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Abstract

Underwater images are altered by the physical charac-
teristics of the medium through which light rays pass before
reaching the optical sensor. Scattering and wavelength-
dependent absorption significantly modify the captured col-
ors depending on the distance of observed elements to the
image plane. In this paper, we aim to recover an image of
the scene as if the water had no effect on light propaga-
tion. We introduce SUCRe, a novel method that exploits the
scene’s 3D structure for underwater color restoration. By
following points in multiple images and tracking their in-
tensities at different distances to the sensor, we constrain
the optimization of the parameters in an underwater image
formation model and retrieve unattenuated pixel intensities.
We conduct extensive quantitative and qualitative analyses
of our approach in a variety of scenarios ranging from nat-
ural light to deep-sea environments using three underwater
datasets acquired from real-world scenarios and one syn-
thetic dataset. We also compare the performance of the
proposed approach with that of a wide range of existing
state-of-the-art methods. The results demonstrate a con-
sistent benefit of exploiting multiple views across a spec-
trum of objective metrics. Our code is publicly available at
github.com/clementinboittiaux/sucre.

1. Introduction

Images captured under the water are significantly different
from those taken above the surface. Water has a large effect
on light transport, inducing various changes of appearance
in the scene. Particles in suspension propagate light in mul-
tiple directions, inducing what is known as scattering. In
addition, strong wavelength-dependent absorption greatly
modifies the color of light that reaches the sensor. More
importantly, these effects are highly dependent on the water
conditions and the distance between elements of the scene
and the sensor [1, 3, 21, 32, 45]. This source of visual vari-
ability presents a challenge for interpreting and exploiting
underwater images and has been long sought to be reduced.
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Figure 1. Multi-view tracking. We track pixels in multiple im-
ages to retrieve their intensities at different distances. We then
estimate simultaneously their corrected color and the parameters
of an underwater image formation model.

Underwater color restoration aims to remove the effects
of the water medium on light transport, a strategy that has
already been shown to significantly improve the usability
of underwater images in many tasks [5, 8, 26]. We can
identify two main types of approaches employed to address
this problem: statistical methods and physics-based mod-
els. Statistical methods rely on intrinsic properties of the
images to improve their visual aspect. Some of these meth-
ods rely on fusing color and contrast enhanced versions of
the original underwater image [4, 5], while others leverage
the expressiveness of neural networks by training models
using pairs of underwater images and their corresponding
references. Such pairs of images can be generated synthet-
ically [49], obtained via domain distribution modeling such
as GANs [29] or selected using human preference man-
ual annotations [27]. In contrast, physics-based approaches
have focused on explicitly modeling the formation of im-
ages under water [1, 3, 21, 32, 34], invert the model and
recover the scene appearance as if it were captured with-
out the effects of the described phenomena [2, 7, 8, 29, 34].
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For instance, Sea-thru [2] restores colors from a single im-
age and its corresponding distance map by estimating the
parameters related to absorption and scattering. However,
estimating these parameters from a single image is an ill-
posed problem. To cope with this, Sea-thru has to rely on
additional assumptions, like a distance-wise adaptation of
the dark channel prior [18], to allow independent estima-
tion of the parameters.

We hereby propose to exploit multiple views from the
same scene to further constrain the aforementioned ill-
posed problem. We rely on Structure-from-Motion (SfM)
not only to estimate distance maps, but also to track ob-
served intensities of elements in the scene at different dis-
tances based on estimated camera poses. In recent years,
SfM has become a common intermediate step of many pop-
ular airborne computer vision algorithms [33, 38]. In un-
derwater scenarios, StM has been proven highly feasible
with an appropriate camera setup [13, 17, 23]. Pizarro et
al. have demonstrated the effectiveness of underwater SfM,
even in scenarios with low overlapping images and chal-
lenging 3D structures [37]. As such, SfM has also become
increasingly popular for use in underwater computer vision
algorithms [2, 11, 25, 34, 42, 44]. While it requires addi-
tional information about the scene, the proposed approach is
well suited for the creation of large-scale datasets with ref-
erence images from real-world scenarios, which can be used
to train underwater image enhancement neural networks.

