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ABSTRACT

Detecting small to tiny targets in infrared images is a chal-
lenging task in computer vision, especially when it comes
to differentiating these targets from noisy or textured back-
grounds. Traditional object detection methods such as YOLO
struggle to detect tiny objects compared to segmentation neu-
ral networks, resulting in weaker performance when detect-
ing small targets. To reduce the number of false alarms while
maintaining a high detection rate, we introduce an a contrario
decision criterion into the training of a YOLO detector. The
latter takes advantage of the unexpectedness of small targets
to discriminate them from complex backgrounds. Adding
this statistical criterion to a YOLOv7-tiny bridges the per-
formance gap between state-of-the-art segmentation methods
for infrared small target detection and object detection net-
works. It also significantly increases the robustness of YOLO
towards few-shot settings.

Index Terms— small target detection, a contrario rea-
soning, YOLO, few-shot detection

1. INTRODUCTION

Detecting small objects in infrared (IR) images accurately
is essential in various applications, including medical or se-
curity fields. Infrared small target detection (IRSTD) is a
great challenge in computer vision, where the difficulties are
mainly raised by (i) the size of the targets (area below 20
pixels), (ii) the complex and highly textured backgrounds,
leading to many false alarms, and (iii) the learning condi-
tions, namely learning from small, little diversified and highly
class-imbalanced datasets, since the number of target class
pixels is very small in comparison with the background class
one. The rise of deep learning methods has led to impres-
sive advances in object detection in the past decades, mostly
thanks to their ability to learn from a huge amount of anno-
tated data to extract non-linear features well adapted to the
final task. For IRSTD, semantic segmentation neural net-
works (NN) are the most widely used [1]. These include
ACM [2], LSPM [3] and one of the recent state-of-the-art
(SOTA) method, namely DNANet [4], which consists of sev-
eral nested UNets and a multiscale fusion module that enable

the segmentation of small objects with variable sizes. How-
ever, a major issue of relying on segmentation NN for object
detection is that object fragmentation can occur when tuning
the threshold used to binarize the segmentation map. This
can lead to many undesired false alarms and distort counting
metrics. Object detection algorithms like Faster-RCNN [5] or
YOLO [6] reduce this risk by explicitly localizing the objects
thanks to the bounding box regression. However, they often
have difficulty in detecting tiny objects. Very few studies have
focused on adapting such detectors for IRSTD [7], and no rig-
orous comparison was made with SOTA IRSTD methods.

In this paper, we propose a novel YOLO detection
head, called OL-NFA (for Object-Level Number of False
Alarms), that is specifically designed for small object detec-
tion. This module integrates an a contrario decision criterion
that guides the feature extraction so that unexpected objects
stand out against the background and are detected. It is used
to re-estimate the objectness scores computed by a YOLO
backbone, and has been carefully implemented to allow the
back-propagation during training. One advantage of using a
contrario paradigm is that it focuses on modeling the back-
ground, for which we have a lot of samples, rather than the
objects themselves. In this way, the problems of class im-
balance and little training data are bypassed by carrying out
the detection by rejecting the hypothesis of the background
distribution. Our main contributions are as follows:

1. We design a novel YOLO detection head that inte-
grates a contrario criterion for estimating the object-
ness scores. By focusing on modeling the background
rather than the object itself, we relax the constraint of
having lots of training samples.

2. We compare both SOTA segmentation NN and object
detection methods on a famous IRSTD benchmark and
show that adding OL-NFA to a YOLOv7-tiny backbone
bridges the performance gap between object detectors
and SOTA segmentation NN for IRSTD.

3. On top of that, our method improves YOLOv7-tiny per-
formance by a large margin (39.2% AP for 15-shot) in
few-shot settings, demonstrating the robustness of the
a contrario paradigm in weak training conditions.



