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BLOCH FUNCTIONS IN THE BALL WITH UNIVERSAL

NON-TANGENTIAL LIMITS

STÉPHANE CHARPENTIER, NICOLAS ESPOULLIER, RACHID ZAROUF

Abstract. We prove the existence of functions f in the little Bloch space of the unit ball
Bn of Cn with the property that, given any measurable function ϕ on the unit sphere Sn,
there exist a sequence (rn)n, rn ∈ (0, 1), converging to 1, such that for every z ∈ Bn,

f(rn(ζ − z) + z) → ϕ(ζ) as n → ∞, for almost every ζ ∈ Sn.

The set of such functions is residual in the little Bloch space.

1. Introduction and statements of the results

Let Bn := {z = (z1, . . . , zn) ∈ Cn : |z|2 = |z1|
2+ . . .+ |zn|

2 < 1} denote the open unit ball
of Cn and D = B1 the open unit disc. Without possible confusions, we shall indifferently
denote by | · | the modulus of a complex number and the euclidean norm in C

n. For f
holomorphic on Bn, the radial derivative of f is defined by

R(f) =
n

∑

k=1

zk
∂f

∂zk
.

The Bloch space B consists in all functions f holomorphic on Bn such that

sup
z∈Bn

(1− |z|2)|R(f)(z)| < ∞.

Endowed with the norm ‖f‖B := |f(0)| + supz∈Bn
(1 − |z|2)|R(f)(z)|, it is a Banach space.

The little Bloch space is the closed subspace of B, denoted by B0, consisting of all functions
f in B such that

lim
|z|→1−

(1− |z|2)|R(f)(z)| = 0.

Contrary to the Bloch space, the little Bloch space is a separable Banach space, in which
the set of all polynomials is dense. A function in B (resp. B0) will be called a Bloch function
(resp. a little Bloch function). For equivalent definitions of the Bloch space and the little
Bloch space, and for the standard results that will not be used later, we refer to [25, Chapter
3].

In this note, we are interested in the boundary behaviour of little Bloch functions for
n ≥ 1. It easily follows from a classical tauberian theorem due to Hardy and Littlewood [15]

that the lacunary series
∑

k z
2k is a Bloch function with finite radial limits at no points of

the unit circle T = ∂D. By Plessner’s theorem, this implies that the image by such functions
of almost all radii in D is dense in C. In the unit ball of Cn, proving the existence of Bloch
functions with radial limits at no point of Sn is far more involved, and was done by Ullrich
[24]. His proof is constructive and partly relies on ideas of [1]. It makes use of homogeneous
polynomials of Ryll-Wojtaszczyk type, that appears in the construction of inner functions
in the ball. Note that a result in [3] implies that for any f ∈ B, Sn contains a dense set
of points at which any f admits radial limit in C ∪ {∞}. Thus, for any function f in B
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with finite radial limit at no point of Sn, there exists a dense set of points ζ in Sn such that
|f(rζ)| → ∞ as r → 1−.

The main result of this note shows that quasi-all functions in B0 (in the sense of Baire
category theorem) carry an even more erratic non-tangential boundary behaviour, near a.e.
point of Sn. We recall that a subset of separable Fréchet space is residual if it contains
a dense countable intersection of open sets. Let us denote by m the normalized Lebesgue
measure on Sn.

Main theorem. Let (rn)n be a sequence of real numbers in (0, 1), converging to 1 as n → ∞.
There exists a function f in B0 with the following property P: given any m-measurable
function ϕ on Sn, there exists a sequence (nk)k of integers such that for any z ∈ Bn and
m-a.e. ζ ∈ Sn,

f(rnk
(ζ − z) + zζ) → ϕ(ζ) as k → ∞.

The set of such functions is residual in B0.

In [4], Bayart proved the same statement, where B0 is replaced by the Fréchet space H(Bn)
of all holomorphic functions on Bn, or by any little growth space H∞

w,0 of the ball. Given a
(continuous) weight function w(t) : [0, 1) → (0,+∞) with w(0+) = 0, the growth space H∞

w

consists of all functions f holomorphic in Bn such that

sup
z∈Bn

w(1− |z|)|f(z)| < ∞.

The space H∞
w,0 is defined as the closed subspace of H∞

w consisting of those f for which
w(1 − |z|)|f(z)| → 0 as |z| → 1. Since there exist weights w for which H∞

w is contained in
all the Bergman spaces Ap, p ≥ 1, the space ∩p≥1A

p contains a (lot of) function(s) satisfying
the property P. In [9], an extension of this result to H(D), where D is a pseudoconvex
domain of Cn, is obtained. We observe that in the space H(D), it is known [8] that quasi-all
functions satisfy a much stronger property. In passing, the above theorem answers a question
posed in [10] for the Bloch space of the unit disc.

