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Abstract
We propose a discrete time formulation of the semi martingale optimal transport problem

based on multi-marginal entropic transport. This approach offers a new way to formulate and
solve numerically the calibration problem proposed by [19], using a multi-marginal extension of
Sinkhorn algorithm as in [6, 11, 7]. In the limit when the time step goes to zero we recover,
as detailed in the companion paper [9], a semi-martingale process, solution to a semi-martingale
optimal transport problem, with a cost function involving the so-called specific entropy introduced
in [14], see also [13] and [3].

1 Introduction
Applications of Semi Martingale Optimal Transport (SMOT) in finance have been the object of several
recent studies ([25], [19], [20] amongst others). This framework is particularly well adapted to the
problem of model calibration: Find a diffusion model that is compatible with observed option prices.
SMOT is the stochastic version of Dynamic Optimal Transport (DOT), that was introduced by [5], as
a generalization of OT where transport is achieved by a time dependent flow minimizing the kinetic
energy.

While the theoretical aspects of these problems are now well understood, the numerical implemen-
tation remains challenging.

In the meantime, a stochastic relaxation of static (i.e. not dynamic) optimal transport, known
as Entropic Optimal Transport (EOT), has shown to be solvable very efficiently, by the so-called
Sinkhorn algorithm (see [24] for a review). Interestingly, while there is equivalence between the Static
OT problem and its dynamic version, the Entropic regularisation of OT can also be seen either as a
static problem, or as variant of the DOT adding a constant volatility diffusion to the governing model,
this dynamic problem is known as the Schrödinger problem, see [21].

From a mathematical perspective, all problems (DOT, SMOT and EOT) can be seen as a variant
of the same problem: find a process described by the SDE

dXt = µt dt+ σt dW t,

the induced probability P on the space of continuous paths, with distribution constraints of the form
of moment constraints EP[ψi(Xti)] = ci

1 , and minimising a Lagrangian

EP

[∫ T

0

F (µt, σ
2
t ) dt

]
:= F(P). (1)

1Note that prescribing the whole distribution is equivalent to prescribing enough moment constraints
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Classical DOT [5] corresponds to the particular case F = |µ|2 if σ ≡ 0, +∞ otherwise.
The Semi-Martingale Transport will handle general forms of F , as long as it is convex with respect

to (µ, σ2).

Classical Entropic OT [21] corresponds to the particular case F = |µ|2 if σ ≡ σ where σ is constant,
+∞ otherwise. It is also one of the formulations of the Schrödinger’s problem , i.e. minimizing
the relative entropy (aka Kullblack Leibler divergence) of P: KL(P|Wσ), with respect to the Wiener
measure Wσ (with a given constant volatility σ), under initial and terminal conditions on the law
of Xt=0 and Xt=T . Thanks to the properties of the relative entropy, Classical EOT in its static
formulation can be solved very efficiently by the Sinkhorn’s algorithm.

A general approach (see [4] for a review) is a time discretization that leads to a so-called Multi-
Marginal OT problem . In this setting the minimization is performed over the law Ph (h is the time
step) of a vector-valued random variable whose marginals represent densities at each time step. In this
paper, we use this time discretization method and an entropic penalization to solve problem (1): We
minimize the sum of a discretized form of F in (1), Fh(Ph) (by taking the obvious discrete versions of
µ and σ) and the discrete time relative entropy regularization KL(Ph|Wh

σ ).
The drawback of minimising an energy in the form KL(P|Wσ) is that by essence the minimizer is

constrained at σ = σ and cannot satisfy constraints on µ (for instance µ ≡ 0 or µ = r, the interest rate)
familiar in finance, since µ is precisely the only degree of freedom used to comply with the distribution
constraints. We propose to overcome this issue by considering a proper scaling of the discrete relative
entropy and its convergence property : if Ph a sequence of Markov chains converging to the law of a
diffusion P with (possibly local) drift µ and volatility σ then

lim
h↘0

h KL(Ph|Wh
σ ) = EP

[∫ T

0

σ2

σ2 − 1− log
σ2

σ2 dt

]
=: S(P|Wσ), (2)

or in short S(σ|σ̄).
The "specific relative entropy" S defined above has been introduced in [14] see also [13] [3].
It is shown in [9] that minimizers of Fh(Ph) + hKL(Ph|Wh

σ ) converge in the limit h ↘ 0 to a
diffusion process P minimizing the modified cost

F(µ, σ2) + S(P|Wσ).

For h > 0 we recover a Multi-Marginal EOT, and a discrete Markov chain that can still be used for
simulations.

The interest of this approach is not only theoretical: classical methods to solve (1) involve max-
imizing the dual problem through gradient ascent or primal-dual approaches. These methods imply
solving a fully non-linear Hamilton-Jacobi-Bellman equation at each iteration ([5], [23], [18]).

Our approach by Multi-Marginal Sinkhorn’s algorithm, extending [6] and [7], computes the same
object with the usual convergence guarantees of classical EOT [10] [12].

This paper describes the dual formulation of the problem in the context of local volatility calibra-
tion, the associated Sinkhorn algorithm and its practical implementation, with numerical examples.

2 Martingale Optimal Transport for model calibration
The continuous formulation of (Semi-)Martingale Optimal Transport was introduced in [25], and ex-
tended for multiple calibration applications as presented in the survey [19]. We are interested here in
the one-dimensional formulation of this problem, for the calibration of a local volatility in space and
time using a finite number of discrete constraints.

Let Ω = C([0, T ],R), T > 0 be the set of continuous paths, and P the set (or a convex subset of)
probability measures on Ω.
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The input of the calibration problem is a set of discrete constraints indexed by i ∈ I := {1, . . . , Nc}
described by (τi, ci, Gi)i∈I where for each i the triplet (τi, ci, Gi) is maturity, price and payoff function
of an observed derivative price on the market.
We will seek for an element P ∈ P such that

EP[Gi(Xτi)] = ci.

As an example, calibrating a set of call options at a fixed maturity T would lead to Gi(x) = (x−Ki)
+,

where Ki is the strike of the i-th option, and τi = T for all i. Moreover, we assume that there are only
a finite set of maturities τi and thus the set I can be partitioned as I =

⋃
k Ik, Ik := {i ∈ I, τi = tk},

where tk is the k-th distinct maturity in the set of constraints.
To formulate the problem as a constrained minimization problem on P, we restrain our search to the
set P0

s ⊂ P such that, for each P ∈ P0, X ∈ Ω is an (F ,P)-semimartingale on [0, 1] given by

Xt = X0 +AP
t +MP

t , ⟨X⟩t = ⟨MP
t ⟩ = BP, P-a.s., t ∈ [0, 1],

where MP is an (F ,P)-martingale on [0, 1] and (AP, BP) is F-adapted and P-a.s. absolutely continuous
with respect to time. In particular, P is said to be have characteristics (µ, σ2)(P), which are defined
in the following way,

µ =
dAP

t

dt
, σ2
t =

dBP
t

dt
,

Note that (µ, σ2) is F-adapted and determined up to dP × dt, almost everywhere. We now let
F (t, x, a, b) be convex with respect to (a, b) for every (t, x), and seek for

V = inf
P∈P

EP

∫ T

0

F (t,Xt, µ, σ
2) dt, (CMOT)

In the calibration case we alsos impose X0 = x0 ∈ R (i.e. X0 ∼ δx0
) as the derivative price is known

at time 0.
At this stage, the processes µ, σ are very general and can be generally path-dependent, however,

as showed in [17], they can be chosen as local processes, i.e. functions of (t,Xt) only: indeed, for
any choice of µ, σ, there exists a local version µ(t, x), σ(t, x) that preserves the constraints (i.e. option
prices) and that can only reduce the cost (CMOT). The minimization problem can therefore be reduced
to Xt solutions of the stochastic differential equation:

dXt = µ(Xt, t) dt+ σ(Xt, t) dBt, (SDE)

where Bt is a standard Brownian motion.

