is L = 9 and the degree of the roots is N = 6. Blue dashed lines define the smoothed probability
PL|1(t) extracted from numerical calculations. Orange lines correspond to the theoretical expression
given in Eq. (28).

The last observable dynamical regime arises when M > 10, corresponding to the 286

scenario where two spatially localized eigenstates emerge at the top of the allowed band 287

(depicted in magenta in Figures 3 and 4). The time evolution of the probability PL|1(t) 288

is depicted in Figure 7 for M = 15 and 16 (with L = 9, N = 6). Here, we observe that 289

PL|1(t) can be decomposed as a bi-partite signal following Eq. (10), such as the behavior 290

observed when M < 4 (refer to Figure 5). Specifically, PL|1(t) follows a slowly varying 291

smoothed probability PL|1(t) that evolves almost periodically with time, as indicated by 292

the blue dashed lines (note that PL|1(t) is numerically constructed from the two localized 293

eigenstates at the top of the allowed band). The corresponding period is approximately 294

T = 890J−1 and T = 1250J−1 for M = 15 and M = 16, respectively. PL|1(t) exhibits a 295

high-frequency modulation varying over a timescale of a few J−1. However, in contrast 296

to the regime when M < 4 (see Figure 5), the amplitude of this modulation is relatively 297

small. Consequently, the main characteristics of the probability are very well captured by 298

the behavior of the smoothed probability. Indeed, in contrast to the two previous regimes 299

observed, the transfer probability remains significant over a wide timescale. For instance, 300

between t = 400J−1 and t = 500J−1, the smoothed probability, representing the averaged 301

signal, is 0.84. This extended duration of significant probability values could be particularly 302

advantageous for generating efficient quantum transfer between the two tree roots, enabling 303

better measurement control over a large time window. Similar characteristics emerge when 304

M = 16, as depicted in Figure 7b. Here, the maximum of PL|1(t) reaches 0.87 at around 305

t = 640J−1. 306

3.3. Spectral decomposition of the initial walker’s state 307

To understand the three distinct CTQW regimes previously identified, we have ex- 308

amined how the walker’s initial state decomposes onto the eigenstates in each scenario. 309

The results, depicted in Figure 8, show the decomposition for M = 3 (localized degenerate 310

eigenstates below the allowed band) in black, M = 6 (no localized degenerate eigenstates) 311

in blue, and M = 15 (localized degenerate eigenstates above the allowed band) in red. 312
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Figure 8. Spectral decomposition of the walker’s initial state for the three different dynamical regimes
observed with M = 3 (black curve), M = 6 (blue curve) and M = 15 (red curve). The parameters are
L = 9 and N = 6.

Starting with M = 3, Figure 8 shows that the initial state primarily decomposes onto 313

the two low-lying eigenstates indexed as µ = 1 and µ = 2 with a weight of 0.26, followed by 314

a nearly uniform distribution across the remaining eigenstates (excluding the zero-energy 315

state µ = 9). This aligns with our observations regarding the first dynamical regime, where 316

the significant portion of the transfer probability signal is carried by the two eigenstates 317

localized on the network’s roots, as indicated by the smoothed probability (see Eq. (10)). 318

However, all other eigenstates also contribute significantly to the transfer, explaining the 319

larger fluctuations observed around the corresponding smoothed probability, as evidenced 320

in Figure 5. 321

322

Moving to M = 6, where no degenerate eigenstates extend beyond the allowed band, 323

Figure 8 demonstrates that the eigenstates contributing most to the transfer are localized 324

in the middle of the band. Six eigenstates exhibit the highest weights, all falling within 325

the interval [0.1, 0.25]. Unlike the previous regime, here the dynamics are supported by a 326

greater number of eigenstates playing similar roles. These characteristics elucidate why the 327

transfer probability evolves erratically over time and cannot be decomposed into slow and 328

fast-varying components in this case, as seen in Figure 6. 329

330

Finally, considering the last dynamical regime at M = 15 where two eigenstates 331

localized on the roots emerge above the allowed band (as illustrated in Figure 7), we 332

observe that these two eigenstates, indexed as µ = 7 and µ = 8, carry the highest weights, 333

