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Université de Monastir (LMCN), Monastir, Tunisie

F. Kato and H. Koibuchi†

National Institute of Technology (KOSEN),

Ibaraki College, Hitachinaka, Japan.

T. Uchimoto

Institute of Fluid Science (IFS), Tohoku University, Sendai, Japan and

ELyTMaX, CNRS-Universite de Lyon-Tohoku University, Sendai, Japan

H. T. Diep‡

CY Cergy Paris University, Cergy-Pontoise, France

1

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4697186

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



Abstract

We numerically study the stability and morphology of geometrically confined skyrmions (skys)

in nanodots, which have been experimentally observed and reported, using the Finsler geome-

try modeling technique, which dynamically implements anisotropies in ferromagnetic interaction,

Dzyaloshinskii-Moriya interaction, and magneto-elastic coupling in response to mechanical stresses.

We find a geometric confinement (GC) effect that stabilizes skys in small-diameter nanodots under

a low external magnetic field. We also find a strain effect that stabilizes a single sky at the center

of the nanodots without a magnetic field. Moreover, we find that the obtained Monte Carlo data

on the morphological changes between the two different phases of sky and stripe are consistent

with the reported experimental data obtained by Wang et al. The numerical results indicate that

the dynamical anisotropy of the coupling constants originating from radial tensile stresses and the

GC effect suitably explain the sky stability on nanodots without a magnetic field.

∗ gildas.diguet.d4@tohoku.ac.jp
† koi-hiro@sendai-nct.ac.jp; koibuchih@gmail.com
‡ diep@cyu.fr
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I. INTRODUCTION

A topologically stable spin configuration called skyrmion (sky) emerges in chiral magnetic

materials under competition between ferromagnetic interaction (FMI) and Dzyaloshinskii-

Moriya interaction (DMI), and many studies have been conducted [1–7] since its experimen-

tal discovery [8–10]. It is well known that skys are stabilized by an external magnetic field

via Zeeman energy and mechanical strains via magnetoelastic coupling (MEC) and magnetic

anisotropy [11, 12]. The confinement of skys in small domains, called geometric confinement

(GC), has also been proposed as a stabilization technique [13], and several experimental and

numerical studies on GC and strain effects have been conducted [14–21].

Wang et al. demonstrated the application of the GC of skys to electric switching, includ-

ing the emergence of the sky without a magnetic field on nanodots with a diameter of 350

nm, in combination with GC and strain effects [20]. They reported experimental data on the

underlying GC effects without strain as well as morphological changes in spin configurations

under radial stress. Their results show that the strain effects on magnetic anisotropy and

DMI are crucial for morphological changes and sky manipulation on nanodots, and their

statement indicates that sky formation by an external magnetic field is different from that

by radial stress. The stabilization of the sky on nanodots without an external magnetic

field was numerically confirmed under a specific boundary condition [21], and the effects of

magnetic anisotropy were studied numerically [22]. A GC effect for stabilizing sky vortex

was also observed in tetrahedral nanoparticles [23]. Based on these studies, the effects of

GC, role of strains, and interaction anisotropies on these morphological changes and sky

formation have been clarified. However, the origins of these effects remain unclear.

In this study, we apply Finsler geometry (FG) modeling to clarify the effects of GC and

strain on experimentally observed morphological changes in spin configurations in nanodots

using the Monte Carlo (MC) simulation technique [24]. Dynamical anisotropies in the FMI,

DMI, and MEC that emerged under radial stresses are numerically evaluated to explain the

sky stability in nanodots. FG modeling can implement anisotropic effects on interactions

simply caused by distance anisotropy. Distance anisotropy is dynamically changeable be-

cause it is implemented by internal degrees of freedom, such as the strain direction, which

can be controlled by direction-dependent external stimuli, such as radial stresses. For this

simple geometric treatment of interactions, FG modeling allows us to perform theoretical
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studies on skys based on the same input-output relation as experimental studies. This is the

main advantage of FG modeling over standard modeling, in which anisotropic interactions

are implemented using manually fixed strains and anisotropic interaction coefficients.

II. MODEL HAMILTONIAN AND 3D CYLINDRICAL LATTICES

A. 3D cylindrical lattices and radial stresses

(a) (b)                                      (c)               

ଵଶ

ଵ

ଵ

ଵ ଵଶ

ଶଷ

strain 
direction

tensioncompression

FIG. 1. (a) A cylindrical lattice of radius d and height h, (b) illustrations of tensile (f > 0) and

compressive (f <0) stresses radially applied to cylindrical lattice, (c) strain direction τ⃗1 at vertex

1 and its component |τ⃗1 · e⃗12|, where ∥e⃗12∥=1, along a local coordinate axis x1 of a tetrahedron

with vertices 1, 2, 3 and 4. The variables s, τ⃗ are defined at vertices and ζ on bonds.

Cylindrical lattices constructed using the Voronoi tesselation technique [25] are used to

simulate skys on nanodots [20] (Fig. 1(a)). The total number of vertices is N=2083, 5430,

8465, and N=11962, and the ratio R=d/h of diameter d and a fixed height h=12a is given

by R = 1.2a, 2a, 2.5a, and R = 3a in the unit of a(=
√
3/2) (see Appendix A for further

details on the lattice structure). Mechanical stresses f > 0 and f < 0 are applied along the

radial direction and a magnetic field B is applied along the z direction (Fig. 1(b)). The

directions of magnetic field and stresses are the same as those in [20].

B. Hamiltonian and Monte Carlo

We use the following discrete Hamiltonian:

H(s, τ⃗ , ζ) = λHFM +DHDM +HB + αHME +Hf + δHζ , (1)
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where s(∈ S2 : unit sphere) and τ⃗(∈ S2/2 : half sphere) denote the spin and strain variables,

respectively, defined at every lattice vertex, and ζ(∈ {1,−1}) on the bonds (Fig. 1(c)); ζ

is a variable to implement a dynamical anisotropy in MEC. A free boundary condition is

assumed for variables on the surface. The symbols λ,D, α, δ on the right-hand side represent

the interaction coefficients. The first three terms in Eq. (1) describe the FMI, DMI, and

Zeeman energies; the next two terms are the magneto-elastic coupling energy HME and

mechanical energy Hf , and the final term Hζ , which is not included in the model of Ref.