2. RELATED WORK

2.1. A contrario reasoning

A contrario decision methods allow to automatically derive
a decision criterion with regards to a hypothesis test. They
draw inspiration from theories of perception, in particular the
Gestalt theory [8]. They consist in rejecting a naive model
characterizing a destructured background by using an inter-
pretable detection threshold. The latter allows us to control
the Number of False Alarms (NFA), often defined as the prod-
uct between the total number of tested objects and the tail dis-
tribution of the law followed by the chosen naive model. An
NFA value can then be associated to any given object since
the computed tail value depends on the object features. Sev-
eral a contrario formulations have been proposed in the lit-
erature. They depend on whether we consider grey level or
binary images. In the first case, the most commonly used
naive model is the Gaussian distribution of the pixel grey-
level values [9, 10, 11]. The latter has been integrated into a
deep learning framework by [12], and has shown great per-
formance for small target segmentation. In the second case,
the most widely used naive model is the uniform spatial dis-
tribution of “true” pixels in the image grid. This leads to a
binomial distribution of parameter p for the number of “true”
pixels κ falling within any given parametric shape of area ν
[13, 14]:

NFA (κ, ν, p) = η
ν∑

i=κ

(
ν

i

)
pi (1− p)

ν−i
, (1)

where η is the number of tested objects. Based on Eq. (1),
a subset of pixels likely to represent an object is all the more
significant as it contains many points spatially close compared
to the image overall density. Our work focuses on integrating
this naive model into the training loop of an object detector
to guide the feature extraction, which was not considered in
previous studies. Unlike [12], whose naive model is suitable
for pixel-level classification (i.e. segmentation), we consider
a different model that directly applies at object level and is
thus more relevant for NN with bounding box proposals.

2.2. Object detection methods

Object detection is the task of detecting objects of interest
within an image and identifying their locations with bound-
ing boxes. Several types of deep learning approaches have
been proposed for such a task [15, 6]. YOLO framework is
the most widely used one as it leads to great performance in
various applications, with low execution time. It is a single-
stage algorithm that uses a single convolutional neural net-
work to predict together bounding box coordinates, object-
ness and classification scores. Concretely, it divides the im-
age into a grid and predicts the probability (denoted as the
objectness score) for any given grid cell to contain an object

and the bounding box coordinates of the object if it exists.
One issue with the early versions of YOLO is that they strug-
gle in detecting small objects. Indeed, if the object to detect
is too small, it may only occupy a small portion of a grid cell,
making it difficult for YOLO to detect it accurately. To ad-
dress this issue, YOLOv3 [16] introduced a feature pyramid
network (FPN) that combines the features detected at mul-
tiple scales. Some of the latest versions of YOLO, such as
YOLOR [17] or YOLOv7 [18], lead to competitive detec-
tion performance on several famous computer vision bench-
marks, while also improving the execution speed. Tiny ver-
sions of YOLO with less convolutional layers have also been
proposed.

3. METHOD

3.1. Overall architecture

We propose a novel YOLO detection head, called OL-NFA
for object-level NFA detection head, that integrates an a
contrario criterion to detect objects with features that un-
expectedly deviate from the background distribution. Our
OL-NFA will compute objectness score based on NFA crite-
rion, Eq. (1), applied to feature maps derived by the network.

The overall architecture of our approach is illustrated in
Fig. 1. The infrared input images first go through a YOLO
backbone that extracts feature maps at different scales. Then,
the three lower-level features are combined together through
the neck, which gives us the final feature maps Fi used to per-
form the detection at three levels: i ∈ {1, 2, 3}. To achieve
the detection, the bounding box coordinates are first predicted
through a dense layer. We then introduce our OL-NFA mod-
ule to re-estimate the objectness score for each bounding box
using NFA criterion. To do so, we extract η regions of in-
terest (ROI), denoted as froi, using ROI Align from Faster
R-CNN [15], and we compute a significance score for each
ROI through the significance layer described in Section 3.2.
Finally, these scores are ranged in [0, 1] via the function fact
defined in in Section 3.2, which allows us to apply the Binary
Cross Entropy loss used in YOLO.