The above results typically fall within the theory of universality [5, 13], and it is now well-
understood that most of results of this kind follow from a Baire category argument combined
with a diagonal argument, and eventually reduce to a suitable simultaneous approximation.
The general idea is that, if we are given a (reasonable) separable Fréchet space X continuously
embedded in H(Bn), in order to build a function f in X with some prescribed boundary
behaviour m-a.e. on Sn, it is enough, roughly speaking, to find a function f in X that
simultaneously approximates 0 in X and any given continuous function on some large subset
of Sn. We point out that simultaneous polynomial approximation in spaces of holomorphic
functions is an independent active topic of research. We refer to the seminal thesis work of
Khrushchev [17] and to the recent paper [21] (see also the references therein).

Following this strategy, in order to get our main result, we will prove a slightly more
precise verson of the following simultaneous approximation lemma (see Lemma 2.1).

Lemma (Simultaneous approximation in the Bloch space of the ball). For any ε > 0, any
g ∈ B0, and any function ϕ continuous on Sn, there exist a measurable set E ⊂ Sn, with
m(E) ≥ 1− ε, and a function f ∈ B0 such that

‖f − g‖B ≤ ε and sup
z∈E

|f(z)− ϕ(z)| ≤ ε.

For any holomorphic function space X on Bn, that contains polynomials, if the set of all
polynomials is dense in X and contained in the pointwise multipliers of X, then proving
the above lemma reduces to the case where g = 0 and ϕ = 1. Now, a general approach
to simultaneously approximate 0 in X and 1 on a large subset of Sn consists in selecting
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the approximant f as equal to P ◦ I, where P is a polynomial (usually given by Oka-
Weyl theorem - or Runge’s theorem in C) that simultaneously approximate uniformly 1 an
arbitrarily large proper compact subset of Sn and 0 in a compact subset of Bn, and where
I is an inner mapping chosen so that P ◦ I is small in X norm, and so that it transports
the approximation property of P on (another) large subset of Sn. For example, in [4], the
author made use of a similar simultaneous approximation result for H∞

w,0, that was due to
Iordan [16]. Therein, the polynomial P is chosen using a Mergelyan’s type result for the ball
[14], and the inner mapping is zΦk(z), z ∈ Bn, where φ is any inner function vanishing at 0,
and the power k large enough (depending on the weight w).

A similar approach is also followed by Limani [21, Section 4.2], who basically proves the
above lemma for n = 1. The main difficulty consists in showing the existence of an inner
function I such that ‖P ◦I‖B is arbitrarily small, which essentially reduces to the existence of
an inner function I with arbitrarily small Bloch norm. It turns out that this can be achieved
using a deep result of Aleksandrov, Anderson and Nicolau [2]. We mention that this allows
Limani to prove the existence of so-called Menshov universal functions in the Bloch space of
D, answering a question posed in [6]. We also refer to [18, 19] for results of a similar nature
in other Banach spaces of holomorphic functions on D.

In order to prove our simultaneous approximation lemma for the Bloch space of the ball,
we follow the same strategy as Limani. When n > 1, the first difficulty is that one does not
have a proper Mergelyan’s theorem, and the second one is that inner functions are usually
much more difficult to construct. Nevertheless, a combination of simple geometric ideas,
that served already in [9], and a partial generalisation of Aleksandrov-Anderson-Nicolau’s
result, due to Doubtsov [11], will allow us to obtain the main theorem.

The paper is organised as follows: the second section is devoted to the proof of Lemma
2.1. In the third one, we outline the proof of the Main Result. Some extensions are also
discussed.

2. Simultaneous approximation in the Bloch space of the ball

Let us start with some notations. By C(Sn), we denote the space of all continuous functions
on Sn, endowed with the supremum norm. Given a subset E ⊂ Cn, the notation ‖ · ‖E,∞

will stand for the essential supremum norm of L∞(E). If E ⊂ Sn and a compact subset L
of Bn are given, we will denote by E∗

L the set

E∗
L := {r(z − ζ) + z : z ∈ L, ζ ∈ E, 0 ≤ r ≤ 1} .

Lemma 2.1. Let ε > 0, let L be a compact subset of Bn, let g ∈ B0, and let ϕ ∈ C(Sn).
There exist a set E ⊂ Sn with σ(E) ≥ 1− ε and a function f continuous on E∗

L, such that

(i) ‖f − g‖B ≤ ε;
(ii) ‖f − ϕ‖E,∞ ≤ ε.