The function F can be decomposed into a sum of model constraints Fmc, calibration constraints
Fcc and regularization Fr components:

• Model constraints: for instance, if we want to impose that the underlying Xt follows a pure
diffusion model, i.e. µ ≡ 0 this can be imposed by choosing Fmc as :

Fmc(µ) =

{
0 if µ = 0

+∞ otherwise.

(or a soft version).

• Calibration constraints expressed as

Fcc(Xt) =

{
0 if E[Gi(Xτi)] = ci.

+∞ otherwise.

(or a penalisation of the constraint).

3



• Regularization/model assumptions: Fr helps enforce qualitative properties of the model. We
might want for instance σ to be close to a prescribed guess σ, which can be enforced by choosing
F as a penalty function of the form F (σ2/σ̄2), for instance Loeper [22] uses

F = (σ − σ̄)2

(which is convex in σ2 and is linked to the Bass martingale problem), or in [19] they use

Fr(σ
2) = a

(
σ2

σ2

)p
+ b

(
σ2

σ2

)−q

+ c (3)

with p, q, a, b > 0 and c ∈ R such that F is convex with minimum at σ = σ. It is also a barrier
as σ2 goes to 0.

In this paper we choose
Fr(σ

2) = S(σ|σ).

with S defined in (2). As explained in the introduction it allows to discretize (in time) the
problem as a multi-marginal EOT problem. It is again convex with minimum at σ = σ and a
barrrier as σ2 goes to 0 but unlike (3) it is sublinear as σ ↗ +∞. This difficulty is discussed in
[9].

3 Discretisation into a Multi-Marginal Martingale Transport

3.1 Notations
We will discretize our problem in time, replacing the interval [0, T ] with a regular grid of NT + 1
timesteps tk = k h for k ∈ {0, . . . , NT } =: Kh, where h := T/NT is the time step. We impose that all
the calibration times τi are included in the grid, i.e. τi = tki for some ki ∈ Kh.

Instead of functions t 7→ ω(t), we consider their discrete path counterparts, which are n-tuples
(ω0, . . . , ωNT

) ∈ RNT+1 for k ∈ Kh, in which ωk corresponds to the value of the path at time tk.
Instead of RNT , we denote by Xk the space of values that ωk can take, and by Ωh := ΠNT

i=0Xi the space
of discrete paths.

An element (t 7→ ω(t)) ∈ Ω is hence replaced by a n-tuple (ω0, . . . , ωNT
) ∈ Ωh with ωk ∈ Xk for

k ∈ Kh.
We are hence searching for a probability measure Ph on Ωh. We denote (Xk)k∈Kh the canonical

process of Ph on Ωh. We will denote by Phk := Xk#Ph the marginal law of Ph at timestep k ∈ Kh, and
by Phk,l := (Xk, Xl)#Ph the joint law of time steps k ∈ Kh and l ∈ Kh.

We note Kh−i = k ∈ Kh \ {i} the set of timesteps except timestep i, and dx−i =
∏

Kh
−i

dxk, which

allows to write the marginal law Phk as Phk =

∫
Ph(xk,dx−k) and joint laws in a similar fashion.

Similarly, we note dx[i,j] = Πjk=i dxk.
We note ρ0 the initial marginal of our process, which is imposed, X0 ∼ ρ0. It may or may not be

a Dirac in our case.
We denote by Ph the reference measure on Ωh that we will use to regularize the problem. We will

denote by (Yk)k∈Kh the canonical process of Ph on Ωh. It’s law is determined by a Euler-Maruyama
discretisation of the continuous reference process :

Yk+1 = Yk + µ(Yk, kh)h+ σ(Yk, kh)h
1/2 Zk, ∀k ∈ Kh−0, Y0 ∼ ρ0.

We write PhEM the set of probability measures on Ωh whose canonical process Yk can be writen as a
Euler-Maruyama discretisation as such, with µk = µ(Yk, kh) and σk = σ(Yk, kh).
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For any probability measure Ph ∈ P(Ωh) and Ph ∈ P(Ωh), we note KL(Ph|P) = EPh

[
log
(

dPh

dPh

)
− 1
]

the Kullback-Leibler divergence between Ph and Ph if Ph ≪ Ph. By convention, if Ph ̸≪ Ph, we set
KL(Ph|Ph) = +∞.

For two continuous diffusion processes P with volatility σ2 and P with volatility σ2, we note

S(σ2|σ2) = EP

[∫
σ2

σ2 − 1− log
(
σ2

σ2

)
dt

]
the specific entropy between P and P. For any two dis-

crete probabilities in PhEM, we will denote Sh(Ph|Ph) = EPh

[
h
∑NT

k=0
σ2
k

σk
2 − 1− log

(
σ2
k

σk
2

)]
the discrete

specific entropy between Ph and Ph, which is a Riemann sum discretizing the continuous specific
entropy.

3.2 Discrete drifts and diffusions coefficients
As opposed to the continuous-time approach, which uses Markovian projections of the processes, and
as such the variable being optimised are functions representing the drift and volatility, in this discrete-
time approach, we will directly optimise on Ph. In order to justify the choice of moment variables in
the discrete problem, we first consider Euler-Maruyama discretization of a diffusion process. Let a
diffusion process Xt with drift µ and volatility σ, following the SDE :

dXt = µ(Xt, t) dt+ σ(Xt, t) dW t.

Consider the Euler-Maruyama time discretization of the process:

Xh
k+1 = Xh

k + µ(Xh
k , kh)h+ σ(Xh

k , kh)h
1/2 Zk

where ∀k ∈ {0, . . . , NT } := Kh, Zk is a standard normal random variable, of which we note Ph the
law. We have Ph ∈ PhEM.

For such a process, we can compute the following quantities from conditional expectations :

βk(x) =
1

h
E[Xk+1 −Xk | Xk = x] = µ(x, kh), (4)

αk(x) =
1

h
E
[
(Xk+1 −Xk)

2
∣∣ Xk = x

]
= µ(x, kh)2 h+ σ2(x, kh) −−−→

h→0
σ2(x, kh). (5)

These variables are computed from the law Ph and are the discrete counterpart of the drift and volatility
of the continuous process. They can hence be used to compute the discretisation of F (t,Xt, µ, σ

2).
A more general framework is to consider a variable bk : X → RK defined by taking the conditional

expectation of a general function B : (X ,X )→ RK depending on two consecutive timesteps :

bk(x) =
1

h
E[B(Xk, Xk+1) | Xk = x].

The vector formed with variables βk and αk can be computed as such by using the function

B(X,Y ) =

[
(Y −X)
(Y −X)2

]
.

We might alternatively want to control other types of moments, such as the skewness or the kurtosis
of the process. For this reason, we will consider a general function B and the corresponding bk in the
following, and not specifically βk and αk.