nearly 0.5, implying that the initial state predominantly decomposes onto them. The 334

remaining eigenstates play a very minor role, as indicated by their weights consistently 335

below 0.03. Consequently, the walker’s dynamics reflect those of a two-level system, 336

explaining the near-perfect quantum beats observed between the two roots of the networks 337

in Figure 7. 338

3.4. Characterization of the smoothed probability and optimization of the transfer 339

The previous observations, conducted for fixed values of L and N, suggest that the 340

emergence of localized eigenstates could facilitate the realization of more efficient and 341

controlled quantum transfer across the network. More precisely, it appears that when 342

localized eigenstates arise above the allowed band, they lead to a more robust transfer that 343

exhibits a very high amplitude of smoothed probability. This is in contrast with the case 344

where the dominant eigenstates are below the allowed band, resulting in a lower amplitude 345

of smoothed probability. These features were evidenced for fixed values of N and L, and 346

we will now demonstrate that they persist when varying these parameters. 347
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Figure 9. Illustration of the M dependence of the smoothed probability P (first row) and its associated
period Tmax (second row). Left and right columns respectively displays results for N = 6 and N = 12.
Black symbols correspond to numerical calculations whereas orange symbols refer to theoretical
estimates (as given in Eq. (28)). The size of the graph is L = 9. Grey areas correspond to the
parameter-space where no states are localized outside the allowed band, except the zero-energy state.

To highlight this feature, Figure 9 showcases the M dependence of the maximum 348

value of the smoothed probability Pmax (first row) and the associated time Tmax (second 349

row) for which this maximum arises. Left and right columns respectively shows results 350

obtained for two different values of N = 6 and N = 12 (with a fixed size of the graph 351

L = 9). Black circles correspond to numerical calculations whereas orange curves refer to 352

theoretical estimates (introduced later on in Eq. (28)). 353

As evidenced in Figure 9, the localized quasi-degenerated eigenstates below and 354

above the allowed band present different behaviors (see respectively at left or right of the 355

grey zone). First, whatever is the value of N, we observe that the smoothed probability 356

for the eigenstates emerging at the top of the band (right side of the grey zone) generally 357

present higher amplitudes than for the eigenstates below the allowed band (left side of 358

the grey zone). This is evidenced for N = 6 where we see that Pmax lives in the interval 359

[0.3, 0.65] for the states below the band, which is smaller than for the state above the band 360

for which Pmax ∈ [0.65, 0.9]. These intervals tend to slightly change when N = 12 to 361

become respectively [0.2, 0.8] and [0.5, 0.9] on the left and right hand of the grey zone. 362

Second, focusing now on the transfer time Tmax (second row in Figure 9), we clearly see that 363

the latter is generally lower for the eigenstates emerging at the top of the band (right side 364

of the grey zone) than for the other ones (left side of the grey zone). Indeed, if we consider 365

two distinct M values that give rise to two quite similar Pmax values, it turns out that the 366

time Tmax associated to the larger M value is always significantly shorter than the time 367

Tmax associated to the smaller M value. For instance, in Figure 9d, for both value M = 6 368

and M = 18, the amplitude Pmax is approximately equal to 0.55. However, Tmax = 64J−1
369

for M = 18 whereas it reaches Tmax = 566J−1 for M = 6. This effect becomes increasingly 370

important the further one moves away from the allowed band. 371
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Figure 10. L dependence (a) of the maximum value of the smoothed probability Pmax and (b) of the
time Tmax for which the maximum arises. The degree of the roots is N = 3 and three branching rate
have been considered, namely M = 8, M = 10 and M = 12.