[24], describes a dynamical Finsler length for an anisotropic MEC in HME (Appendix B for

further details on the discrete Hamiltonian). In the case of a zero stress, f=0 or equivalently

α=0, the spin configurations are determined only by the first three terms. For this reason,

no spontaneous magnetic anisotropy is assumed in the model; therefore, the target material

in the present paper is not exactly the same as that experimentally studied in Ref. [20].

Additionally, the materials used in Ref. [20] are layered ones and a Neel-type sky is assumed

in their simulations; in contrast, the materials in the present paper are single-layer and not

always thin, in which a Bloch-type sky is assumed.

The partition function is given by

Z =
∑
s

∑
τ⃗

∑
ζ

exp [−H(s, τ⃗ , ζ)/T ] , (2)

where T is the temperature and
∑

s,τ,ζ denotes the sum over all possible configurations of

s, τ⃗ and ζ. The mean value of physical quantity Pq is defined by the ensemble average

⟨Pq⟩ =
∑

s,τ,ζ Pq exp(−H/T )/Z, which is calculated by Metropolis MC technique [26, 27]

using the sample average ⟨Pq⟩=
∑

i Pq(i)/
∑

i 1, where Pq(i) is i-th sample evaluated by the

lattice average. N consecutive updates for each of the three variables are examined, and a

uniform random number is used to select N from NB ζ-variables defined on the bonds, where

NB is the total number of bonds (Appendix A). A new variable s′ is randomly generated,

independent of the present s and updated with probability Min[1, exp−(Hnew−Hold)]. The

same procedure is applied to the variable τ⃗ . In the update of ζ(∈{−1, 1}), we fix ζ ′ to the

opposite to the present ζ and accept ζ ′ with the same procedure.

The total number of MC sweeps (MCSc) for the calculation of physical quantities is

5.25×107. The samples are calculated at every 500 MCSs after 7.5×106 ∼ 12.5×106 MCSs

for thermalization starting with random initial configurations of the variables.
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III. RESULTS

A. Size effect

0 10 20 30

0.4

0.6

0.8

1
B

d

:confined
:nonconfined

zero stress
f=0,

଴

N=5430

N=2083

N=11932

N=8465
confined

nonconfined
or stripe

௭

FIG. 2. Phase diagram of B vs. d for confined sky (•) and nonconfined or stripe (◦) observed on

four different lattices, where d is the diameter of lattice in the unit of the edge length (= 1) of a

regular triangle (Appendix A). Spins of sz<0 are plotted with small cones in the snapshots.

First, we demonstrate a size effect that enables the sky to emerge with a small external

magnetic field on the smaller nanodots. The assumed parameters are shown in Fig. 2;

v0=(0.1, 0.1) denotes that v0=0.1 for both the FMI and DMI in Eq. (C1). v0 plays a role

in the strength of anisotropy; however, it does not play any role in anisotropy of interactions

in the case of f=0, where τ⃗ is isotropic. Plots in Fig. 2 represent configurations of confined

sky (•) and nonconfined or stripe (◦) observed on four different lattices (Appendix A). The

color code represents sz, and the spins of sz<0 are plotted with cones, and small cylinders

or lines represent the direction of τ⃗ . All the plotted data are obtained by visually evaluating

whether the skys are confined using the snapshots. The dashed line in red (blue) shows

the upper (lower) limit of B for the nonconfined (confined) phase. The region between

these two dashed lines is similar to the range of two-phase coexistence; however, it does not

always imply a first-order phase transition because no clear jump is observed in physical
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quantities, including the topological charge between the confined sky and non-confined sky

phases. Interestingly, the result that the two-phase coexistence region of B decreases as d

decreases is qualitatively consistent with the experimental data reported in Ref. [20].

Notably, the confinement mechanism in the model originates from a surface effect, in

which the absolute value of the surface DMI coefficient is smaller than that of the bulk DMI

[28]. A static part of this difference in the DMI strength between the surface and bulk for

f = 0 and a dynamical enhancement of the difference for f > 0 are intuitively understood

from the discrete form of HDM in Eq. (B2) (see Appendix C).

B. Strain effect

zero magnetic field
N=2083

଴

(a)                               (b)                                 (c) 

stripe sky c-stripe

௭

FIG. 3. Snapshots obtained for (a) f =0, (b) f =0.96 (tension), and (c) f =−4.8 (compression)

on the N=2083 lattice. We find stripe, sky, and c-stripe (circular stripe) phases for zero, positive,

and negative stresses, consistent with the reported experimental data for thick-layered case [20].

Next, we show the effects of the strain caused by radial tension (f > 0) and compression

(f < 0) under a zero external magnetic field (B=0). The assumed parameters are shown
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in Fig. 3; v0=(0.1, 0.1, 0.2) denotes that v0=0.1 for both FMI and DMI in Eq. (C1) and

v0=0.2 for MEC in Eq. (C2), which are fixed in this study. The snapshots obtained for the

N = 2083 lattice are shown in Figs. 3(a)–(c), where top and side views are plotted in (a)

f =0, (b) f =0.96, and (c) f =−4.8. Small cylinders representing τ⃗ can be viewed as (a)

isotropic, (b) radially aligned, and (c) spiral along the z direction. These observations are

consistent with expectations because τ⃗ represents the elongation direction owing to the radial

stress f . It should be noted that the spin direction at the center of the sky in Fig. 3(b) is

spontaneously determined and opposite to that plotted in Fig. 2. This spontaneous direction

occurs because B=0, in contrast with the case in Ref. [20], where a small magnetic field is

applied for atomic microscopy measurements, even with a zero external magnetic field. Note

also that the radial stress, for example, compression, is well defined only in 3 dimensional

models because of the induced deformation of the nanodots along the z direction indicated

by the τ⃗ direction.