3.3 Specific relative entropy
We give a formal derivation of the Specific Entropy (see [14] [13] [3]).
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The Kullback-Leibler divergence between two normal laws N (µ1, σ
2
1) and N (µ2, σ

2
2) is equal to :

KL(N (µ1, σ
2
1)|N (µ2, σ

2
2)) =

1

2

(
σ2
1 + (µ1 − µ2)

2

σ2
2

− 1− log

(
σ2
1

σ2
2

))
.

Consider two diffusion measures P and P defined by the following SDEs on their respective canonical
processes X and Y :

dXt = µ(Xt, t) dt+ σ(Xt, t) dW t, X0 ∼ ρ0, (6)

dYt = µ(Yt, t) dt+ σ(Yt, t) dW t, Y0 ∼ ρ0. (7)

We can discretize on a grid of step h as law Ph and Ph using the Euler-Maruyama discretization from
previous section, giving their respective canonical processes Xh and Y h :

Xh
k+1 = Xh

k + µ(Xh
k , kh)h+ σ(Xh

k , kh)h
1/2 Zk, ∀k ∈ Kh, Xh

0 ∼ ρ0, (8)

Y hk+1 = Y hk + µ(Y hk , kh)h+ σ(Y hk , kh)h
1/2 Zk, ∀k ∈ Kh, Y h0 ∼ ρ0. (9)

Noting µk(x) = µ(x, kh), σk(x) = σ(x, kh), and µk(x) = µ(x, kh) and σk(x) = σ(x, kh), we can
conclude the transitions laws Phk,k+1 and Phk,k+1 are normal laws, and the Kullback-Leibler divergence
can then be decomposed as follows :

h KL(Ph|Ph) = h
∑NT−1
k=0

∫
KL(N (µk(x)h, σk(x)

2h)|Phk,k+1) ρk(dx)

= h
2

∑NT−1
k=0

∫ (
σk(x)

2h+((µk(x)−µk(x))h)
2

σk(x)2h
− 1− log

(
σk(x)

2h
σk(x)2h

))
ρk(dx)

= h
2

∑NT−1
k=0

∫ (
σk(x)

2+(µk(x)−µk(x))
2h

σk(x)2
− 1− log

(
σk(x)

2

σk(x)2

))
ρk(dx)

−−−→
h→0

S(σ2|σ2) := 1
2

∫
EPh

[
σ2

σ2 − 1− log
(
σ2

σ2

)]
dt

(10)

More generally, it is shown in [9] that the discrete Kullback-Leibler Divergence allows to control the
approximation of the volatility of the discrete process (5). This motivates to use the specific entropy
as a regulariser of the continuous problem, because it is linked to a natural discretization in terms
of the Kullback-Leibler divergence, and entropy-regularized optimal transport is a thoroughly studied
problem.

3.4 Discretisation
We will now use the previously defined tools to discretize the continuous problem (CMOT) in time, in
the case of a specific entropy regularizer, since it has a natural discretization in terms of the Kullback-
Leibler divergence.

We first directly discretize (CMOT) in time as a Riemann sum and using (10) and the variables βk
and αk defined in equations (4) and (5), we obtain :

EP

[∫ T

0

(F + S)(t,Xt, µ, σ
2) dt

]
≈ h EPh

[
NT∑
k=0

F (t,Xk, βk(Xk), αk(Xk))

]
+ h KL(Ph|Ph)

where S the specific entropy introduced in section 3.3.
We can hence formulate our discretization of Problem CMOT as :

inf
Ph∈Ph

h EPh

[
NT∑
k=0

F (t,Xk, β(Xk), α(Xk))

]
+ hKL(Ph|Ph) (11)
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where Ph is the set of probability measures on n-uplets respecting the constraints, that is :

Ph = {Ph ∈ P(RNT ), s.t. X0#Ph = µ0 and ∀i ∈ I, EPh [Gi(Xτi)] = ci}

We emphasize the fact that while Ph,⋆ solution of this problem is a measure that respects the initial
condition and the price constraints similarly to the continuous problem, it is not obvious that it is a
discrete diffusion Markov chain, as we used in the previous informal derivation. This is discussed in
[8].

We will generalize this problem in the next section to allow for more general constraints on the
marginals and the model prices, and we will then find its dual problem using Fenchel-Rockafellar
duality.

4 Duality
We first recall the Fenchel-Rockafellar theorem and hence the form of the primal problem we aim to
formulate.

Theorem 4.1 (Fenchel-Rockafellar). Let (E,E∗) and (F, F ∗) be two couples of topologically paired
spaces. Let ∆ : E → F be a continuous linear operator and ∆† : F ∗ → E∗ be its adjoint. Let
F : E∗ → R and G : F ∗ → R be two lower semicontinuous and proper convex functions. If there exists
P ∈ F ∗ such that G(P) < +∞ and F is continuous at ∆†P, then :

sup
Φ∈E
−F⋆(−Φ)− G⋆(∆Φ) = inf

P∈F∗
F(∆†P) + G(P),

and the inf is attained. Moreover, if there exists a maximizer Φ⋆ ∈ E, then there exists P∗ ∈ F ∗

satisfying ∆Φ⋆ ∈ ∂G(P) and ∆†P ∈ −∂F⋆(−Φ⋆).
We note the primal problem :

V := min
P∈F∗

F(∆†P) + G(P), (PRIMAL)

and the dual :
D := sup

Φ∈E
−F⋆(−Φ)− G⋆(∆Φ). (DUAL)

We will define their corresponding objects in the next sections.

4.1 Primal problem
In this part, we will formulate a generalization of the problem (11), in a standard form compatible
with the Fenchel-Rockafellar duality. We will first introduce the variables that we will control, and
then define the primal problem.

We aim to define the objects corresponding to the primal problem, that is F , G and the linear
operator ∆†. The operator ∆† will include variables of interest that we will control. We will define
these variables in the following remark.

Definition 4.1. For each timestep k, we define the following variables :

νk(dx) = Xk#Ph(dx)

bk(x) =
1

h
EPh

k,k+1

[
B(Xh

k , X
h
k+1)

∣∣ Xh
k = x

]
gi = EPh

τi
[Gi(Xτi)].

and We define ∆† as the following linear operator :

∆† : E∗ := P(Ωh) → F ∗ := (⊗NT

k=1P(Xk))× (⊗NT

k=1M(Xk))× RK

Ph → ∆†Ph := (νk, νkbk, gi)

7



νk, representing the marginal laws of Ph, are linear with respect to Ph, as they are a projection
on a basis vector. gi are the model prices at the calibration times and are also linear with respect
to Ph, since they are the expectation of a function of the state at a given time. bk are general
variables corresponding to moments defined as the conditional expectation of a function B between
two consecutive timesteps as mentioned in section 3.2. Since they are a conditional expectation, they
are not linear with respect to Ph. For this reason, we instead consider the product νkbk that is linear
with respect to Ph, as is done in the classical and martingale optimal transport [5] [25]. Indeed, this
product is equal to:

νkbk(x) =
1

h
EPh

k,k+1(x,·)
[
B(x,Xh

k+1)
]

which is linear with respect to Ph as a simple expectation with respect to a projection.
Next, we define our function G as the scaled Kullback-Leibler divergence between Ph and a reference

measure Ph, as it is the only function in our problem that depends on the measure itself.

Definition 4.2. We define G the following functional :

G : P ∈ F ∗ → hKL(P|Ph).

Finally, F will be a functional of the variables defined in remark 4.1, and will be a sum of convex
functions of these variables, as presented for the continuous case at the end of Section 3.2. These
functions may be regularization, soft, or hard constraints.