These previous results suggest that to optimize the quantum transfer between the 372

two roots, it would be wise to design the architecture of the modular glued trees to favor 373

the occurrence of localized states above the allowed band. But in this case, a fundamental 374

question remains: what is the influence of the graph size on the efficiency of the transfer? 375

To address this question, the L dependence of both Pmax and Tmax is displayed in Figure 10. 376

The calculations are carried out for N = 3, a value for which the spectrum exhibits high- 377

energy localized states above the allowed band provided that M > 7. According to 378

Figure 10a, the amplitude Pmax becomes less and less sensitive to the size of the graph as 379

M increases. For M = 8, it slightly decreases with L, ranging from 0.84 for L = 5 to 0.752 380

for L = 21. By contrast, for M = 12, Pmax is almost L independent since it varies from 0.91 381

for L = 5 to 0.92 for L = 21. In a marker contrast, Figure 10b reveals that Tmax behaves in a 382

completely different way. Indeed, Tmax exhibits an exponential growth with the size of the 383

graph, a behavior that can be enhanced by increasing M. Indeed, for L = 5, a quite fast 384

transfer occurs since Tmax varies from 9J−1 for M = 8 to 15J−1 for M = 12. When L = 11, 385

the exponential growth of Tmax drastically affects the efficiency of the transfer since it varies 386

from 441J−1 for M = 8 to 5205J−1 for M = 12. This effect becomes dramatic for longer 387

graph. When L = 21, Tmax varies from 1.36 × 105 J−1 for M = 8 to 7.3 × 107 J−1 for M = 12. 388

4. Interpretation and discussion 389

The numerical results reveal that the transfer of a quantum walker between the roots 390

of a modular glued tree strongly depends on the architecture of the graph. As a result, 391

three different regimes were identified, depending on the value of the branching rate M 392

versus the degree of the roots N. Indeed, as explained in Section 2.B, the behavior of the 393

walker is isomorphic to that of a particle moving on a finite size chain. This chain exhibits 394

defects that originate in the specific nature of both the roots and the leaves of the glued 395

trees (see Figure 2). The energy spectrum of the chain is particularly rich and three kinds of 396

eigenstates have been identified, giving rise to three different dynamical regimes. 397

Basically, when M is about N, the walker exhibits extended states that correspond to 398

superpositions of forward and backward traveling waves whose energies belong to the 399

so-called allowed band. The dynamics is therefore governed by the back-and-forth motion 400

of the initial wave packet between the two roots so that an efficient transfer can take place 401

via quantum recurrences. Such recurrences occur at very precise revival times which may 402

be difficult to detect in an experimental protocol. 403

Conversely, if M strongly differs from N, the energy spectrum supports two quasi- 404

degenerated localized states that lie below (if M ≪ N) or above (if M ≫ N) the allowed 405

band. These states refer to a localization process on the roots of the glued trees. Conse- 406

quently, when the walker is initially on the leftmost root, its state preferentially decomposes 407

on these two localized states. The dynamics becomes isomorphic to that of a two level- 408

system resulting in the occurrence of quantum beats between the two roots. In other words, 409

an almost perfect energy transfer is mediated by these specific localized states. Neverthe- 410
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less, two distinct regimes arise depending on whether the states emerge below or above the 411

allowed band. Our numerical results suggest that high energy localized states yield a more 412

efficient transfer. In this case, the probability of observing the CTQW on the rightmost 413

root can be very high over a wide time scale, facilitating the experimental detection of the 414

walker. 415

4.1. Eigenstates and mode equations 416

To discuss and interpret the numerical results, let us study the restricted Hamiltonian 417

H that describes the dynamics of the walker in the column subspace. As mentioned above, 418

this Hamiltonian defines a tight-binding model on the finite size chain depicted on Figure 2. 419

The associated states are thus given by the walker time independent Schrodinger equation 420

written as 421
L

∑
s′=1

Hss′ϕ(s
′) = ϵϕ(s). (12)

According to the standard properties of finite size tight-binding models [50,51], the solutions 422

of Eq. (12) are superpositions of forward and backward traveling waves with wave vector 423

q as 424

ϕ(s) =


A if s = 1
A(+)eiqs + A(−)e−iqs if 1 < s < Lc
C if s = Lc

B(+)eiqs + B(−)e−iqs if Lc < s < L
B if s = L.