The configuration in (c) is considered to be a circular stripe, which is different from

”vortex” observed in Ref. [20] for the thin-layered case. However, in their experiment on

the thick-layered case, stripes were observed, which are consistent with our numerical data

in the sense that both are stripe, although our results correspond to ”circular” stripes. We

checked that these morphological changes under radial stresses can also be observed in the

case of Neel type sky.

C. Order parameters

Now, we calculate nonpolar order parameters of spins

Qµ
s =

3

2

(
⟨(s · e⃗ µ

i )
2⟩ − 1

3

)
,

(−0.5 ≤ Qµ
s ≤ 1), (µ = r, θ, z),

Qin
s =Qr

s +Qθ
s,

(3)

where e⃗ r
i and e⃗ θ

i denote unit vectors along the radial and tangential directions at vertex

i, respectively (Appendix D). Order parameters of this type are always used for liquid

crystal molecules [29]. The results are shown in Fig. 4(a) with snapshots in Figs. 4(b)–

(g). The parameters Qµ
s (µ= r, θ, z) and Qin

s indicate that the sky phase is separated from

the stripe phase. We find an intermediate phase denoted by ”r-stripe” (rounded stripe)
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FIG. 4. (a) Nonpolar order parameters Qµ
s (µ= r, θ, z) and Qin

s vs. f , and (b)–(j) snapshots for

−5.6 ≤ f ≤ 2.64 obtained on the N =5430 lattice under B=0. We find two different phases sky

and stripe, and the stripe phase can be divided into three phases; stripe, ”c-stripe” (circular stripe),

and an intermediate phase ”r-stripe” (rounded stripe) between the stripe and c-stripe phases. We

find elongated sky in (d) and perfect sky in (e) and (f), in which the signs of sz at the periphery

are opposite to those at the center. (i) is a spiral stripe, which is also stable.

between circular stripe and stripe phases from Qr
s and Qθ

s. The sky and stripe phases are

characterized by Qin
s (•), though the difference of which is not so large.

Here, we discuss the difference in Qr
s among the circular stripe, stripe, and sky phases. In

the circular stripe phase (Figs. 4(i),(j)), sr→0, and therefore, ⟨(s · e⃗ r
i )

2⟩→0 (⇔ Qr
s→−0.5)

is expected and confirmed in Fig. 4(a). In the stripe phase (Figs. 4(b),(c)), we find Qr
s→0

implying ⟨(s · e⃗ r
i )

2⟩→ 1/3, which means that 1/3 of s align along the ±r direction. In the

sky phase (Figs. 4(e),(f)), it is apparent that ⟨(s · e⃗ r
i )

2⟩→0 (⇔ Qr
s→−0.5).

It should be noted that the total number of circular stripes of the N=5430 lattice is larger

than that of the N = 2803 lattice in Fig. 3 because the lattice diameter d approximately

increases 1.7 times. Such a change in the number can also be observed in the stripe phase.
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By contrast, the total number (=1) of skys in the sky phase remains unchanged and is

independent of d, and the sky looks like a vortex [30, 31], in sharp contrast to the case

of nonzero magnetic field with f = 0 in Fig. 2. This sky modification is expected to be

owing to the strong MEC effect for a relatively large f(> 0), where a strain configuration

(⇔ τ⃗ ∝ r⃗/r) shares the center with the sky for the rotational symmetry independent of N

(Fig. 4(f)). Owing to this symmetry, there is no chance for skys to appear independently

of the primary sky on nanodots. In addition, this rotational symmetry is compatible with

the surface effect, in which the DMI is small on the surface compared with the bulk DMI.

The sign of sz at the periphery of skys emerged under the tensile stress is not always

completely opposite to that at the center as shown in Figs. 4(d),(e) and (f). Therefore, these

skys resemble vortex configurations, as mentioned above [30, 31]. However, the opposite

sign of sz at the periphery is apparent when f is not large such as f=1.68 in Fig. 4(e), for

example. Therefore, the configurations shown in Figs. 4(d),(e) and (f) are considered to be

sky.

(b)(a)

tension magnetization

-4 -2 0 2

0.1

0.2

0.3

f

Mz

sky

stripe

c-stripe

  (T,,D,B)=(0.5,1,0.7,0)

=0.3, =0.05

FIG. 5. (a) Polar order parameter M z vs. f , and (b) an illustration of strain effects on magneti-

zation in the case of tension.

To see effects of strains on magnetization, we plot the absolute of polar order parameters

M z =
1

N
|
∑
i

szi |, (4)

in Fig. 5(a), where the dashed vertical lines represent the phase boundaries plotted in Fig.

4(a). We find in the sky phase that M z increases from M z =0 to M z > 0 as f increases in

the sky phase. The response of M z is illustrated in Fig. 5(b), which is the same as that
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observed as inverse magnetostriction. This behavior of M z indicates that s at the central

region of nanodots aligns along the ±z direction as f increases and that f effectively plays

a role in ”nonpolar” magnetic field along the z direction in the sky phase. M z → 0 in the

stripe phases because s that align along the ±z directions cancel with each other.