The density of the polynomials in B0 show that in order to prove Lemma 2.1, it is enough
to prove it for g = 0, upon replacing ϕ by ϕ−Q, with Q close to g in B0.

The remaining of the section is devoted to the proof of this lemma for g = 0. It is based
on two results. The first one is geometric and follows immediately from [9, Lemma 3.6], for
e.g.

Lemma 2.2. Let ε > 0 and let U be a domain in Cn such that U ∩ Sn 6= ∅. There exists a
measurable subset E of U ∩ Sn such that:

(i) σ(U ∩ Sn \ E) < ε;
(ii) for any compact set L ⊂ Bn, the set E ∪ L is polynomially convex.
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The second one deals with the existence of inner function in the ball with a specific
behaviour at the boundary. It is a combination of two results by Aleksandrov-Anderson-
Nicolau [2] and Doubtsov [11].

Theorem 2.3. Let η > 0 be fixed. There exists a non-constant inner function I : Bn → C

such that
(1− |z|2)|RI(z)|

1− |I(z)|2
≤ η, z ∈ Bn.

In particular, ‖I‖B ≤ η.

Proof. Let us fix η > 0. Let µ be a pluriharmonic probability measure such that the slices
µζ are uniformly symmetric and singular for all ζ ∈ Sn. Such measures exist, by Corollary
2.3 in [11]. Then define the non-constant singular inner function

Θ(z) = exp

(

−

∫

Sn

(

2

(1− 〈z, ζ〉)n
− 1

)

dµ(ζ)

)

.

Then, again by [11], one has

lim
|z|→1

(1− |z|2)|RΘ(z)|

1− |Θ(z)|2
= 0.

In particular, there exists a positive constant M < ∞ such that

(1− |z|2)|RΘ(z)|

1− |Θ(z)|2
≤ M, z ∈ Bn.

By Theorem 1 in [2] applied with φ(t) = ηt/M , there exists an inner function g : D → D

such that
(1− |w|2)|g′(w)|

1− |g(w)|2
≤

η

M
, w ∈ D.

Let us set I = g ◦ Θ. Then I is a non-constant inner function on Bn such that, for any
z ∈ Bn,

(1− |z|2)|RI(z)|

1− |I(z)|2
=

(1− |z|2)|g′(Θ(z))||RΘ(z)|

1− |g(Θ(z))|2
≤

η

M

(1− |z|2)|RΘ(z)|

1− |Θ(z)|2
≤ η.

�

We are now ready to prove Lemma 2.1. The notation A .P B shall be used when there
exists a positive constant C, depending on the parameter P , such that A ≤ CB.

Proof of Lemma 2.1 with g = 0. Let ε > 0, let L be a compact subset of Bn, and let ϕ ∈
C(Sn).

First, by uniform continuity of ϕ, there exist open domains U1, . . . , Ul in C
n, pairwise

disjoint, with Uj ∩ Sn 6= ∅ for any j, and complex numbers c1, . . . , cl, such that

(a) σ(Sn \ (U1 ∪ . . . ∪ Ul)) ≤ ε/5;
(b) |ϕ(z)− ck| ≤ ε/2 for any z ∈ Uk ∩ Sn and any k ∈ {1, . . . , l}.

Now, applying Lemma 2.2 to each Uk, we choose a compact set F ⊂ Sn ∩ (U1 ∪ . . . ∪ Ul)
with σ(F ) ≥ 1 − ε/4, such that F ∪ {0} is polynomially convex. Since the continuous
function equal to 0 at 0 and to ck on Uk, k ∈ {1, . . . , l}, extends holomorphically to an
open neighborhood of {0} ∪U1 ∪ . . . ∪Ul, the Oka-Weyl theorem (see [23], e.g.) ensures the
existence of a polynomial Q such that

|Q(z)− ϕ(z)| ≤ ε/2, z ∈ F.
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Let also P be a polynomial such that

(1) |P (0)| ≤
ε

2‖Q‖∞,Bn

and |P (z)− 1| ≤
ε

2‖Q‖∞,Bn

, z ∈ F.

