Crystal Nucleation in Supercooled Atomic Liquids
Johannes Möller
(1)
,
Alexander Schottelius
(2)
,
Michele Caresana
(2)
,
Ulrike Boesenberg
(1)
,
Chan Kim
(1)
,
Francesco Dallari
(3)
,
Tiberio Ezquerra
(4)
,
José Fernández
(4)
,
Luca Gelisio
(3)
,
Andrea Glaesener
(5)
,
Claudia Goy
(3)
,
Jörg Hallmann
(1)
,
Anton Kalinin
(6)
,
Ruslan Kurta
(1)
,
Dmitry Lapkin
(3)
,
Felix Lehmkühler
(3)
,
Francesco Mambretti
(5)
,
Markus Scholz
(1)
,
Roman Shayduk
(1)
,
Florian Trinter
(2, 3, 7)
,
Ivan Vartaniants
(3)
,
Alexey Zozulya
(1)
,
Davide Galli
(5)
,
Gerhard Grübel
(3, 8)
,
Anders Madsen
(1)
,
Frédéric Caupin
(9)
,
Robert Grisenti
(2, 6)
1
European XFEL Gmbh
2 Goethe-Universität Frankfurt am Main
3 DESY - Deutsches Elektronen-Synchrotron [Hamburg]
4 IEM - Instituto de Estructura de la Materia
5 UNIMI - Università degli Studi di Milano = University of Milan
6 GSI - GSI Helmholtzzentrum für Schwerionenforschung
7 FHI - Fritz-Haber-Institut der Max-Planck-Gesellschaft
8 CUI - The Hamburg Centre for Ultrafast Imaging
9 iLM - L&I - iLM - Liquides et interfaces
2 Goethe-Universität Frankfurt am Main
3 DESY - Deutsches Elektronen-Synchrotron [Hamburg]
4 IEM - Instituto de Estructura de la Materia
5 UNIMI - Università degli Studi di Milano = University of Milan
6 GSI - GSI Helmholtzzentrum für Schwerionenforschung
7 FHI - Fritz-Haber-Institut der Max-Planck-Gesellschaft
8 CUI - The Hamburg Centre for Ultrafast Imaging
9 iLM - L&I - iLM - Liquides et interfaces
Frédéric Caupin
- Fonction : Auteur
- PersonId : 20832
- IdHAL : frederic-caupin
- ORCID : 0000-0002-8892-2514
- IdRef : 157459632
Robert Grisenti
Connectez-vous pour contacter l'auteur
- Fonction : Auteur correspondant
- PersonId : 1392662
Connectez-vous pour contacter l'auteur
Résumé
The liquid-to-solid phase transition is a complex process that is difficult to investigate experimentally with sufficient spatial and temporal resolution. A key aspect of the transition is the formation of a critical seed of the crystalline phase in a supercooled liquid, that is, a liquid in a metastable state below the melting temperature. This stochastic process is commonly described within the framework of classical nucleation theory, but accurate tests of the theory in atomic and molecular liquids are challenging. Here, we employ femtosecond x-ray diffraction from microscopic liquid jets to study crystal nucleation in supercooled liquids of the rare gases argon and krypton. Our results provide stringent limits to the validity of classical nucleation theory in atomic liquids, and offer the long-sought possibility of testing nonclassical extensions of the theory.