(13)

By inserting this solution in Eq. (12) far from the defects, it turns out that the eigenenergies 425

satisfy the dispersion relation of the infinite chain ϵq = ϵ0 + 2Φ cos(q). However, the 426

value of the wave vector q is still unknown at this stage. To determine the allowed wave 427

vector, one proceed as follows. First, because the chain is symmetric with respect to the 428

central node, the wave function is either symmetric (A = B, A(±) = B(±), C ̸= 0) or 429

anti-symmetric (A = −B, A(±) = −B(±), C = 0), and it is characterized by 4 amplitudes. 430

Second, by studying the Schrodinger equation for s = 1, s = 2, s = Lc − 1 and s = Lc, one 431

obtains a system of 4 equations for the unknown amplitudes for each symmetry. These 432

two systems exhibit non-trivial solutions if and only if their determinant vanishes. After 433

algebraic manipulations, this condition gives rise to the so-called mode equations, i.e., the 434

equations whose solutions specify the allowed q values for each symmetry. The mode 435

equation for the symmetric states is defined as 436(
∆̄r − e−iq + (z2 − 1)eiq

∆̄r − eiq + (z2 − 1)e−iq

)(
∆̄c + eiq − e−iq

∆̄c + e−iq − eiq

)
= eiq(L−1), (14)

whereas the mode equation for the anti-symmetric states is expressed as 437(
∆̄r − e−iq + (z2 − 1)eiq

∆̄r − eiq + (z2 − 1)e−iq

)
= eiq(L−1), (15)

with ∆̄r = ∆r/Φ = (M − N + 1)/
√

M, ∆̄c = ∆c/Φ = (M − 1)/
√

M, and z =
√

N/M. 438

By studying the mode equations, it turns out that the chain supports extended states 439

characterized by a real wave vector q. These states define traveling waves whose eigenener- 440

gies belong to the energy band ϵq ∈ [ϵ0 − 2Φ, ϵ0 + 2Φ]. From a physical point of view, they 441

describe states uniformly delocalized over the columns of the glued trees and which are able 442

to propagate between the two roots so that a stationary regime takes place. However, since 443

the chain exhibits defects which break the symmetry of the problem, the Hamiltonian H 444

supports additional eigenstates whose properties strongly differ from those of the traveling 445

waves. These states correspond to wave functions that are localized in the neighborhood of 446

the defects and whose energies lie outside the allowed band. There are thus characterized 447

by a complex wave vector q = iκ (for states lying above the band) or q = π + iκ (for states 448
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lying below the band), with κ > 0. In that context, to solve the mode equations for the 449

localized states, it is wise to introduce the real variable x = e−iq that satisfies |x| > 1. With 450

this notation, the energy of a localized state is defined as ϵ = ϵ0 + Φ(x + x−1) and the 451

mode equations are rewritten as 452{
F(x)G(x) = x−(L−1)F(x−1)G(x−1) for symmetric states
F(x) = x−(L−1)F(x−1) for anti-symmetric states,

(16)

with F(x) = ∆̄r − x + (z2 − 1)x−1 and G(x) = ∆̄c + x − x−1. In the finite size chain, the 453

mode equations cannot be solved analytically. Nevertheless, they can be used to introduce 454

relevant approximations and consequently to understand the numerical observations, as it 455

will be shown in the following. To proceed, the main idea consists in a two-step approach 456

in which one first treats the localization in the limit L → ∞. In doing so, it will be shown 457

that each side of the chain exhibits degenerated localized states and that a third localized 458

state arises on the central node of the chain. The second step consists in considering finite 459

L values for which a coupling occurs between the different localized states. 460

4.2. Localization in the limit L → ∞ 461

In the limit L → ∞, the right hand side of the mode equations Eq.(16) vanishes for 462

|x| > 1. Consequently, localized states in the neighborhood of the roots are characterized 463

by the mode equation F(x) = 0, that is 464

x2 − ∆̄rx + 1 − z2 = 0 (17)

Eq.(17) holds whatever the symmetry of the states since in the limit L → ∞ the two roots 465

are independent. It thus refers to two independent localization processes that arise either 466

on the left root s = 1 or on the right root s = L. In that case, since M is a positive integer, 467

Eq.(17) exhibits only one physically acceptable solution defined as 468

xr =
M − N√

M
(18)