D. Direction-dependent interaction coefficients with effective Hamiltonians and

topological charge

-4 -2 0 2
0

0.5

1
   (T,,D,B)=(0.5,1,0.7,0)

(a)

bulk

=0.3, =0.05

,z

r

f

,z(side)

r(disk)

-4 -2 0 2
0
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0

0.2
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(c)

bulk

=0.3, =0.05
z
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z
eff

f
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DMH
H
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Hr
FM

H,z
FM

bulk

skystripe

-4 -2 0 2
-1

-0.6

-0.2
H

f(d)

Hr

ME

H,z

ME

ME

bulk

:r
:
:z

FIG. 6. (a) Direction-dependent coefficients Γµ = ⟨Γµ
ij⟩, (µ = r, θ, z) vs. f , where Γθ,z(side) and

Γr(disk) denote the θ, z components on the side surface and the r component on the upper and

lower disks, and (b) the corresponding bulk Hamiltonian Hµ
FM and Hµ

DM (Appendix D). (c) The

coefficient of the magneto-elastic coupling Ωµ=⟨Ωµ
ij⟩, and (d) the corresponding Hamiltonian Hµ

ME.

The direction-dependent coefficients Γµ=⟨Γµ
ij⟩, (µ=r, θ, z) and the correspondingHµ

FM,DM

are calculated using the expression in Eqs. (D2) and (D3) and plotted in Figs. 6(a),(b).

⟨Γµ
ij⟩ denotes the ensemble average of MC samples obtained by the lattice average with

(1/NB)
∑

ij. For the bulk coefficients inside the surface, the number NB in Eqs. (D3) and

(D4) is changed to the total number of bulk bonds. A large difference between Γr and Γθ,z
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is observed in the sky phase. To observe the GC effect, in which the surface DMI is smaller

than the bulk DMI, the θ, z components Γθ,z(side) obtained on the side surface are plotted

in the lower part of Fig. 6(a); the r component is not defined on the side surface. We

find that the surface DMI (=Γθ(side)+Γz(side)) is remarkably smaller than the bulk DMI

(=Γr+Γθ+Γz) in the sky phase (see Appendix C for this difference in DMI). This dynamical

enhancement of the surface effects by tensile stress is considered to be an origin of GC effect

for skys in nanodots without a magnetic field. In contrast, no apparent difference is observed

between the surface DMI (= Γr(disk)) on the upper/lower disk and the bulk DMI (= Γr).

The other components Γθ,z(disk), which are not plotted, are also comparable to the bulk

ones Γθ,z.

Note that Γµ= ⟨Γµ
ij⟩, (µ = r, θ, z) are considered to be the µ component of a DMI vector

[2–6] (Appendeix E). We find that Γµ, (µ=r, θ, z) increase with increasing f and this behav-

ior is qualitatively consistent with the reported result that Dave decreases with increasing

strain in Ref. [20], where Dave corresponds to −Γ
(
=−⟨Γij⟩=−Γr−Γθ−Γz

)
except for the

multiplicative constant D. We also find from Fig. 6(b) that Hµ
DM increase (Hµ

FM decrease)

as f increases in the sky phase representing a competing nature of the interactions necessary

for sky emergence. Note that a small discontinuity in Hθ
DM at the phase boundary between

the sky and stripe indicates a weak first-order transition (Fig. 6(b)). Hz
DM is (not plotted)

close to Hθ
DM though it has no discontinuity.

The coefficients Ωµ = ⟨Ωµ
ij⟩ and the corresponding Hµ

ME, which are given by the same

expressions for Hµ
DM in (D3), are plotted in Figs. 6(c),(d). The symbol Ωz

eff denotes an

effective coupling constant defined by

Ωz
eff = αfΩz, (5)

in which the constant α is included. This Ωz
eff is considered to be corresponding to the

magnetic anisotropy Kave in Ref. [20], because the z component of HME also plays a role

in the magnetic anisotropy in our model. Thus, we find a qualitative consistency between

the observation that Ωz
eff increases with increasing f and the behavior in Kave vs. strain in

Ref. [20]. Note that Ωz
eff → 0 for f → 0, and therefore no spontaneous magnetic anisotropy

is implemented in the model, as mentioned in Section II B; all anisotropies are dynamically

generated and can be evaluated.
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FIG. 7. (a) A triangle ijk and the spins si, sj and sk for the calculation of the topological charge

Nsk on the upper disk. (b) |Nsk| vs. f and (c) order parameters Qζ and Qµ
τ (µ = r, z) vs. f .

The topological charge Nsk=
1
4π

∫
d2x s· ∂s

∂x1× ∂s
∂x2 is calculated using the discrete expression

Nsk =
1

4π

∑
∆(ijk)

si · (sj − si)× (sk − si) (6)

on the upper disk of the lattice, where ∆(ijk) denotes a triangle with vertices i, j and k (see

Fig. 7(a)). We observe a topological phase transition between the sky and stripe phases (Fig.

7(b)), although |Nsk| is smaller than |Nsk|= 1 in the sky phase owing to numerical errors

originating from discretization. The other reason for |Nsk|< 1 is that the sign of sz in the

peripheral region is not completely opposite to that in the center. The order of the transition

is considered to be first-order if we employ the definition of the first-order transition such

that there exists a physical quantity that is discontinuously changing. Moreover, |Nsk| in

the sky phase is larger than |Nsk|(=0.5) of the vortex, implying that the sky configurations

under tensile stress are different from those of vortices, as emphasized in Section III C.

An order parameter Qζ for ζ defined by

Qζ = (1/NB)
∑
a

ζa, (7)

is plotted in Fig. 7(c). The value Qζ=1 (Qζ=−1) corresponds to the cosine (sine) type vij

in Eq. (C2). The abrupt change in Qζ at f = 0 indicates an internal phase transition for
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Finsler length caused by external mechanical stress f . Notably, we verified that no c-stripe

configuration emerges if Qζ = 1(⇔ vij = | cos θij|+v0) for f < 0 by manually fixing ζ to be

ζ=1. Therefore, this transition (Fig 7(b)) in the Finsler length is expected to be crucial for

the morphological change on nanodots under radial stress. From the direction-dependent

nonpolar order parameters Qµ
τ =

3
2

(
⟨(τ⃗ · e⃗ µ

i )
2⟩ − 1

3

)
, (µ = r, z) in Fig. 7(c), we find that the

strain τ⃗ is at random (⇔Qµ
τ →0, (µ= r, z)) for f →0 and aligns such that τ r→0 (τ z →0)

in the c-stripe (sky) phase, as expected.