Remark 4.1. Let us say we want to impose a variable x to be close to a target x0.
A hard constraint is of the form :

F (x) =

{
0 if x = x0

+∞ otherwise

Some example of soft constraints are :

• F (x) = C(x− x0)2 : the quadratic penalty

• F (x) = x log(x/x0) + x− x0 : the Kullback-Leibler divergence

We want to keep the formulation of our problem general and be able to express at least problem
(11) in this framework. We hence want to be able to express :

• The constraintX0#Ph = δx0
, but more generally we will consider any constraint on the marginals

of Ph, leading to the definition of a term Fmarg =
∑NT

k=0Mk(νk) which is a sum of convex, l.s.c.,
potentially null functions of the marginals.

• The constraint EPh [Gi(Xτi)] = gi, but more generally we will consider any constraint on the
model prices, leading to defining a term Fprices =

∑NC

i=1 Ci(gi) which is a sum of convex, l.s.c.,
potentially null functions of the model prices.

• The constraints on moments of the process lead to the definition of a term Fmom =
∑NT−1
k=0 Fmom,k(νk, νkbk)

that is a sum of perspective functions of the marginals and the product of the marginals and the
moments.

which leads to the following definition of F :

Definition 4.3. We define F the following functional :

F(ν, b, g) = Fmarg + Fmom + Fprices

=

NT−1∑
k=0

Fmom,k(νk, νkbk) +

NT∑
k=0

Mk(νk) +

NC∑
i=1

Ci(gi)

8



Remark 4.2. Problem (11) may be retrieved from problem the problem we built with Fmom,k(νk, νkbk) =
h EPh [F (νkbk/hνk)], ∀k, M0 and Ci, ∀i ∈ I hard constraints and Mk = 0, ∀k ̸= 0, and by taking bk to
be the vector of variables βk and αk as explained at the end of section 3.2. This function Fmom,k is
then a perspective function and is well studied in the theory of convex optimization.

4.2 Dual
In order to apply the Fenchel-Rockafellar duality, we need to compute the Legendre transforms of F
and G, and the adjoint operator of ∆†.

Lemma 4.1. G⋆, the Legendre-Fenchel transform of G is given by :

G⋆ : F = Cb(Ωh) → R

f → hEPh(exp(f/h))

Proposition 4.1. The Legendre transform of F is given by :

F⋆(ϕν , ϕb, λg) =
∑
k

inf
ψ
M⋆
k (ϕνk − ψ) + F ⋆k (ψ, ϕb)

+

NC∑
i=1

C⋆i (λgi) +M⋆
NT

(ϕνNT
) (F-dual)

Proof. We first notice that the expression of F is separable in k and i and that gi can be separated
from (νk, νkbk). We can then rewrite the function as :

F(ν, νb, g) =
NT−1∑
k=0

F1
k (νk, νkbk) +

NC∑
i=0

F2
i (gi) +MNT

(νNT
) (12)

where :

F1
k (νk, νkbk) = Fmom,k(νk, νkbk) +Mk(νk)

F2
i (gi) = Ci(gi).

The Legendre transform of F2
i are the Legendre transform of Ci and the Legendre transform of F1

k is
given by :

F1⋆
k (ϕν , ϕb) = sup

ν,b
ϕνν + ϕbb−F1

k (ν, b)−Mk(ν)

= sup
ν,ν′,b

inf
ψ
ψ(ν′ − ν) + ϕνν + ϕbb−F1

k (ν
′, b)−Mk(ν)

= inf
ψ

sup
ν,ν′,b

(ϕν − ψ)ν + ϕbb+ ψν′ −F1
k (ν

′, b)−Mk(ν)

= inf
ψ

sup
ν
(ϕν − ψ)ν −Mk(ν) + sup

ν′,b
ψν′ + ϕbb−F1

k (ν
′, b)

= inf
ψ
M⋆
k (ϕν − ψ) + F ⋆k (ψ, ϕb)

We can conclude by summing over k and i the separable parts.

We are particularly interested in the case Fk(νk, νkbk) = hEνk(F (νkbk/hνk)) where F is a convex
function, so Fk is a perspective function. This is because it is a direct discretisation of the continuous
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problem. For this case, we first find the Legendre-Transform of Fk coordinate-wise :

F⋆k (ϕν , ϕb) = sup
ν,b

ϕνν + ϕbb−Fk(ν, b)

= sup
ν,b

ϕνν + ϕbb− hνF (b/hν)

= sup
ν

ϕνν + hν

(
sup
b
ϕb(b/hν)− F (b/hν)

)
= sup

ν
ϕνν + hνF ⋆(ϕb)

= sup
ν

(ϕν + hF ⋆(ϕb)) ν

=

{
0 if ϕν + hF ⋆(ϕb) < 0

+∞ otherwise

We can hence obtain the Legendre-Transform of F1
k defined above as :

F1
k (ϕν , ϕb) = inf

ψ
M⋆
k (ϕν − ψ) + F⋆k (ψ, ϕbk)

=M⋆
k (ϕν + hF ⋆(ϕb))

The dual of F is given by the following simpler expression :

F⋆(ϕν , ϕb, λg) =
∑
k

M⋆
k (ϕνk + hF ⋆(ϕb))

+

NC∑
i=1

C⋆i (λgi) +M⋆
NT

(ϕνNT
)

Lemma 4.2. The adjoint operator to ∆† is given by :

∆ : Φ = (ϕνk , ϕbk , λgi)→
⊕
k

hϕνk +B(xk, xk+1)ϕbk

+
∑
i

Gi(xτi)λgi

Proof. We can easily check that ⟨∆Φ,Ph⟩ = ⟨Φ,∆†Ph⟩.

As customary in optimal transport, through the Monge-Kantorovitch dual formulation , optimal
solutions (but for non-optimal constraints) can be obtained from the dual potentials. Thus, by con-
structing a maximizing sequence of the dual problem, we hope to find a sequence of measures converging
to a solution of the primal problem. This is the approach we follow in this work.

Proposition 4.2. Let Φ⋆ = (ϕ⋆ν , ϕ
⋆
b , λ

⋆
g) be a solution of DUAL. Then Φ⋆ induces a measure Ph,⋆

through
dPh,⋆

dPh
= exp

(
∆Φ⋆

h

)
,

Ph,⋆ is the optimal solution of (PRIMAL) for the constraints functions M,C that are finite under Ph,⋆.

Proof. The first optimality condition is given by :

∆Φ⋆ ∈ h ∂Ph,⋆ KL(Ph,⋆|Ph)

which leads to :

∆Φ⋆ = h log

(
dPh,⋆

dPh

)
(13)
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Definition 4.4. Let ∆i,i+1 the transitional part of ∆ given by:

∆i,i+1(xi, xi+1) = B(xi, xi+1)ϕbi(xi),

Let ψui , ψdi potential functions computing the forward and backward influence :

ψui (xi) = log

(∫
ρ0

i−1∏
k=0

exp

(
∆k,k+1

h
+ ϕνk +

#  »

Λk ·
#  »

Gk

)
Phk,k+1 dx[0,i−1]

)

ψdi (xi) = log

(∫ NT−1∏
k=i

exp

(
∆k,k+1

h
+ ϕνk+1

+
#        »

Λk+1 ·
#        »

Gk+1

)
Phk,k+1 dx[i+1,NT ]

)
and let

#»

Λk the vector of Lagrange multipliers and
#  »

Gk the vector of their corresponding payoff functions
associated with timestep k:

#»

Λk = (λgi)i∈Ik

#  »

Gk = (Gi)i∈Ik

One interesting property of this formulation is that the Markovianity of the solution directly arises
from the structure of the linear operator ∆.