Our contributions are the following:

1) We introduce a novel multi-view method that simulta-
neously estimates the parameters of an underwater image
formation model alongside the restored image by tracking
points in multiple images to retrieve their intensities at dif-
ferent distances to the scene (see Fig. 1).

2) We validate experimentally the developed approach on
synthetic and real-world datasets in both natural light and
deep-sea scenarios. We perform extensive objective quan-
titative evaluation on two datasets containing reference
ground truth data: synthesized underwater images [49] and
color charts captured under water [2]. The applicability and
ecological validity of our method is confirmed with qualita-
tive analysis on images from two deep dive surveys: FEiffel
Tower [31] and a submarine wreck. Our results demonstrate
that leveraging multiple views enables restoring colors that
are significantly attenuated in the underwater images due to
the distance to the scene. Furthermore, it consistently im-
proves the accuracy of color rendering of elements. Given
its improved performance, our approach can be used to pro-
duce new reference images for training single-view under-
water color restoration methods. To fully appreciate the ef-
fectiveness of our underwater color restoration results, we
encourage readers to watch the accompanying supplemen-
tary videos, which provide compelling visual comparisons.

Variable Description Type
I underwater images RN XHXWxC
J restored images RNXHXWxC
z distance maps of images RN XH>W
B veiling light R
i image index [1..N]
c color channel index [1..C]
D pixel index [1..H x W]

Table 1. Underwater image formation model variables used
across the paper. We use subscripts to index specific images,
color channels and pixels, e.g., I; ¢ p is the intensity of pixel p of
channel c of image ¢. In some equations the image index ¢ may
be omitted for readability. Bold symbols are used for variables
encoding spatial information such as images or distances maps. N
is the number of images (i.e., views), H and W are the height and
width of images and C' the number of channels C = |{R, G, B}|.

2. Related work

A large body of work tackles restoration of single still
images without using any additional source of informa-
tion [7, 8, 14, 19, 26, 40, 48]. While single image restora-
tion is the most general and challenging formulation of the
problem, work on the multi-view setting is of great benefit
to produce approximate references for evaluation or target
pairs for supervised learning, e.g., in neural network-based
approaches [27, 29, 36].

In this context, previous works have focused on restor-
ing the colors of underwater 3D models. For instance, af-
ter generating an underwater 3D model using SfM, Bryson
et al. leverage multi-view observations of texture patches
to estimate the parameters of an underwater image for-
mation model and restore the color of the model’s tex-
ture map [10, 11]. On the other hand, Nakath et al. [34]
propose employing a differentiable rendering framework,
where they use the parameters of a previously fitted under-
water image formation model to render a textured 3D mesh
from multiple views. The error between the acquired and
the rendered images is then backpropagated directly into the
texture map. In contrast, the proposed approach focuses on
restoring any full-resolution image registered in the SfM by
directly minimizing a multi-view objective within the image
itself, eliminating limitations such as the resolution of tex-
ture maps and enabling color restoration on small datasets
consisting of only a few overlapping images.

Our work relies on two main prior developments that are
presented here as background.

Underwater Image Formation Model (UIFM): A key
component of physics-based color restoration methods is
their UIFM that describes how the colors of the observed
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Figure 2. SUCRe pipeline. We use camera poses, intrinsics and depth maps resulting from a SfM to pair geometrically pixels between
different views. We project pixels from one view to another, enabling us to pair points in low contrast areas. We then simultaneously
estimate an UIFM parameters along with the restored image. This figure illustrates our method on a real-world deep-sea dive at a submarine

wreck.

scene are affected by the water medium [, 3, 21, 32, 34].
While there are many phenomena that impact the qual-
ity of underwater images, two of them are predominant:
i) light collides with floating particles that then act as
sources of light, inducing scattering [1]; ii) light is atten-
uated through the water column [3]. Because both phe-
nomena strongly depend on the wavelength [1, 3], UIFM
parameters are often wavelength-dependent. In most cases,
color restoration is performed for each color channel inde-
pendently [2, 7, 8, 34, 40, 46].