3.2. Differentiable integration of the a contrario criterion

Our significance layer in Fig. 1 integrates the a contrario cri-
terion given in Eq. (1). However, since this equation is (i) de-
signed for binary images rather than greyscale feature maps,
and (ii) not differentiable, several approximations were made
in order to allow its integration into the YOLO training loop.
The first difficulty raised by Eq. (1) is to count the number of
“true” pixels κ in froi ∈ R2. Thresholding froi to binarize
it would break the back-propagation loop. Thus, we propose
instead to consider real number membership coefficients (in
the spirit of fuzzy clustering or classification), which boils
down to handling, for each pixel, a coefficient indicating the
degree to which it belongs to the set containing pixels with a
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Fig. 1. Integration of our OL-NFA detection head into a YOLO framework. This module can be added on top of any YOLO.

value of 1 in the binary case. For this purpose, we apply the
sigmoid function σ on the pixel values, which allows us to
approximate the number of pixels contained in froi for esti-
mating the local density, by the sum of these fuzzy belonging
coefficients. The same approximation is made to compute the
total number of points in Fi for estimating the parameter p
(representing the global density of Fi) of the binomial law in
Eq. (1). The second issue is that the NFA function is discon-
tinuous, non differentiable and, as we deal with objects having
a small area ν, it only takes very few distinct values. These
elements make it difficult to integrate Eq. (1) “as is” into the
training loop, with a working back-propagation. We therefore
define the significance S (κ, ν, p) = − ln(NFA(κ, ν, p)) and
use the Hoeffding approximation when κ

ν > p, leading to

S (κ, ν, p) ≈ ν
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)]
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This allows us to expand the domain of the function S (κ, ν, p)
to R3, and to output more intermediate values. In the case of
κ
ν ≤ p, we simply assign (κ, ν, p) = − ln η as it corresponds
to obvious background values. Finally, since the significance
values range from [− ln(Ntest),+∞), where large values
correspond to possible targets, to obtain objectness scores
that range in [0, 1], we apply an asymmetric activation func-
tion fact(x, η) = 2σ(x+ ln η)− 1, with x ∈ R and η ∈ N∗.

4. EXPERIMENTS

4.1. Dataset and metrics

We evaluate our method on the NUAA-SIRST dataset [2],
which is one of the few infrared small target datasets publicly
available and widely used in the literature. It is composed
of 427 infrared images, with wavelengths ranging from 950
to 1200 nm. Targets from NUAA-SIRST have a spatial ex-

tent that vary from 2 − 3 pixels to more than 100 pixels for
the largest targets, which makes this dataset suitable to eval-
uate our method on a wide range of target sizes. Targets are
drowned into challenging scenes such as textured clouds, as
shown on the first row of Fig. 2. We split the dataset into
training, validation and test sets using a ratio of 60 : 20 : 20.
We also evaluate the benefits of our method in a few-shot set-
ting, by training the NN on 15 and 25 images only. Regard-
ing quantitative evaluation, we focus on conventional detec-
tion metrics: the F1-score (F1) and the Average Precision (AP,
area under Precision-Recall curve). We also rely on the Preci-
sion (Prec.) and the Recall (Rec.) to understand the achieved
values of F1-score. In the tables, the presented results have
been averaged over three distinct training sessions, and the
standard deviation is given for F1 et AP in superscript.

4.2. Settings

We add our OL-NFA detection head on top of YOLOv7-
tiny, as this baseline has shown to lead to good performance
on NUAA-SIRST dataset compared to other YOLO back-
bones. We compare it to several baselines1: 1) segmen-
tation networks specifically designed for IRSTD, namely
ACM [2], LSPM [3] and DNANet [4]; 2) YOLO base-
lines such as YOLOv3 [16], YOLOR [17], YOLOv7 and
YOLOv7-tiny [18]. For the IRSTD segmentation NN, we
use the training settings recommended in the original papers.
All object detection NN are trained from scratch on Nvidia
RTX6000 GPU for 600 epochs, with Adam optimizer [19], a
batch size equal to 16 and a learning rate equal to 0.001. The
same settings are used for the few-shot training.

1For YOLO baselines, we used the official PyTorch implementation of
YOLO WongKinYiu/yolov7. For IRSTD baselines we used the implementa-
tion given by kourenke/Review-Infrared-small-target-segmentation-networks



4.3. A contrario reasoning improves YOLO-based IRSTD

Table 1. Object-level metrics (F1, AP, Prec., Rec.) achieved
by the compared methods on NUAA-SIRST. Best results are
in bold and second best results are underlined. The inference
time (frames per second, FPS) is also given.