Proposition 4.3. Let Ph,⋆ an optimal solution of (PRIMAL). The following properties hold true :

• Its joint density with respect to the reference measure is given by :

dPh,⋆i,i+1(xi, xi+1) = exp(ψui (xi) + ϕνi(xi) +
# »

Λi ·
# »

Gi(xi)

+ ∆i,i+1(xi, xi+1)/h

+
#       »

Λi+1 ·
#       »

Gi+1(xi) + ϕνi+1
(xi+1) + ψdi+1(xi+1)) dPhi,i+1

From the form of its transition density, and the Markovianity of the reference measure, we deduce
that it is Markovian.

• Its marginal are given by :

ν⋆k = Ph,⋆k (xk) = exp(ψuk (xk) + ϕνk(xk) +
#  »

Λk ·
#  »

Gk(xk) + ψdk(xk))

Proof. In Appendix .1

Proposition 4.4. The quantities ψuk , ψ
d
k can be computed iteratively using the following updates :

ψuk+1 = log

(∫
exp

(
ψuk +

∆k,k+1

h
+ ϕnνk +

#  »

Λnk ·
#  »

Gk

)
Phk,k+1 dxk

)
ψdk−1 = log

(∫
exp

(
ψdk +

∆k−1,k

h
+ ϕnmk

+
#  »

Λnk ·
#  »

Gk

)
Phk−1,k dxk

)
with ψu0 = log ρ0 and ψdNT

= 0.

Proof. Let i ∈ K and xi ∈ Xi. We can compute the following integral :

ψui (xi) = log

(∫
ρ0

i−1∏
k=0

exp

(
∆k,k+1

h
+ ϕνk + Λk ·

#  »

Gk

)
Phk,k+1 dx[0,i−1]

)

= log

(∫ (∫
ρ0

i−2∏
k=0

exp

(
∆k,k+1

h
+ ϕνk + Λk ·

#  »

Gk

)
Phk,k+1 dx[0,i−2]

)

exp

(
∆i−1,i

h
+ ϕmi−1

+ Λi−1 ·
#       »

Gi−1

)
Phi−1,i dxi−1

)
= log

(∫
exp

(
ψui−1 +

∆i−1,i

h
+ ϕmi−1

+ Λi−1 ·
#       »

Gi−1

)
Phi−1,i dxi−1

)
.
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A symmetric reasoning can be done for ψdi .

5 Sinkhorn algorithm
In order to numerically solve the dual problem, we propose to use an extension of the Sinkhorn
algorithm. The Sinkhorn algorithm is a well-known algorithm to solve optimal transport problems. In
order to do such numeric computations, we need to discretise our problem in space as well.

5.1 Algorithm
We first describe the principle of the algorithm.

We initialise the dual potentials ϕνk , ϕbk and
#  »

Λk as 0 which corresponds to being equal to the
reference neasure, and we then iteratively the following updates :

ϕn+1
νk

= arg minϕ infψ −M⋆
k (−ϕ− ψ)− F ⋆k (ψ,−ϕb)

− hEPh
k

[
exp(ψu,n+1

k + ϕ+
#  »

Λnk ·
#  »

Gk + ψd,nk )
]

#        »

Λn+1
k = arg min #»

Λ −C⋆k(−Λ)− hEPh
k

[
exp(ψu,n+1

k + ϕn+1
νk

+
#»

Λ · #  »

Gk + ψd,nk )
]

ϕn+1
bk

= arg minϕ infψ −M⋆
k (−ϕνk − ψ)− F ⋆k (ψ,−ϕ)

− hEPh
k,k+1

[
exp(ψu,n+1

k + ϕn+1
νk

+
#        »

Λn+1
k · #  »

Gk +∆i,i+1(ϕ) + ψd,nk )
]

(SK1)

and for the last marginal :
ϕn+1
mNT

= arg minϕ−M⋆
NT

(−hϕ)
− hEPh

NT

[
exp(ψu,n+1

NT
+ ϕ+ ΛnNT

· #       »

GNT
)
]

Λn+1
i = arg minΛ−C⋆i (−Λ)− hEPh

NT

[
exp(ψu,n+1

NT
+ ϕn+1

mNT
+ Λ · #       »

GNT
)
] (SK2)

In practice, before each step we compute every downward ψdk, iteratively as described in the previous
section. The pseudocode algorithm is described in Algorithm 1.
Algorithm 1: Function Definitions for UpdatePsiUp and UpdatePsiDown

1 Function UpdatePsiUp(ψuk+1, ϕ
n
νk
,Λnk ,Phk,k+1, xk, xk+1, ϕbk , h)

2 begin
3 Compute ∆k,k+1 = (xk+1 − xk)ϕbk(xk)
4 return log

(∫
exp

(
ψuk+1 +

∆k,k+1

h + ϕnνk + Λnk ·
#  »

Gk

)
Phk,k+1 dxk−1

)
5 Function UpdatePsiDown(ψdk−1, ϕ

n
νk
,Λnk ,Phk−1,k, xk, xk−1, ϕbk , h)

6 begin
7 Compute ∆k−1,k = (xk − xk−1)ϕbk(xk)

8 return log
(∫

exp
(
ψdk−1 +

∆k−1,k

h + ϕnmk
+ Λnk ·

#  »

Gk

)
Phk−1,k dxk

)
We describe the pseudo-code of the Multi-Marginal Sinkhorn algorithm in Algorithm 2.
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Algorithm 2: Sinkhorn algorithm for problem DUAL
Input: Number of timesteps NT , support of each space X dx

k

Input: Stopping tolerance ϵ, reference measure Ph
Input: Initial potentials ϕ0νk , ϕ0bk , Λ0

i

Result: Numerical solution of problem DUAL
1 ψu,00 ← log ρ0;
2 ψd,0NT

← 0;
3 for n← 0 to N do
4 for k ← NT − 1 to 0 do
5 ψd,nk ← UpdatePsiDown(ψd,nk , ϕnνk , ϕnbk , Λni , Ph);
6 for k ← 0 to NT − 1 do
7 ϕn+1

νk
← SolveMarginal(ϕnνk , ϕnbk , Λni , ψ

u,n
k , ψd,nk , Ph);

8 Λn+1
k ← SolvePrices(ϕnνk , ϕnbk , Λni , ψ

u,n
k , ψd,nk , Ph);

9 ϕn+1
bk
← SolveDriftVol(ϕn+1

νk
, ϕnbk , Λn+1

i , ψu,nk , ψd,nk , Ph);
10 ψu,n+1

k+1 ← UpdatePsiUp(ψu,n+1
k+1 , ϕn+1

νk
, ϕn+1

bk
, Λn+1

i , Ph);

11 ϕn+1
mNT

← SolveMarginal(ϕnmNT
, Λni , ψ

u,n
NT

, ψd,nNT
, Ph);

12 Λn+1
NT
← SolvePrices(ϕn+1

mNT
, Λni , ψ

u,n
NT

, ψd,nNT
, Ph);

13 emax ← ∥Φn+1−Φn∥∞
∥Φn∥∞

;
14 if emax < ϵ then
15 return Φ, Ψ;

16 return Φ, Ψ;

The functions SolveMarginal, SolvePrices and SolveDriftVol are functions that solve the mini-
mization problems in (SK1) and (SK2), and might have different implementations depending on the
structure of the problem.