Many underwater color restoration methods [7, 8, 14, 40]
rely on the UIFM introduced in [40] to model backscatter
and color attenuation in natural light conditions:

I.,=Jd.pe %% 4 B.(1 — e “%r), (D

where o € R is the wavelength-dependent coefficient
weighting the distance dependency of color attenuation and
backscatter. The other variables are described in Tab. 1.

Akkaynak et al. [1, 3] further revised this model to ac-
count for differences between backscatter and attenuation
coefficients:

I, =J.pe P 4+ B (1—e ), )

where 3 € R is the color attenuation coefficient and y €
R is the backscatter coefficient.

Sea-thru is a state-of-the-art underwater image color
restoration method that relies on images in a raw file for-
mat and their corresponding distance maps [2]. It focuses
on inverting the UIFM described by Eq. (2). Given that the
distance maps are generated using SfM, there is potential
to leverage the scene’s 3D information in order to constrain
the estimation of the parameters in Eq. (2).

3. Method

In Sea-thru, with the help of the distance information, the
problem has |I.| equations and |I..| + |k| unknowns, with
k = {B¢, Be, 7} the set of UIFM parameters. Given there
are more unknowns than observations, the problem is under-
determined and requires additional assumptions to constrain
the optimization. For example, an extreme trivial solution
can be found with J. — I, 8. — 0 and B. — 0. To tackle
this, Sea-thru relies on a distance-based alternative to the
dark channel prior [18] to retrieve B, and ., and an illumi-
nant map estimation [16] to retrieve S.. J . is then retrieved
from Eq. (2) using these parameters:

JCJ) = (Ic,p - Bc(l — 6_%2?)) e/BCzp. (3)

This paper introduces a novel approach, named SUCRe,
that overcomes the limitations of single-view underwater
image color restoration methods by leveraging multiple ob-
servations of the scene, thus eliminating the need for addi-



tional assumptions. Our method takes as input undistorted
underwater images together with their corresponding cam-
era poses, intrinsics and depth maps. This information is re-
trieved using an off-the-shelf SfM pipeline [38]. By pairing
pixels in multiple images, we are able to follow the inten-
sity evolution of points at different distances and estimate
the parameters of the UIFM and pixel intensities at a hypo-
thetical zero meter distance, implying a lack of disturbance
by the water medium (see Fig. 2).

SfM pipeline: As a preliminary step to our approach, we
outline the procedure to obtain the inputs for SUCRe using
StM. We adopt the pipeline proposed by Sarlin ef al. for
visual localization, which is designed to be robust to signif-
icant changes in the environment [38]. NetVLAD [6] pairs
similar images between which pixels are matched using Su-
perPoint [15] features and SuperGlue [39] matcher. The
bundle adjustment is performed with COLMAP SfM [41]
to recover the camera poses and intrinsic parameters. We
then undistort the images using the estimated intrinsic pa-
rameters and build a 3D mesh of the scene. Finally, depth
maps are obtained by ray-casting the images onto the 3D
mesh. This results in depth maps less noisy than those ob-
tained by multi-view stereo methods.