IV. CONCLUDING REMARKS

In this paper, we numerically study skyrmion (sky) stability in nanodots with and without

a magnetic field using the Finsler geometry (FG) modeling technique and find that a single

sky is stabilized at the center of a radially emerged strain field under radial stress. Metropolis

Monte Carlo technique is used for the simulations on 3D tetrahedral lattices of cylindrical

shape. Our Hamiltonian is defined with the variables of electric spins and strain direction,

and an Ising-like variable to dynamically treat the anisotropy of the magneto-elastic coupling

(MEC) in FG modeling.

For the GC effect without stress, we confirm that the minimal external magnetic field for

the skys decreases when the nanodot diameter decreases, which is consistent with previously

reported experimental data by Wang et al. When radial stresses are applied under a zero

magnetic field, we confirm two different morphological phases, the sky and stripe, by varying

the stress from positive (tension) to negative (compression). A stable sky emerges at the

center of the nanodot owing to the surface effect dynamically enhanced by the strains. The

stripe phase can be divided into three phases: stripe and circular stripes and one intermediate

phase between the stripe and circular stripe phases. This morphological change in response

to stress is also consistent with previously reported experimental results. Thus, we consider

that the origins of sky stability on nanodots without a magnetic field are (i) dynamically

enhanced surface effect for GC and (ii) dynamically generated interaction anisotropies of

FMI, DMI, and MEC under radial stresses.
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Appendix A: Lattice construction

(a)                          (b)                          (c)                             (d) 

ଶ
ଶ

ଶ

0 0.5 1
0

0.5

1

N=2803

N=5430

N=11932

FIG. 8. Cylindrical lattices of size (a) N = 2803, (b) N = 5430 and (c) N = 11932 composed of

tetrahedrons. The diameters are d=14.4a2, d=24a2, and d=36a2 in (a), (b) and (c), respectively,

while the height is fixed to h= 12a, where a(=
√
3/2) is the height of a regular triangle of unit

edge-length on the cylindrical surface. (d) Distribution h(ℓ) of bond length ℓ, where both h(ℓ) and

ℓ are normalized. The peak at ℓ ≃ 0.6 corresponds to the bond of the cylindrical surface. The

height shares the symbol h with the distribution h(ℓ), however, no confusion is expected.

The height h of the cylinder is fixed to h=12a (Fig. 8), and the diameter d is determined

by the ratio R = d/h. We plot three cylinders of R = 1.2a, R = 2a and R = 3a in Figs.

8(a)–(c). The cylindrical surface is composed of a regular triangle. The total number of

vertices on each of the top and bottom disks, including the edge, is given by π(d/2)2/(
√
3/2),

where
√
3/2 is the area of two regular triangles and the vertices are randomly distributed

as uniformly as possible. The distribution of vertices on the upper disk is the same as

that on the bottom disk. The vertices inside the surface are also randomly distributed as

uniformly as possible, and the total number is calculated using the volume of vertices inside

the surface, in which the space is assumed to be filled with regular tetrahedrons. Vertex
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TABLE I. Lattices are characterized by the numbers N,NB, NT , Ntet, which are the total number

of vertices, bonds, triangles, and tetrahedrons. The Euler number χ(=N−NB+NT−Ntet) satisfies

χ = 1, implying that the lattices are filled with tetrahedrons. Diameter d and ratio R(= d/h)

characterize the lattice shapes. The height h of the cylinder is h=12a (Fig. 8).

N NB NT Ntet χ d R(= d/h)

2083 13686 22501 10897 1 14.4a2 1.2a

5430 36720 61093 29802 1 24a2 2a

8465 57882 96700 47282 1 30a2 2.5a

11932 82097 137492 67326 1 36a2 3a

volume is calculated as (
√
2/48)×22.8, where (

√
2/48 is a quarter of the regular tetrahedron

volume and 22.8 is an approximate number of the regular tetrahedrons emanating from the

inner vertices calculated by 4π/Ω with the solid angle Ω of a vertex of the tetrahedron. The

peak of the distributions h(ℓ) of the bond length ℓ plotted in 8(d) corresponds to the bond

on the cylindrical surface. Table I lists the numbers characterizing the lattices.

The mean value of the total number of tetrahedrons nij(=
∑

∆(ij) 1) sharing bond ij are

shown in Table II. We find that n(side)
n(bulk)

≃0.51. This ratio is one of the origins of the surface

effect on GC that the surface DMI on the side surface is smaller than the bulk DMI. The

surface effect will be described in Appendix C. To show that the direction e⃗ij of bond ij is

isotropic, the lattice averages (e⃗ij · e⃗ r)2, (e⃗ij · e⃗ θ)2 and (e⃗ij · e⃗ z)2 are listed. We find from

(e⃗ij · e⃗ µ)2≃1/3, (µ=r, θ, z) that the bond direction e⃗ij is isotropically distributed.

Appendix B: Discrete Hamiltonian

The discrete Hamiltonian in Eq. (1) is

H(s, τ⃗ , ζ) = λHFM +DHDM +HB + αHME +Hf + δHζ . (B1)
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TABLE II. The mean value of the total number of tetrahedrons sharing bond ij are calculated

using n =
∑

ij

∑
∆(ij) 1∑
ij 1

on upper and lower disks, side surface and inside, denoted by n(disk), n(side)

and n(bulk), respectively. n is the mean value for all bonds ij. (e⃗ij · e⃗ µ)2, (µ=r, θ, z) are the lattice

averages of squared µ components of bond direction e⃗ij , where e⃗ µ(µ= r, θ, z) denote the (r, θ, z)

direction at the center of bond ij (see Appendix D).