In order to provide a numerical implementation of the method, we provide multiple details in the
next sections.

5.2 Truncation in space
First, we need to truncate the support so that it has a finite width. We take advantage of the fact that
our reference measure Ph is a diffusion measure and that its density tends quickly to 0 as we move
away from the mean. We want to create an interval for each marginal νk that contains most of the
mass. Because the marginals are not known beforehand, we instead propose to truncate on νk, the
marginals of the reference measure Ph.

First, in the case of a reference measure with constant drift and volatility, for each timestep tk =
k h i = 0., . . . , NT , we restrict the computational domain to

Xk = [mk − δ vk, mk + δ vk]

where :

- mk = m0 + h
∑k
l=0 µl is the mean of the k-th marginal, where m0 is the initial mean of the

reference measure.

- δvi is a multiple of the standard deviation of the reference measure: vk =
√
v20 + h

∑k
l=0 σl

2 where
v0 is the standard deviation of the initial marginal of the reference measure. For a sufficiently
large δ (in general δ = 5) we expect Phk the solution to be negligible outside of Xk, i.e. the mass
transported by the drift (small as we are solving soft martingale constraint problems) and the
diffusion further than the enlarged domain is negligible.
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When the reference measure has a non-constant drift and volatility, we can use the same truncation
as above, but with the maximum in space of the drift and volatility.

5.3 Discretisation
On this compact supports, we discretize the potentials on a regular grid. We can hence represent the
potentials ϕνk , ϕbk , as vectors ϕdxbk , of size NXk

and NXk
× d respectively. We can also represent the

quantities ψuk , ψdk as vectors ψu,dxk , ψd,dxk of size NXk
. The integrals can be replaced by discrete sums

over the grid X dx
k . For clarity, we will drop the superscript dx in the following and keep the notations

with integrals as they can be used interchangeably.
An important parameter is the space discretisation step dx. We want to choose it so that the

transition law Pi,i+1 is non-zero on enough points. To ensure this, we want :

dx < Kσi
√
h

which links NXk
to NT , for a constant K to be determined which ensure the minimum of points in the

width of the kernel.

5.4 Multiscale Strategy
Because the complexity of algorithm 2 scales with the number of timesteps NT , it can be interesting
to start with a coarse time discretisation and to refine it iteratively.

One way to do so is presented in [8] and consists in interpolating the potentials ϕbk and using them
as initialisation for the next level of discretisation.

Here, we propose an alternative method, which consists in using the result of optimization at a
coarse scale as the reference measure for a finer scale. This is done as such :

1. Solve the problem at a scale h = T
NT−1 with NT timesteps.

2. Interpolate the obtained volatilities σ2
k(x, t) for a new scale h′ = T

N ′
T−1 with N ′

T > NT timesteps.
Multiple interpolation technique can be used, in our case, we use Unbalanced Optimal Transport
Barycenters. We then obtain a new reference measure Ph′ .

3. h = h′, NT = N ′
T , and return at step 1 if the desired scale is not reached.

We can, for instance, start with NT equal to the number of calibration steps.

5.5 Anderson Acceleration
Entropic Sinkhorn iterations are known to converge slowly when the regularization parameter ϵ → 0.
Since one Sinkhorn iteration Φk+1 = s(Φk) is a fixed-point iteration, in order to accelerate convergence,
we propose to use Anderson acceleration [2] [26]. We consider our variable Φ as a variable of dimension
NΦ and denote g(Φ) = s(Φ)−Φ is the residual of the Sinkhorn iteration. In particular, given a vector
of mk iterates Φkmk

= (Φk−mk+1, . . . ,Φk), we denote G = {g(Φk)}k = {s(Φk) − Φk}k the vector of
their residuals. We compute the next iterate Φk+1 as a combination of the mk previous iterates as a
solution to the following problem :

min
α∈∆(mk)

||Gα||2 (AA)

where ∆(mk) = {v ∈ Rmk ,
∑
vi = 1}. The idea is that by first-order approximation, ||g(Φkmk

α)||2 ≈
||Gα||2. The new iterate is then given by Φk+1 = s(Φkmk

)α ≈ s(Φkmk
α) by first order approximation.

The problem (AA) is reformulated with the following linear least square problem as suggested in
[2] [26]:

min
γ∈Rmk−1

||Gγ − gk||2 (AA-LS)
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where G =
(
gk − gk−1 . . . gk−mk+1 − gk−mk

)
∈ RNΦ×(mk−1) with gk = g(Φk) ∈ RNΦ . This provides

a solution to (AA) as : α =
(
1− γmk−1 γmk−1 − γmk−2 . . . γ2 − γ1 γ1

)
.

We can then rewrite the iterate Φk+1 as :

Φk+1 = s(Φkmk
)α =

k∑
i=k−mk

αis(Φ
i) = s(Φk) +

k−1∑
i=k−mk

γi(s(Φ
i+1)− s(Φi))

Noting dΦk =
(
Φk − Φk−1 . . . Φk−mk+1 − Φk−mk

)
∈ RNΦ×(mk−1) the matrix of iterate differences,

we can rewrite the iterate Φk+1 as :

Φk+1 = s(Φk) + dΦkγ

= Φk + gk − (G + dΦk)γ (AA-iter)

The problem (AA-LS) is a linear least square problem that can be solved efficiently. We solve it
by solving the linear system GTGγ = GT gk since the Gram matrix GTG can be easily computed. To
avoid cases where GTG is ill-conditioned, we add a ridge regularization term ϵI to the Gram matrix,
where ϵ is a small positive constant. When ϵ → 0, the solution of the linear system converges to the
solution of (AA-LS), while when ϵ → ∞, the solution of the linear system converges to 0 and hence
the steps become simple Sinkhorn iterations.

To avoid convergence problems, we also employ a safeguarding mechanism as described, for instance,
in [15] to enhance the stability and performance of the Anderson acceleration technique. At each
iteration k, an accelerated candidate Φk,acc is generated using iteration (AA-iter). To assess the
quality of this candidate, we compare its residual g(Φk,acc) with the residual of the last accepted
iterate g(Φk). Specifically, we impose a safeguarding condition:

∥g(Φk+1,acc)∥2 ≤ τ∥g(Φk)∥2 (14)

Here, τ is a tolerance parameter. If the condition is met, the accelerated candidate Φk,acc is accepted
for the next iteration. Otherwise, the candidate is declined, and the algorithm proceeds without
acceleration for that step.

Finally, similarly to what is done for Sinkhorn algorithm, we stop the algorithm when the l∞ norm
of the residual is below a given tolerance ϵstop.

6 Application: Local volatility calibration
We want to minimize over martingale positive process, hence we are interested in the process of the
form Xt = logSt where St is a martingale diffusion process:

dSt
St

= σ(St, t),dW t.

Applying Ito’s lemma, in terms of Xt = logSt, we obtain the following SDE:

dXt = −
1

2
σ2(Xt, t) dt+ σ(Xt, t) dW t.

As noted in article [19], in terms of the characteristics of the SDE µ and σ2, this reads:

2µ(x, kh) = −σ2(x, kh),

Using our defined variables βk and αk in Section 3.2 equations (4) (5), this can be written as

2βk = −αk.
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Notice however that both equations are not exactly equivalent due to the first-order term µ2 h appearing
in equation (5).