Method F1 AP Prec. Rec. FPS
Segmentation networks for IRSTD

ACM [2] 95.4±1.7 95.2±3.8 95.1 95.8 251
LSPM [3] 85.0±2.9 90.2±0.8 86.6 83.5 125

DNANet [4] 96.9±0.5 98.1±1.2 96.6 97.2 33
Object detection methods
YOLOv3 [16] 96.1±0.3 97.5±0.1 96.9 95.4 144
YOLOR [17] 95.7±2.2 96.7±1.1 96.5 94.9 136
YOLOv7 [18] 96.5±1.2 97.6±0.7 97.2 95.9 147
YOLOv7-tiny 96.5±0.6 97.8±0.4 96.9 96.2 256

Ours 97.2±0.6 98.2±0.2 98.6 95.9 208

Table 1 shows the performance achieved by each of the
compared methods on NUAA-SIRST. We can see that sub-
stituting conventional YOLO detection head with our OL-
NFA not only improves YOLO for tiny object detection, but
also bridges the performance gap observed between SOTA
IRSTD segmentation NN and conventional object detection
NN. Specifically, our method achieves a F1 score higher by
0.7% than the best YOLO baseline. The AP criterion is also
increased by 0.4%. Moreover, our method performs slightly
better in terms of F1 and AP than DNANet, which is SOTA
method for IRSTD. The inference time for our method is also
much lower than for DNANet, thus allowing for real-time ob-
ject detection. The high performance of our OL-NFA module
is mostly due to a higher precision with a limited loss in re-
call, which is explained by the NFA property of controlling
the number of false alarms. Indeed, adding an a contrario de-
cision criterion helps in enhancing small object features and
thus discriminating them from complex backgrounds. This
can be seen in Fig. 2, where the best YOLO baseline leads
to several false alarms for inputs 3 and 4, while our method
provides correct detections without any false alarm.

4.4. OL-NFA brings robustness towards few-shot settings

Table 2. Results achieved in 15 and 25-shot settings on
NUAA-SIRST. Best results are in bold.

Method
15-shots 25-shots

F1 AP F1 AP
YOLOv7-tiny 50.7±7.0 51.3±7.0 68.0±6.6 69.6±8.4

Ours 85.0±5.0 90.5±5.2 89.7±4.2 93.4±2.0

One important motivation of integrating a contrario rea-
soning into a NN is that the network learns to discriminate
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Fig. 2. Qualitative results obtained with YOLOv7-tiny and
our method on NUAA-SIRST dataset. Good detections and
false positives are framed in green and red, respectively.

small targets by learning a representation of background ele-
ments rather than the targets themselves. It should thus pro-
vide robustness to the NN towards weak training conditions.
To confirm our intuition, we quantitatively evaluate the bene-
fit of the proposed approach in a few-shot setting on NUAA-
SIRST dataset. For this purpose, we trained the networks on
15 and 25 images. For each few-shot setting, we train the de-
tectors on three distinct folds, with no overlap between them.
The results obtained on the test set defined in Section 4.1 are
averaged over these three folds and computed means are given
in Table 2. It can be seen that our method performs signif-
icantly better in a frugal setting than the baseline. Indeed,
in those cases, both F1 score and Average Precision are in-
creased by at least 20%. We thus conclude that adding an
object-level NFA to the baseline significantly improves its ro-
bustness towards frugal setting: the F1 score is decreased by
only 15% when dividing by more than 10 the number of train-
ing samples and the AP is maintained above 90%.

5. CONCLUSION

In this paper, we propose a novel YOLO detection head
named OL-NFA that integrates an a contrario decision crite-
rion into the training loop of a YOLO network. It forces the
network to model the background distribution rather than the
objects to detect. Extensive experiments have shown that our
method not only significantly improves YOLO performance
for small object detection in frugal and few-shot settings,
but also performs on par with SOTA segmentation networks
for small target detection. This promising performance en-
courages to consider further research into using a contrario
paradigm for tiny object detection.
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