Dense multi-view pixel pairing: The first step of our ap-
proach is to pair pixels in a dense manner between differ-
ent views. This is accomplished by projecting pixel coor-
dinates from one view to another using the depth maps as
well as the poses of the cameras and their intrinsics param-
eters. Let 21 be the homogeneous coordinates of a pixel in
image view ¢; with depth d; € R and homogeneous pose
matrix “T;, € SE(3). The pose matrix “T';, represents
the rigid transformation from frame 7; to frame w such as:
WA =vT; ® "\ where "\ € R and “\ € R3. Let
K < R3*3 be the intrinsic calibration matrix of images i,
and i9. The projection of z; in image view io with pose
“T,, can be obtained in homogeneous coordinates by:

2o =K"”T, & (“T;, 0K 'dyz1). 4)
We then back-project x5 in 77 view using 7o depth map:
x) =K"T,0® (wTi2 @K71d2$2) ) (%)

where ds is the depth of x5 in image view i5. The pix-
els in both images (x1, z3) are only paired if z) and x;
land on the same pixel coordinate, i.e., pixels are matched
to each other in both directions, from ¢; to io and from 75
to 7;. This ensures that each pixel has only one match in
both images. It also filters out points occluded by the struc-
ture. This geometry-based approach allows us to robustly
pair pixels in scenarios where feature matching algorithms
fail, e.g., in low contrast areas where most image signal has
been attenuated like in the top left corner of Fig. 3.

Figure 3. Applying SUCRe on a deep-sea image from the Eiffel
Tower dataset [9, 31] captured by a ROV equipped with an artifi-
cial lighting system. The figure depicts the recovery of colors in
low contrast areas (top left of the image). Pixels without depth in-
formation are left blank.

Optimization: With multiple observations of the same
J¢,p, our problem becomes well-posed. In SUCRe, we for-
mulate the model described by Eq. (2) in a multi-view set-
ting:

Licp=Jdepe ¥#r + B.(1—e "%ir). (6)

Parameters of Eq. (6) are then estimated by fitting the model
in a least squares manner:

argmin 33" Ly — Jepe 5

Je,Be,Besve i P

— B.(1—e 7 =on) |12 (7)

In Appendix A, we offer insights that justify the selection
of the least squares estimator for estimating the model’s pa-
rameters.

Because some pixels in low contrast areas were matched
with closer observations (see Fig. 2), we are able to retrieve
their color despite insufficient information about them on
the image being restored (see Fig. 3). Pixels with depth
that have not been paired in other images contribute to the
optimization as single observations.



Varos Sea-thru DS
Method - -
PSNRT SSIMT UCIQEt UIQM t Pl ystd]l AFEopl AFoostd]

Underwater image 10.71 0.39 0.60 1.40 37.14 3.72 36.93 3.68
Fusion [4] 10.25 0.35 0.51 2.10 29.85 6.38 30.60 6.34
Sea-thru* [2] 10.15 0.39 0.52 1.88 27.55 3.68 30.64 5.46
Water-Net [27] 11.20 0.38 0.54 1.96 29.12 4.11 31.49 5.89
FUnIE-GAN [20] 11.02 0.35 0.62 2.51 3291 3.63 35.55 5.07
Haze-Lines [8] 9.64 0.36 0.57 2.00 25.80 7.14 28.85 6.89
TACL [30] 10.02 0.36 0.44 2.52 29.28 4.27 30.50 4.93
SUCRe (ours) 12.13 0.42 0.32 1.99 21.45 2.63 22.56 2.84

Table 2. Restoration evaluation. Our approach shows significant improvements across all full-reference metrics in comparison to other
methods. Additionally, its achieves high performance independently of the color chart position, as indicated by the lower standard deviation

on Sea-thru DS errors.

4. Experiments

This work has been developed in the context of deep-sea ap-
plications. However, the image formation model described
by Eq. (2), which we extended in a multi-view setting in
Eq. (6), was conceived for natural light conditions. In this
section, we demonstrate the effectiveness of our approach in
both natural light and deep-sea environments. We show that
while the employed model does not capture some specific
characteristics of deep-sea imaging, it is sufficient to out-
perform existing solutions. For more details, Appendix B
provides empirical examples that illustrate how the natural
light model fits deep-sea images. Taking these factors into
consideration, the design and application of deep-sea image
formation models requires further research and remains in
the scope of future works.