Instead of the variables β and α, we will use the variable bk corresponding to the choice B(X,Y ) =
1− eY−X . We compute bk :

bk(x) =
1

h
E
[
1− eXk+1−Xk

∣∣ Xk = x
]

=
1

h

1

eXk
E
[
eXk − eXk+1

∣∣ Xk = x
]

=
1

h

1

Sk
E[Sk − Sk+1 | Xk = x],

which directly corresponds to an at martingale constraint on the process St. This is the moment we
will consider in this application and the above strategy method is easily applied.

We penalize this variable with F a soft penalization F = cmart∥ · ∥L2 with a constant penalization
parameter cmart. This is to overcome the convex ordering problem mentioned in [1] when working on
a discretized grid: the discrete approximation on a grid of continuous measures in convex order might
not be in convex order.

For the price constraints, let ci ∈ R+ be an observed price, we use the soft constraint Ci a convex
function with minima in ci, for instance, Ci = 1

2 (·−ci)
2. We use the payoff function gi(x) = max(0, ex−

Ki) for a call option with strike Ki, and gi(x) = max(0,Ki − ex) for a put option with strike Ki.
For the first marginal constraint, we propose using a hard constraint M0 = ιµ0

whose dual is
⟨ϕν0 , µ0⟩, with µ0 = δlogS0

.

Finally, we obtain the following problem:

V = inf
Ph

∑
hEνk [F (bk)] + hKL(Ph|Ph)

+ ιµ0 (ν0) +

n∑
i=1

Ci (gi) ,

and in its dual form :

D = sup
ϕν0

,ϕbk
,λgi

J(ϕ)
def
= Eµ0 [ϕν0 ] +

NC∑
i=0

C⋆i (λgi)

+ hEPh

[
exp

(
∆(ϕm, ϕb, λg)

h

)]
,

under the constraints ϕνk = hH⋆(−ϕbk), ∀k /∈ {0, NT }, ϕmNT
= 0.

The first equation of the Sinkhorn system (SK1) becomes :

µ0 =

∫
Ph(x0,dx−0)

= exp(ψu0 (x0) + ϕν0(x0)/h+ ψd0(x0)),

which can be solved using classical Sinkhorn iteration as :

ϕν0 = −h(ψu0 + ψd0 − log(µ0)).

We derivate our functional J with respect to ϕbk to obtain the following optimality equation :

0 = EPh
k,k+1

[
(1− eXk+1−Xk) + hH⋆′(−ϕνk(xk))

]
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The expression of the Hessian is simple as well, as it is diagonal.
In a similar fashion, we can obtain optimality equations for Λi :

0 = −C⋆
′

i (−λi) + EPh
k
[gP

h

i ], ∀i ∈ {0, NT − 1}

We can compute the Hessian which is this time of size |Ick|.
To optimize on these two variables, we can perform a Newton method.
The calculation of the derivatives on ϕbk is of complexity O(NXk

×NXk+1
), while the other deriva-

tives are of complexity O(NXk
). The computation of ψu and ψd are of complexity O(NXk

×NXk+1
).

Hence, the complexity of the whole algorithm is of complexity O(NT ×maxN2
Xk

).
At the coarsest scale, the reference measure is chosen to match the ATM price at the calibration

time. Hence, given the ATM volatility σBS(F, τi) for all calibration time (τi), where F is the forward
price, we set our reference volatility to be σ2

0(x) = σ2
BS(F, τ0)τ0 and σ2

i (x) = σ2
BS(F, τi)τi− σ2

i−1(x) for
all i ∈ {1, . . . , }.

6.1 Numerical results
Here, we first generate prices using a parametric local volatility surface. The local volatility surface
that we choose is the SSVI surface as presented in [16]. We choose the at-the-money implied total
variance for the money to be θt = 0.04t. We choose a power-law parameterization of the function ϕ
described in [16] as ϕ(θ) = ηθ−λ. The at-the-money total implied variance is then

σ2
BS(k, T ) =

θt
2

(
1 + ρϕ(θt)k +

√
(ϕ(θt)k + ρ)2 + (1− ρ2)

)
,

where k is the log-moneyness log(K/F ). The parameters are chosen as η = 1.6, λ = 0.4 and ρ = −0.15.
The resulting surface is shown in Figure 1. We produce prices using the Black-Scholes formula.

We select five times in which we will calibrate the model on generated prices : t ∈ {0.2, 0.4, 0.6, 0.8, 1.0}.
On time τi, we select the calls with strikesK ∈ {S0+1+4ki} and the puts with strikesK ∈ {S0−1−4ki}
for ki ∈ {0, 1, . . . , NC,i}, with NC = (5, 7, 9, 10, 12). We calibrate less points for the earlier maturities
as mass is almost nonexistent far from the at-the-money price at these maturities.

We perform the multiscale strategy described in Section 5.4 with up to NT = 81.
We choose the constant cmart = 1× 104 as the penalization term for the martingale constraint.
We implement the algorithm in Python using the PyKeops library.
The program runs in approximately 10 minutes on a V100 GPU with 24GB of GDDR5 memory

and an Intel Xeon 5217 8 core CPU with 192GB or DDR4 RAM.
We show the convergence curves at the last scale NT = 81 in Figure 2. Figure 2a shows the L2

norm of the relative iterate errors ∥Φk+1−Φk∥
∥Φk∥ at each iteration. Figure 2b shows the L2 norm of the

martingale error at each iteration. Figure 2c shows the L2 norm of the price errors
∑
i ∥ci−E(G(Xτi))∥2

by iteration for every scale. Different scales are separated by a dashed line.
Finally, Figure 3 shows the calibration results at each time. For each of the calibration times,

we show the reference implied volatility, the calibrated implied volatility, and the implied volatility
generated by the forward diffusion process with the same number of timesteps and the volatility of the
solution.

References
[1] Aurélien Alfonsi, Jacopo Corbetta, and Benjamin Jourdain. Sampling of Probability Measures in

the Convex Order and Approximation of Martingale Optimal Transport Problems. SSRN Schol-
arly Paper. Rochester, NY, Nov. 2017.

[2] Donald G. Anderson. “Iterative Procedures for Nonlinear Integral Equations”. In: J. ACM 12.4
(1965), 547–560. issn: 0004-5411.

17



Figure 1: Generating model implied volatility

[3] Julio Backhoff-Veraguas and Clara Unterberger. On the specific relative entropy between martin-
gale diffusions on the line. 2023.

[4] Jean-David Benamou. “Optimal transportation, modelling and numerical simulation”. In: Acta
Numerica 30 (2021), pp. 249–325.

[5] Jean-David Benamou and Yann Brenier. “A computational fluid mechanics solution to the
Monge–Kantorovich mass transfer problem”. In: Numer. Math. 84 (2000), pp. 375–393.

[6] Jean-David Benamou, Guillaume Carlier, and Luca Nenna. “Generalized incompressible flows,
multi-marginal transport and Sinkhorn algorithm”. In: Numer. Math. 142 (2019), pp. 33–54.

[7] Jean-David Benamou et al. “An entropy minimization approach to second-order variational mean-
field games”. In: Math. Models Methods Appl. Sci. 29 (2019), pp. 1553–1583.

[8] Jean-David Benamou et al. “Entropic Martingale Optimal Transport”. In: (2024).

[9] Jean-David Benamou et al. “Entropic optimal martingale transport”. in preparation. 2024.

[10] Guillaume Carlier. “On the Linear Convergence of the Multimarginal Sinkhorn Algorithm”. In:
SIAM Journal on Optimization 32.2 (2022), pp. 786–794.