Let now I be given by Theorem 2.3 with the same η > 0 as above. We define the mapping
J : z = (z1, . . . , zn) 7→ I(z)z = (z1I(z), . . . , znI(z)), z ∈ Bn. It is clear that J is an inner
mapping from Bn to Bn that vanishes at 0. Now, a simple calculation shows that

R(P ◦ J)(z) = (R(I)(z) + I(z))

n
∑

i=1

zi
∂P

∂zi
(J(z)),

Hence, since P is a polynomial, we get for any z ∈ Bn,

|R(P ◦ J)(z)| ≤
n

∑

i=1

∣

∣

∣

∣

∂P

∂zi
(J(z))

∣

∣

∣

∣

(|I(z)|+ |R(I)(z)|)

.P |I(z)|+ |R(I)(z)|.

Moreover, as it is well-known,

|I(z)| .P ‖I‖B log(
1

1− |z|2
), z ∈ Bn.

Then for any z ∈ Bn,

(1− |z|2)|R(P ◦ J)(z)| .P (1− |z|2)|R(I)(z)| + (1− |z|2) log(
1

1− |z|2
)‖I‖B.

By Theorem 2.3, the function P ◦ J belongs to B0, and one has ‖I‖B ≤ η. Therefore

(1− |z|2)|R(P ◦ J)(z)| .P η

(

1 + (1− |z|2) log(
1

1− |z|2
)

)

, z ∈ Bn,

hence (1− |z|2)|R(P ◦ J)(z)| .P η, z ∈ Bn.

We set f = Q.(P ◦ J). Using the fact that the multiplication by Q is a bounded linear
operator on B0 [25, Theorem 3.21], and upon choosing η small enough, we deduce by the
previous that

(1− |z|2)|R(f)(z)| .P η, z ∈ Bn.

Moreover, since J vanishes at 0, by (1), we have |P ◦ J(0)| ≤ ε/2. All in all we have proven
the inequality ‖f‖B ≤ ε.

To finish the proof, observe that, by (1) and the definition of Q, for any z ∈ J−1(F ) ∩ F ,
we have

|f(z)− ϕ(z)| ≤ |Q(z)||(P (J(z))− 1)|+ |Q(z)− ϕ(z)| ≤ ε.

Since J = Iz, with I inner, Loewner’s lemma (see [22, Example 14.2]) implies

σ(J−1(F )) = σ(F ) ≥ 1− ε/4,

hence σ(J−1(F ) ∩ F ) ≥ 1 − ε/2. We set Ẽ = J−1(F ) ∩ F . The function f being bounded
on Bn, we may apply Egoroff’s theorem (see [4, Lemma 1] for details) to choose a compact
set E so that f and E satisfy all the desired properties. �

Remark 2.4. For f ∈ H(Bn), let fr denote the dilate of f defined by fr(z) = f(rz), z ∈ Bn.
We recall that H∞ is continuously embedded into B0 and that ‖fr − f‖B → 0 as r → 1 for
any f ∈ B0 [25]. Therefore, upon choosing r ∈ (0, 1) close enough to 1 and approximating
fr by a polynomial uniformly on Bn, the approximating function f in Lemma 2.1 can be
chosen as a polynomial.
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3. Bloch functions with universal radial limits

3.1. Outline of the proof of the Main Theorem. Let us restate the Main Theorem
below.

Theorem 3.1. Let (rn)n be a sequence of real numbers in (0, 1), converging to 1 as n → ∞.
There exists a function f in B0 with the following property P: given any m-measurable
function ϕ on Sn, there exists a sequence (nk)k of integers such that for any z ∈ Bn and
m-a.e. ζ ∈ Sn,

f(rnk
(ζ − z) + zζ) → ϕ(ζ) as k → ∞.

The set of such functions is residual in B0.

Since the proof of Theorem 3.1 is identical to that of Theorem 1 in [4], upon replacing [4,
Lemma 2] by Lemma 2.1, we shall only sketch it.

Let (rn)n be a sequence in (0, 1), convergent to 1−. We shall first identify a countable
intersection of dense open sets in B0, consisting of functions that all satisfy the property P,
and then apply the Baire category theorem. To do so, we fix a an exaustion (Ls)s of Bn by
compact sets, and a dense sequence (ϕl)l in C(Sn). For p ∈ N, let us denote by Ep the set of
all measurable subsets E of Sn with m(E) ≥ 1 − 2−p. Now, for l, n, p, s ∈ N, we define the
set

U(l, n, p, s) =
⋃

m≥n

⋃

E∈Ep

{f ∈ B0 : sup
z∈Ls

sup
ζ∈E

|f(rm(ζ − z) + z)− ϕl(ζ)| < 2−s}.