N n(disk) n(side) n(bulk) n (e⃗ij · e⃗ r)2 (e⃗ij · e⃗ θ)2 (e⃗ij · e⃗ z)2

2083 2.85 2.65 5.16 4.78 0.340 0.336 0.330

5430 2.80 2.64 5.17 4.87 0.333 0.330 0.338

8465 2.80 2.65 5.17 4.90 0.329 0.329 0.340

11932 2.80 2.65 5.17 4.92 0.330 0.329 0.342

௝

௜

(a )                                        (b)                                  (c) 

FIG. 9. (a) Illustration of bond a and the connected bonds. The total number of the connected

bonds at vertex i (j) is qi−1 (qj−1), where qi (qj) is the coordination number at vertex i (j).

Illustrations of (b)
∑

ij(∆); the sum over bonds ij(∆) of tetrahedron ∆, and (c)
∑

∆(ij); the sum

over tetrahedrons ∆(ij) sharing bond ij.
∑

ij(∆) 1 = 4 for all ∆, and the number nij =
∑

∆(ij) 1

depends on bond ij.
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The terms on the right hand side are given as follows:

HFM =
∑
∆

∑
ij(∆)

Γij(τ⃗) (1− si · sj) , HDM =
∑
∆

∑
ij(∆)

Γij(τ⃗)e⃗ij · si × sj,

HB = −
∑
i

si · B⃗, B⃗ = (0, 0,−B),

HME = −f
∑
∆

∑
ij(∆)

Ωij(τ⃗ , ζ) (si · sj)2 ,

Hf = −sgn(f)
∑
i

(
τ⃗i · f⃗

)2

, f⃗ = f
r⃗

∥r⃗∥
, sgn(f) =

 1 (f > 0)

−1 (f < 0)
,

Hζ = −
∑
(ab)

ζaζb

(B2)

The first term HFM is an FMI energy that is deformed to have a τ⃗ -dependent interaction

coefficient Γij(τ⃗) (see Appendix C for FG modeling details). The second term is also the

deformed DMI energy with the same Γij(τ⃗). The third term HB is the Zeeman energy

and the fourth term is the energy for the ME coupling quadratic with respect to s with

a coefficient Ωij(τ⃗ , ζ), which is dynamically changeable and different from Γij(τ⃗) in HFM

and HDM (Appendix C). The fifth term Hf denotes the energy for the response of strain τ⃗

to an external stress f⃗ along the radial direction. The final term is defined as the sum of

connected bonds a and b denoted by (ab) (Fig. 9(a)). We note that Hζ is equivalent to the

Potts model Hamiltonian, HP=−
∑

ab δζa,ζb , where δζa,ζb =1 (ζa=ζb) and δζa,ζb =0 (ζa ̸=ζb).

HFM, HDM and HME are commonly defined by
∑

∆

∑
ij(∆), the sum over tetrahedrons ∆,

where
∑

ij(∆) denotes the sum over bonds ij(∆) of tetrahedron ∆ (Fig. 9(b)).

Appendix C: Discretization of direction-dependent interaction coefficient

Finsler geometry framework provides interaction anisotropy between two particles via a

direction-dependent Finsler length vij (Fig. 10(a)). The Finsler length vij for HFM, HDM is

fixed to be cosine type, and vij for HME is defined to be changeable to cosine type or sine

type depending on ζij (∈ {−1, 1} on bond ij):

vij = | cos θij|+ v0, (v0 = 0.1; HFM, HDM) (C1)

vij =

 | cos θij|+ v0, (ζij = 1)

sin θij + v0, (ζij = −1)
, (v0 = 0.2; HME), (C2)
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௜௝

unit Finsler distance   
from vertex 

(in Euclidean space ) 

(a)                (b)                

௜

௜௝ ௝௜

௜௝ ௜௝

௜௝ ௜௝

௜௝

FIG. 10. (a) Trajectory of unit Finsler length vij at i is not always spherical or symmetric in

Euclidean space, (b) the trajectory for vij assumed in this paper, which depends on strain direction

τ⃗i(∈ S2/2). Note that vij ̸= vji because τ⃗i ̸= τ⃗j in general (Eq. (C3)).

where cos θij and sin θij (Fig. 10(b)) are

cos θij = τ⃗i · e⃗ij, sin θij =
√

1− |τ⃗i · e⃗ij|2 (≥ 0), (C3)

and v0 is a small cutoff.

Using these vij, the Finsler metric is defined by

gab =


v−2
12 0 0

0 v−2
13 0

0 0 v−2
14

 ,
√
g =

√
det gab = v−1

12 v
−1
13 v

−1
14 , gab = (gab)

−1. (C4)

These expressions are used to obtain the discrete Hamiltonian in Eq. (B2) from the contin-

uous ones

HFM =
1

2

∫
√
gd3xgab

∂s

∂xa
· ∂s

∂xb
,

HDM =

∫
√
gd3xgab

∂r⃗

∂xa
· s× ∂s

∂xb
,

HME =
1

4

∫
√
gd3x

(
gab

∂s

∂xa
· ∂s

∂xb

)2

,

(C5)

by replacing the differentials with differences such that ∂1s→s2−s1, ∂2s→s3−s1 and ∂3s→

s4−s1 for a local coordinate system with the origin at the vertex 1, and by replacing
∫ √

gd3x

with the sum over tetrahedrons
∑

∆ and the sum over bonds
∑

ij(∆) of the tetrahedron

∆, and by summing over all symmetric expressions obtained by the cyclic replacements

1→ 2, 2→ 3, 3→ 4, 4→ 1 (Fig. 1(c)). For the discrete HME, only quadratic terms such as

(si · sj)2 in the expansion of
(
gab ∂s

∂xa · ∂s
∂xb

)2
are used.
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In these discrete calculations, we extract an intensive part of the energies, the so-called

position- and direction-dependent coupling constants

Γij = Γ̂−1γij, Γ̂ = n̄ ⟨γiso
ij ⟩, (C6)

γ12 =
v312

v13v14
+

v321
v23v24

, γ13 =
v313

v12v14
+

v331
v32v34

,

γ14 =
v314

v13v14
+

v341
v42v43

, γ23 =
v323

v21v24
+

v332
v31v34

,

γ24 =
v324

v21v23
+

v342
v41v43

, γ34 =
v334

v31v32
+

v343
v41v42

.