[11] Guillaume Carlier et al. “Convergence of Entropic Schemes for Optimal Transport and Gradient
Flows”. In: SIAM Journal on Mathematical Analysis 49.2 (2017), pp. 1385–1418.

[12] Simone Di Marino and Augusto Gerolin. “An Optimal Transport Approach for the Schrödinger
Bridge Problem and Convergence of Sinkhorn Algorithm”. In: Journal of Scientific Computing
85 (Nov. 2020), p. 27.

18



0 20 40 60 80 100 120
Iteration

10 7

10 6

10 5

10 4

10 3

10 2

10 1

L2  i
te

ra
te

 e
rro

r

(a) L2 norm of iterate errors

0 20 40 60 80 100 120
Iteration

10 5

10 4

10 3

10 2

L2  m
ar

tin
ga

le
 e

rro
r

E( E(1 exp(Y X)|X) 2)

(b) L2 norm of the martingale error

0 25 50 75 100 125 150 175
Iteration

10 1

100

Pr
ice

 e
rro

r

(c) L2 of the price errors

Figure 2: Convergence curves

[13] Hans Föllmer. “Doob Decomposition, Dirichlet Processes, and Entropies on Wiener Space”. In:
Festschrift in honour of Masatoshi Fukushima’s Beiju. Springer Proceedings in Mathematics &
Statistics. 2022.

[14] Nina Gantert. Some large deviations of Brownian motion. 1991.

[15] Michael Garstka, Mark Cannon, and Paul Goulart. Safeguarded Anderson acceleration for para-
metric nonexpansive operators. 2022.

[16] Jim Gatheral and Antoine Jacquier. “Arbitrage-free SVI volatility surfaces”. In: SSRN Electronic
Journal (2012).

[17] Ivan Guo, Gregoire Loeper, and Shiyi Wang. “Calibration of Local-Stochastic Volatility Models
by Optimal Transport”. In: arXiv:1906.06478 (July 2021).

[18] Ivan Guo, Grégoire Loeper, and Shiyi Wang. “Calibration of local-stochastic volatility models
by optimal transport”. In: Mathematical Finance 32.1 (2022), pp. 46–77.

[19] Ivan Guo et al. “Optimal transport for model calibration”. In: Risk (2022).

[20] Julien Guyon. Dispersion-Constrained Martingale Schrödinger Bridges: Joint Entropic Calibra-
tion of Stochastic Volatility Models to S&P 500 and VIX Smiles. en. 2022.

[21] Christian Léonard. “A survey of the Schrödinger problem and some of its connections with
optimal transport”. In: Discrete Contin. Dyn. Syst. 34 (2014), pp. 1533–1574.

19



[22] Gregoire Loeper. “Option Pricing with Linear Market Impact and Non-Linear Black-Scholes
Equations”. In: The Annals of Applied Probability, 2018 (2016).

[23] Nicolas Papadakis, Gabriel Peyré, and Edouard Oudet. “Optimal Transport with Proximal Split-
ting”. In: SIAM J. Imaging Sci. 7 (2014), pp. 212–238. issn: 1936-4954.

[24] G. Peyré and M. Cuturi. “Computational optimal transport”. In: Found. Trends Mach. Learning
11 (Mar. 2019), pp. 355–607.

[25] Xiaolu Tan and Nizar Touzi. “Optimal transportation under controlled stochastic dynamics”. In:
The Annals of Probability 41.5 (2013).

[26] Homer F. Walker and Peng Ni. “Anderson Acceleration for Fixed-Point Iterations”. In: SIAM
Journal on Numerical Analysis 49.4 (2011), pp. 1715–1735.

.1 Proof of Proposition 4.3
First, we separate the sum of λgi per timesteps using the values defined above :

NC∑
i=0

λgiGi(xi) =

NT∑
k=0

NC∑
i=0

λgi1τi=kGi(xi) =

NT∑
k=0

#»

Λk ·
#  »

Gk(xk)

We can rewrite the operator ∆ as a sum :

∆(ϕm, ϕb, λg) =

NT−1∑
k=0

∆k,k+1(xk, xk+1) +
#  »

Λk ·
#  »

Gk + ϕmk
(xk)

+ ϕmNT
(xNT

) +
#      »

ΛNT
· #       »

GNT
(xNT

)

where only consecutive timesteps are grouped together. In particular, for a given k, we can separate
this sum into three parts :

∆(ϕm, ϕp, ϕd, λg) =∆k,k+1(xk, xk+1) +
#  »

Λk ·
#  »

Gk(xk) + ϕmk
(xk)

+
#        »

Λk+1 ·
#        »

Gk+1(xk+1) + ϕmk+1
(xk+1)

+ ∆u
k(xk) + ∆d

k+1(xk+1)

where ∆u
k and ∆d

k are given by :

∆u
k(xk) =

k−1∑
i=0

∆i,i+1(xi, xi+1) +
# »

Λi ·
# »

Gi(xi) + ϕmi(xi)

∆d
k(xk) =

NT−1∑
i=k

∆i,i+1(xi, xi+1) +
#       »

Λi+1 ·
#       »

Gi+1(xi) + ϕmi+1
(xi+1).

We further note :

∆k,k+1(xk, xk+1) =∆k,k+1(xk, xk+1) +
#  »

Λk ·
#  »

Gk(xk) + ϕmk
(xk)

+
#        »

Λk+1 ·
#        »

Gk+1(xk+1) + ϕmk+1
(xk+1)

for simplicity.
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Given that Ph is separable in the same fashion, we can compute the joint probability between steps
k and k + 1 as :

Ph,⋆k,k+1(xk, xk+1) =

∫
Ph,⋆(dx[0,k−1], xk, xk+1, dx[k+2,NT ])

=

∫
e(∆

u
k+∆k,k+1+∆d

k+1)/hρ0

NT∏
i=0

Phi,i+1dx[0,k−1]dx[k+2,NT ]

=

(∫
e∆

u
k/hρ0

k−1∏
i=0

Phi,i+1dx[0,k−1]

)
× e∆k,k+1/hPhk,k+1

×

(∫
e∆

d
k+1/h

NT∏
i=k+1

Phi,i+1dx[k+2,NT ]

)
= exp(ψuk (xk) + ∆k,k+1(xk, xk+1)/h+ ψdk+1(xk+1))Phk,k+1(xk, xk+1)

Similarly as in the previous proof, we can compute the marginal as:

Ph,⋆k (xk) =

∫
Ph,⋆(dx−k, xk)

=

∫
e(∆

u
k+ϕmk

(xk)+
# »
Λk·

#  »
Gk(xk)+∆d

k)/hρ0

NT∏
i=0

Phi,i+1dx[0,k−1]dx[k+2,NT ]

=

(∫
e∆

u
k/hρ0

k−1∏
i=0

Phi,i+1dx[0,k−1]

)
× eϕmk

(xk)+
# »
Λk·

#  »
Gk(xk)/h

×

(∫
e∆

d
k/h

NT∏
i=k

Phi,i+1dx[k+1,NT ]

)
= exp(ψuk (xk) + ϕmk

(xk) +
#  »

Λk ·
#  »

Gk(xk) + ψdk(xk))
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(a) Calibration at time 0.2.
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(b) Calibration at time 0.4.
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(c) Calibration at time 0.6.
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(d) Calibration at time 0.8.
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Figure 3: Calibration results.
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