Then we claim that every function f in
⋂

l,n,p,s∈NU(l, n, p, s) satisfies the property P. Indeed,
using Lusin’s theorem, one first checks that given any measurable function ϕ on Sn, there
exist sequences (mk)k, mk ∈ N, and (E(k))k, E(k) ∈ Ek, such that

sup
z∈Lk

sup
ζ∈E(k)

|f(rmk
(ζ − z) + z)− ϕl(ζ)| < 2−k.

Note that, for the choice of rmk
, it is used that f is absolutely continuous on E(k)∗Lk

(see
the beginning of Section 2 for the notation). Now, setting E = ∪M∈N ∩k≥M E(k), it is easily
checked that f has has the desired property for any ζ ∈ E.

To finish the proof, it remains to check that each set U(l, n, p, s) is open and dense in B0.
The fact that B0 is continuously embedded into H(Bn) immediately implies that U(l, n, p, s)
is open. The density is a straightforward application of Lemma 2.1.

3.2. Further extensions and remarks.

3.2.1. Weighted Bloch spaces. For n = 1, the main theorem can be extended to a scale of
generalized Bloch spaces. Let w : (0, 1) → (0,+∞) be a non-decreasing weight (that is
w(t) → 0 as t → 0+). The weighted Bloch space B(w) associated with w is defined as the
space of all functions f holomorphic in D, such that

‖f‖B(w) := |f(0)|+ sup
|z|<1

1− |z|

w(1− |z|)
|f ′(z)| < ∞,

and the little weighted Bloch space B0(w) as the subspace of B(w) consisting of all f such
that

1− |z|

w(1− |z|)
|f ′(z)| → 0 as |z| → 1−.

Applying Mergelyan’s theorem together with [2, Theorem 5.2], one can follow the same
steps as to prove Theorem 3.1 (see also [21, Section 4.2]), in order to get the following
improvement in the case n = 1.
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Theorem 3.2. Let w be a non-decreasing weight such that, for some ε > 0, the function
w(t)/t1−ε is decreasing. If

∫ 1

x

w(t)2

t
dt = +∞,

then there exists a residual set of functions in B0(w) satisfying the property P.

Interestingly, the integral condition in the previous result is sharp. Indeed, Proposition 1.1

in [12] shows that if
∫ 1

x

w(t)2

t
dt < +∞, then every function in B(w) has radial limits almost

everywhere. Since the latter result holds true for the unit ball Bn as well, it is natural to
wonder whether Theorem 3.2 also holds for n ≥ 2.

3.2.2. Cluster sets along curves of Bloch functions. Using the notation of the proof of The-
orem 3.1, we have seen that all functions of the Gδ-dense subset

⋂

l,n,p,s∈NU(l, n, p, s) of B0

satisfy the property P. We shall see that, in fact, they also satisfy another property along
certain paths in Bn that end at a point of Sn.

For ζ ∈ Sn, let us say that a (continuous) path γ : [0, 1) → Bn terminates non-tangentially
at ζ if γ(t) → ζ as t → 1, and there exists a compact set L ⊂ Bn such that for any t ∈ [0, 1),
γ(t) ∈ {ζ}∗L where, following the notation introduced at the beginning of Section 2,

{ζ}∗L := {r(z − ζ) + z : z ∈ L, 0 ≤ r ≤ 1} .

Now, it is clear that for any path γ terminating non-tangentially at some ζ ∈ Sn, one has
γ([0, 1)) ∩ {r(z − ζ) + z : z ∈ L} 6= ∅, for any r ∈ [0, 1) large enough. Therefore, for any
function f in

⋂

l,n,p,s∈NU(l, n, p, s), there exists a set E ∈ Sn, with m(E) = 1, such that any
path in Bn terminating non-tangentially at a point ζ ∈ E is mapped by f to a dense subset
of C. In particular, we have:

Corollary 3.3. There exists a residual set in B0, every element f of which satisfies the
following property: there exists a set E ⊂ Sn, with m(E) = 1, such that for any path γ
terminating non-tangentially at a point of E, the cluster set of f along γ is maximal - that
is the set f(γ([0, 1))) is dense in C.

This result complements the fact that, for every function f in the Bloch space, there exists
a dense set of points in Sn at which f admits (finite or infinite) radial limit (this can be seen
as a consequence of a result in [3]). For n = 1, since every Bloch function is normal, it turns
out that every radial limit of a non-constant function in B is also a non-tangential limit [20].
In contrast, we recall that there exist a residual set in H(Bn) of functions having a maximal
cluster set along any path terminating at a point of Sn, with finite length [9]. For the case
of the disc, the assumption with finite length can be dropped (see [7] or [8]).
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