(C7)

Here, we describe only Γij for simplicity, because the difference between Γij and Ωij is

only vij in Eqs. (C1) and (C2). In Eq. (C6), n̄(=
∑

∆(ij) 1∑
ij 1

) denotes the mean value of

nij=
∑

∆(ij) 1, which is the total number of tetrahedrons ∆ sharing bond ij (Fig. 9(c)), and

⟨γiso
ij ⟩ denotes the mean value of the lattice average

∑
∆

∑
ij(∆) γij∑

∆

∑
ij(∆) 1

of γij calculated with 1000

isotropic configurations of τ⃗ . Note that the random configurations to obtain ⟨γiso
ij ⟩ for Ωij

include randomly distributed ζ on the bonds. The reason for introducing the v0-dependent

factor ⟨γiso
ij ⟩−1 is that γij varies depending on v0’s in Eqs. (C1) and (C2) even for the isotropic

case, and the parameters λ and D should be changed to obtain a spin configuration similar

to the original one when v0’s are changed if ⟨γiso
ij ⟩−1 is not included.

We briefly show the surface effect for GC. There are two possible sources; static and

dynamical, for the surface effect. One comes from the lattice structure and the other from

a dynamical effect in FG modeling. The first one, which is the static part, is shown using

the coupling constant in Eq. (C6) as follows. It is noteworthy that the lattice average

Γ=
∑

∆

∑
ij(∆) Γij∑

∆

∑
ij(∆) 1

of Γij for an isotropic configuration of τ⃗ satisfy Γ(=Γij)≃ n̄−1. Let γij be

a coefficient obtained with an isotropic configuration of τ⃗ and γij be the lattice average.

Then, we have that Γ= n̄−1⟨γiso
ij ⟩−1γij =

1
n̄⟨γiso

ij ⟩

∑
∆

∑
ij(∆) γij∑

∆

∑
ij(∆) 1

≃ n̄−1 because the lattice average

γij(=
∑

∆

∑
ij(∆) γij∑

∆

∑
ij(∆) 1

) of isotropic γij is close to ⟨γiso
ij ⟩. Using Γ, the Hamiltonian of DMI in Eq.

(B2) for isotropic τ⃗ can be written as

HDM =
∑
∆

∑
ij(∆)

Γij e⃗ij · si × sj

→
∑
∆

∑
ij(∆)

Γe⃗ij · si × sj = n̄−1
∑
ij

∑
∆(ij)

e⃗ij · si × sj

=
∑
ij

(n̄−1
∑
∆(ij)

1)e⃗ij · si × sj =
∑
ij

(nij/n̄)e⃗ij · si × sj,

(C8)
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where Γij is replaced by Γ and the summation convention
∑

ij

∑
∆(ij)=

∑
∆

∑
ij(∆) is used.

The replacement of Γij with a constant Γ is to neglect all dynamical effects implemented

by FG modeling and to leave only contribution from the lattice structure. This form of

HDM =
∑

ij(nij/n̄)e⃗ij · si × sj includes the weight nij/n̄, which modifies the interaction

e⃗ij · si × sj to be dependent on the position of bond ij whether it is on the surface or inside.

The number nij =
∑

∆(ij) 1 is small (large) on the surface (bulk) (Table II and Fig. 9(c)).

Thus, we confirm that this weight difference is one possible origin of the surface effect in

the small strain region f → 0, where τ⃗ is isotropic. The GC effect at f =0 is confirmed in

Section IIIA.

When an anisotropic configuration of τ⃗ (and ζ) is reflected in γij, the weight difference

is further enlarged in the region of f > 0 in the sky phase (Fig. 6(a)). This enlargement

dynamically caused by τ⃗ is the dynamical part of the surface effect for GC. Here, we should

emphasize that the surface effect on the difference in the interaction weight in HDM, caused

by both lattice itself and τ⃗ dynamics, is considered to be the origin of the GC effect for skys

in nanodots under strains [28].

Appendix D: Decomposition of interaction coefficient and the corresponding ener-

gies

(a)                                  (b) (c)

௜௝

௭

௜௝
௭

௜௝
௥

௥

ఏ

௜

௜
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௥

௜
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௭

FIG. 11. (a) Polar coordinate position of vertex i. The coordinate origin is at the center of

nanodot. (b) Spin vector si is decomposed into the radial e⃗ r
i , tangential e⃗

θ
i and e⃗ z directions at

vertex i, where sµi = (si · e⃗ µ
i )e⃗ µ

i , (µ = r, θ, z). (c) The unit vector e⃗ij from vertices i to j can be

decomposed into the e⃗ r, e⃗ θ and e⃗ z components, where e⃗ r and e⃗ θ are given by Eq. (D1) and

e⃗ µ
ij =(e⃗ij ·e⃗ µ)e⃗ µ, (µ=r, θ, z).
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Let e⃗ij be the unit vector from vertices i to j and e⃗ r
i , e⃗

θ
i and e⃗ z be the unit vectors

along the r, θ and z directions at the vertex i as illustrated in Figs. 11(a),(b), where the

coordinate origin is at the center of nanodot and e⃗ z
i is independent of i and written as e⃗ z.