Note that the second solution is equal to 1/
√

M, a very important detail that will make two 469

situations arise, depending on the value of the parameters. Indeed, if M > (
√

1/4 + N + 470

1/2)2 then xr > 1, indicating that the localized states are characterized by a wave vector 471

q = iκ. They thus correspond to two degenerated energy levels located above the allowed 472

band. Conversely, if M < (
√

1/4 + N − 1/2)2 then xr < −1. The localized states are now 473

characterized by a wave vector q = π + iκ so that they refer to two degenerated energy 474

levels that lie below the allowed band. Whatever the situation, the expression of the energy 475

remains the same and is defined as 476

ϵr = −(N + 1)J +
M

M − N
J (19)

One state, characterized by the wave function ϕL(s), is exponentially localized near the 477

leftmost root s = 1. The second state, whose wave function is denoted ϕR(s), describes a 478

localization near the rightmost root s = L. These wave functions are defined as 479

ϕL(s) =

(
x2

r − 1
x2

r − 1 + z2

) 1
2

(δs1 + z(1 − δs1))x−(s−1)
r

ϕR(s) =

(
x2

r − 1
x2

r − 1 + z2

) 1
2

(δsL + z(1 − δsL))x−(L−s)
r (20)
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As previously, since the right hand side of Eq.(16) vanishes in the limit L → ∞, the localized 480

state in the neighborhood of the central node s = Lc is characterized by the mode equation 481

G(x) = 0, that is 482

x2 − ∆̄cx − 1 = 0 (21)

Eq.(21) exhibits only one physically acceptable solution defined as xc =
√

M. Therefore, 483

provided that M > 1, the chain exhibits a state characterized by a wave vector q = iκ 484

whose energy lies above the allowed band. This energy is strictly equal to zero, i.e., ϵc = 0. 485

This state is exponentially localized around the central node and its wave function ϕc(s) is 486

defined as 487

ϕc(s) =
(

x2
c − 1

) 1
2 x−|s−Lc |

c (22)

At this step, let us mention that for N = 6, the previous calculations reveal that states 488

localized on the roots lie above the allowed band for M > 9 and below the allowed band 489

for M < 4. For M = 3, the energy of the localized states is equal to ϵr = −8J whereas for 490

M = 15, it reaches ϵr = −5.33J. Moreover, whatever M, the energy of the state localized on 491

the central node is equal to ϵc = 0. All these results are in a very good agreement with the 492

numerical observations reported in Section 3 and displayed in Figure 3. 493

4.3. Localized states mediated quantum transfer 494

In a finite size chain, the localized states are no longer independent and they interact 495

through the overlap of their wave functions. However, since ϵc is larger than ϵr, the 496

preferential interaction is between the states ϕL and ϕR that are localized on the leftmost 497

root and on the rightmost root, respectively. Since these two states enter into resonance, 498

hybridization arises, giving rise to the occurrence of a symmetric state ϕs ≈ (ϕL + ϕR)/
√

2 499

and of an anti-symmetric state ϕa ≈ (ϕL − ϕR)/
√

2. The formation of these states is 500

accompanied by the rise of degeneracy due to the so-called avoided crossing phenomena. 501

The states ϕs and ϕa are thus characterized by two distinct energies ϵs and ϵa, which can 502

be calculated from the solutions of the mode equations Eq.(16). However, these mode 503

equations reveal a very important feature. Indeed, for the anti-symmetric state ϕa, the 504

mode equation depends on ∆̄r and z, only. This would imply that the formation of ϕa only 505

results from the hybridization between ϕL and ϕR. It does not involves the coupling with 506

the state ϕc localized on the central node. Conversely, for the symmetric state, the mode 507

equation involves ∆̄r, ∆̄c and z. This feature reveals that the origin of ϕs is in fact twofold. 508

First, as mentioned previously, ϕs originates in the hybridization between ϕL and ϕR. But 509

a remaining coupling arises with ϕc. This coupling is responsible for an additional energy 510

shift which affects the symmetric state, but not the anti-symmetric state. In this context, 511

when states localized on the roots are present, the dynamics of the CTQW can be interpreted 512

as follows. If the walker is initially located on the leftmost root s = 1, its behavior is mainly 513

governed by these localized states. The quantum dynamics is thus isomorphic to that 514

of a two-level system formed by the symmetric state ϕs and the anti-symmetric state ϕa. 515