Here, we define unit vectors

e⃗ µ =
1

2

(
e⃗ µ
i + e⃗ µ

j

)
, (µ = r, θ) (D1)

to represent the r and θ directions at the center of bond ij (Fig. 11(c)). Then, we have a

decomposition of e⃗ij such that e⃗ij=(e⃗ij · e⃗ r)e⃗ r+(e⃗ij · e⃗ θ)e⃗ θ+(e⃗ij · e⃗ z)e⃗ z. Using the expressions

1 = e⃗ij · e⃗ij=(e⃗ij · e⃗ r)2+(e⃗ij · e⃗ θ)2+(e⃗ij · e⃗ z)2 and Γij=Γij

(
(e⃗ij · e⃗ r)2+(e⃗ij · e⃗ θ)2+(e⃗ij · e⃗ z)2

)
,

we have a decomposition of Γij(τ⃗) such that

Γr
ij(τ⃗) = Γij(τ⃗)(e⃗ij · e⃗ r)2, Γθ

ij(τ⃗) = Γij(τ⃗)(e⃗ij · e⃗ θ)2, Γz
ij(τ⃗) = Γij(τ⃗)(e⃗ij · e⃗ z)2. (D2)

This decomposition of ”scalar function” Γij corresponds to the decomposition of DMI vec-

tor (Appendix E) and is considered a physically meaningful decomposition. Using these

direction-dependent coefficients, the corresponding energies HFM, HDM, HME can also be

decomposed into direction-dependent energies. Here, we show the decomposition of HDM :

Hr
DM =

∑
∆

∑
ij(∆) Γ

r
ij(τ⃗)e⃗ij · si × sj

1
NB

∑
∆

∑
ij(∆) Γ

r
ij

,

Hθ
DM =

∑
∆

∑
ij(∆) Γ

θ
ij(τ⃗)e⃗ij · si × sj

1
NB

∑
∆

∑
ij(∆) Γ

θ
ij

,

Hz
DM =

∑
∆

∑
ij(∆) Γ

z
ij(τ⃗)e⃗ij · si × sj

1
NB

∑
∆

∑
ij(∆) Γ

z
ij

,

(D3)

where the factor 1/NB, NB =
∑

ij 1 the total number of bonds, is multiplied to obtain the

mean value of Γµ
ij(µ = r, θ, z) per bond. The denominators on the right hand side are the

lattice averages of the components in Eq. (D2). Using these expressions, we have

HDM =
∑
∆

∑
ij(∆)

Γij(τ⃗)e⃗ij · si × sj =
∑
∆

∑
ij(∆)

(
Γr
ij + Γθ

ij + Γz
ij

)
e⃗ij · si × sj

=

 1

NB

∑
∆

∑
ij(∆)

Γr
ij(τ⃗)

Hr
DM +

 1

NB

∑
∆

∑
ij(∆)

Γθ
ij(τ⃗)

Hθ
DM +

 1

NB

∑
∆

∑
ij(∆)

Γz
ij(τ⃗)

Hz
DM,

(D4)

and therefore, the mean value is given by

⟨HDM⟩ = ⟨Γr
ij⟩⟨Hr

DM⟩+ ⟨Γθ
ij⟩⟨Hθ

DM⟩+ ⟨Γz
ij⟩⟨Hz

DM⟩, (D5)
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where ⟨∗⟩ denotes the sample or ensemble average calculated via MC simulations. We should

note that HFM in Eq. (B2) is obtained from HDM by replacing si × sj with e⃗ij(1−si · sj).

Therefore, the directional dependence of 1−si · sj along e⃗ij can also be evaluated with the

same procedure for HDM. HME is treated in the same manner.

Appendix E: DMI vector

Effective coupling constants Γµ
ij(τ⃗), (µ = r, θ, z) are understood to be µ components of a

DMI vector. First, HDM can be written as

HDM =
∑
ij

Dij · si×sj, (E1)

where Dij is a DMI vector and
∑

ij denotes the sum over bonds ij. Second, HDM in Eq.

(B2) can be expressed by the sum over bonds:

HDM =
∑
ij

∑
∆(ij)

Γij(τ⃗)e⃗ij · si × sj, (E2)

where
∑

∆(ij) denotes the sum over tetrahedrons sharing bond ij. The expression in Eq.

(E2) is obtained from HDM in Eq. (B2) by using the identity
∑

∆

∑
ij(∆) =

∑
ij

∑
∆(ij).

Therefore, comparing Eqs. (E1) and (E2), we obtain

Dij =
∑
∆(ij)

Γij(τ⃗)e⃗ij

=
∑
∆(ij)

Γij(τ⃗)
[
(e⃗ij · e⃗ r)e⃗ r+(e⃗ij · e⃗ θ)e⃗ θ+(e⃗ij · e⃗ z)e⃗ z

]
,

(E3)

and the µ component

Dµ
ij = Dij ·e⃗ µ =

∑
∆(ij)

Γij(τ⃗)(e⃗ij · e⃗ µ)2, (µ = r, θ, z), (E4)

where e⃗ µ denotes the µ component of e⃗ij (see Eq. (D1) and Fig. 11(c)). From the mean

value by the lattice average with (1/NB)
∑

ij and ensemble average, we have

⟨Dµ
ij⟩ =⟨ 1

NB

∑
ij

∑
∆(ij)

Γij(τ⃗)⟩(e⃗ij · e⃗ µ)2

=⟨ 1

NB

∑
∆

∑
ij(∆)

Γij(τ⃗)⟩(e⃗ij · e⃗ µ)2

=⟨Γµ
ij(τ⃗)⟩, (µ = r, θ, z).

(E5)
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If we write Dµ = ⟨Dµ
ij⟩, then Γµ(= ⟨Γµ

ij⟩) in Fig. 6(a) is identified with Dµ. Using Dµ,

Eq. (D5) can also be written as ⟨HDM⟩=Dr⟨Hr
DM⟩+Dθ⟨Hθ

DM⟩+Dz⟨Hz
DM⟩. Therefore, the

extensive parts ⟨Hµ
DM⟩, (µ = r, θ, z) are considered to be physically meaningful direction-

dependent energies as a response to the intensive parts Dµ.
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