Therefore, as a first approximation, the evolution operator U (t) defined in Eq.(9) can be 516

expressed in a simpler way, as 517

U (t) ≈ exp(−iϵst)|ϕs⟩⟨ϕs|+ exp(−iϵat)|ϕa⟩⟨ϕa|. (23)

The probability for observing the walker on the rightmost root at time t given that it 518

occupies the leftmost root at t = 0 is thus defined as, 519

PL|1(t) ≈
1
2
|ϕL(1)|2|ϕR(L)|2(1 − cos(∆ϵt)). (24)

with ∆ϵ = ϵs − ϵa. At this step, the energy difference ∆ϵ remains still unknown. Its calcu- 520

lation requires to solve the mode equations Eq. (16) for finite L values, a task that cannot 521

be achieved analytically. To overcome this problem, we propose to use an approximate 522

procedure based on an expansion of the mode equations around the solutions in the limit 523
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L → ∞. To proceed, let us first consider the mode equation for the anti-symmetric state ϕa. 524

This equation, defined as F(x) = x−(L−1)F(x−1), gives rise to the solution xa which allows 525

us to obtain the corresponding energy ϵa = ϵ0 + Φ(xa + x−1
a ). Given that the solution is xr 526

in the limit L → ∞ (Eq. (18)), one seeks a solution xa = xr + δxa. By expanding the mode 527

equation around xr one obtains, to the lowest order 528

δxa ≈ x−(L−1)
r F(x−1

r )

(
∂F
∂x

)−1

xr

(25)

For ϕs, the mode equation is defined as F(x)G(x) = x−(L−1)F(x−1)G(x−1). Its solution 529

xs yields the corresponding energy ϵs = ϵ0 + Φ(xs + x−1
s ). As previously, by seeking a 530

solution xs = xr + δxs, one obtains, to the lowest order 531

δxs ≈ x−(L−1)
r

F(x−1
r )G(x−1

r )

G(xr)

(
∂F
∂x

)−1

xr

(26)

Therefore, after some algebraic calculations, we are able to determine the expression of 532

both δxa and δxs, and to obtain the energy difference ∆ϵ written as 533

∆ϵ ≈ 2Je−κ(L−1)

M(M − N)2

(
[M − (M − N)2]3

(M − N)2 − 1

)
, (27)

with κ = ln |xr|. At this step, let us mention that the energy of the symmetric state localized 534

on the central node is equal to zero whatever L. Indeed, xc =
√

M is a solution of the mode 535

equation F(x)G(x) = x−(L−1)F(x−1)G(x−1) since G(xc) = 0 (see Eq.(21)) and F(x−1
c ) = 0 536

(see the note after Eq.(18)). Finally, by combining Eqs.(20), (24) and (27), one obtains an 537

approximate expression for the probability of observing the walker on the rightmost root, 538

as 539

PL|1(t) ≈
1
2
Pmax

[
1 − cos

(
πt

Tmax

)]
, (28)

with Tmax = π/∆ϵ and 540

Pmax =

(
1 +

z2

(x2
r − 1)

)−2

=

(
(M − N)2 − M

(M − N)2 − (M − N)

)2

. (29)

In a qualitative agreement with the numerical observations, Eq.(28) shows that the proba- 541

bility PL|1(t) is a periodic function whose period is equal to T = 2Tmax. Initially equal to 542

zero, it increases to reach its first maximum value Pmax at time Tmax. As shown in Figure 5 543

and 7, Eq.(28) provides a good estimate of the time evolution of the smoothed probability 544

(orange lines) when the main part of the dynamics is governed by the states localized on 545

the roots. In addition, as illustrated in Figure 9, it allows us to qualitatively understand 546

the behavior of the maximum value Pmax, as well as the behavior of the time Tmax (orange 547

symbols). 548

Eq.(28) clearly shows the key role played by the localized states for the efficiency 549

of the transfer between the two roots of the graph. Indeed, the stronger the localization, 550

the more efficient the transfer. This feature originates in the weight of the initial state 551

on both ϕa and ϕs. This weight increases as |xr| moves away from unity which favors 552

the increases of the maximum probability Pmax which tends to unity. Unfortunately, this 553

optimization of Pmax has a cost since the stronger the localization, the longer the time 554

Tmax. Indeed, Tmax increases exponentially as the localization is enhanced. Nevertheless, 555

as observed in Section 3, such a negative effect can be softened by using localized states 556

above the allowed band to mediate the transfer. The main reason can be understood as 557

follows. When they lie below the allowed band, the creation of ϕa and ϕs mainly results 558

from the hybridization between states localized on each root through the overlap of their 559

wave functions. The influence of the state ϕc localized on the central node is negligible. By 560
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contrast, when they lie above the allowed band, the mechanism is slightly different. The 561

energy difference with ϕc is reduced so that the coupling between the symmetric state ϕs 562

and ϕc is no longer negligible. This coupling is responsible for an additional contribution 563

of the energy difference ∆ϵ leading to the shortening of Tmax. 564

5. Conclusion 565

In this paper, a CTQW based on the Laplacian of a modular glued-tree graph is used 566

for studying the ability of a quantum walker to propagate between the roots of the trees. 567

Instead of considering traditional binary trees, we focused our attention here on leafier 568

structures in which the degree of the roots N differs from the branching rate M of the other 569

nodes. Therefore, by mapping the problem onto a one-dimensional CTQW, we have shown 570

that the walker behaves as a particle moving on a finite size chain which exhibits defects. 571

These defects, that result from the specific nature of both the roots and the leaves of the 572

glued trees, yield a rich energy spectrum. Depending on the architecture of the graph, 573

different kinds of eigenstates have been identified, i.e., extended states and states localized 574

either on the roots or on the leaves, giving rise to different dynamical regimes. 575

Basically, when M is about N, the energy spectrum exhibits extended states and one 576

state localized on the leaves. Therefore, the walker dynamics is governed by the back-and- 577

forth motion of the initial wave packet between the two roots. An efficient transfer between 578

the two roots can take place via quantum recurrences which occur at very precise revival 579

times which may be difficult to detect in an experimental protocol. By contrast, when M 580

strongly differs from N, the energy spectrum supports two additional quasi-degenerated 581

states outside the allowed band that refer to a localization process on the roots. When the 582

walker is initially on the leftmost root, its state preferentially decomposes on these two 583

localized states so that the dynamics becomes isomorphic to that of a two level-system. 584

Quantum beats occur between the two roots resulting in an almost perfect transfer mediated 585

by these specific localized states. Nevertheless, we have shown that a more efficient transfer 586

arises when the localized states lie above the allowed band. In this case, the states localized 587

on the roots interact with the state localized on the leaves. This interaction enhances the 588

rise of the quasi-degeneracy resulting in the shortening of the transfer time. Therefore, the 589

probability of observing the CTQW on the target rightmost root can be very high over a 590

wide time scale, facilitating the experimental detection of the walker. 591

Our work evidenced that localized states mediated almost perfect quantum state 592

transfer between the roots of two glued trees could be achieved with an appropriate 593

design of the graph architecture. These results naturally motivate new questions that 594

could represent interesting starting points for future developments. First it could be 595

wise to investigate what happened in more realistic networks. In that case, the walker 596

does not propagate freely but he interacts with the remaining degrees of freedom of the 597

structures. These interactions could favor decoherence processes, that may drastically 598

affect the efficiency of the transfer. Second, it would be interesting to see if the realistic 599

implementations of the CTQW will be able to maintain an almost perfect transfer when 600

the inherent presence of disorder favors the stop of the propagation of the walker due to 601

the so-called Anderson localization. Finally, in the present situation the defects are not 602

independent from each other since they depend on the branching rate M. Therefore it could 603

be interesting to see what happened in a one dimensional structure with three independent 604

defects located on both the edges and the center of the network. By tuning the central 605

defect judiciously, it could be possible to optimize the transfer between the two edges of the 606

chain owing to the interaction between states localized on the edges and a state localized 607

on the center of the chain. 608
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