4.1. Datasets

We evaluate our method on four distinct datasets. Two of
these datasets, Varos [49] and Sea-thru D5 [2], offer re-
spectively reference images and color charts with known
colors, enabling the calculation of quantitative metrics. The
remaining two datasets consist of ecologically valid deep-
sea data, showcasing the real-life practical applicability of
our method for two sites of interest, i.e., the Eiffel Tower hy-
drothermal vent [9, 31] and a submarine wreck. Real-world
datasets were acquired with camera housings that account
for air-glass-water refraction, allowing the use of SfM.

Varos is a synthetic deep-sea dataset embedding 4,715
images that were rendered with Blender within a simu-
lated underwater setting [49]. The dataset benefits from
Blender’s ray tracing technology, which enables the simula-
tion of scattering and attenuation effects that are commonly
observed in underwater scenes. A notable feature of Varos
is its provision of reference images under uniform lighting

conditions, which are useful for assessing the accuracy of
color restoration techniques. These reference images offer
a consistent baseline for comparison and facilitate the mea-
surement of standard metrics such as PSNR and SSIM.

Sea-thru DS is composed of 43 raw images captured un-
der natural light conditions, along with their correspond-
ing distance maps obtained through SfM [2]. The scene
contains four color charts with known patterns positioned
throughout the scene. These charts, visible in the last row
of Fig. 7, serve as ground truth for computing metrics used
to evaluate the performance of color restoration algorithms.

Eiffel Tower consists of a ROV dive to the Eiffel Tower
hydrothermal chimney [31]. Due to the depth of the vent,
which is around 1,700 meters, the ROV was equipped with
an artificial lighting system since no light from the surface
reaches such depths. The dataset comprises 4,875 images
that were extracted from the ROV’s video feed.

Submarine wreck comprises 4,595 images extracted
from a ROV’s video feed during a dive to a submarine
wreck at a depth of around 1,150 meters. Similar to the
Eiffel Tower dataset, the ROV was equipped with an artifi-
cial lighting system to illuminate the wreck due to the lack
of natural light at such depths.

4.2. Implementation

Methods such as Sea-thru [2] have been designed to work
on raw image files. However, in most real world applica-
tions, the images available have been archived in viewable
formats with low dynamic range. Despite such sub-optimal
conditions to perform color restoration, our approach is able
to tackle this issue. Therefore, all experiments have been
run on 8-bits images, which were processed from the raw
images of the Sea-thru D5 dataset.



(a) 3D model textured with underwater images

(b) 3D model textured with sweetened SUCRe images

Figure 4. Texturing the Eiffel Tower hydrothermal vent 3D model with images restored using our method results in a final model with
improved visual quality, including finer details and more accurate colors compared to the original model.
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Figure 5. Chart v error vs. distance. Compared to other meth-
ods, SUCRe demonstrates lower and more consistent ) errors in-
dependently of the distance of the color chart.

Sea-thru*: Due to the lack of a publicly available imple-
mentation, the Sea-thru algorithm [2] was re-implemented
to enable its comparison with our proposed method. We
adapted the implementation to work on 8-bits images, and
this revised version is referred to as Sea-thru*.

Initialization: Solving the system described by Eq. (7)
requires only a coarse initialization. In our experiments the
following naive initial solution is sufficient: J = I and
8 = B = v = 0.1. Nevertheless, we may also use the
parameters estimated with Sea-thru* or other methods.

Optimization: To optimize the many parameters in-
volved in jointly estimating the restored image along with
the UIFM parameters, we use gradient descent with an
Adam optimizer [24]. Each step of the gradient descent is
computed using all matched observations by minimizing the
function described by Eq. (7). Specifically, we perform 200
optimization steps with a learning rate of 0.05.

Original image
Fusion
Sea-thru*
Water-Net
FUnIE-GAN
Haze-Lines
TACL

SUCRe (ours)

43 7.7 11.1 14.5 17.9 21.3
Patch distance (m)

Figure 6. Hue vs. distance. Tracking the hue value of the red
color patch at different distances on Sea-thru D5 dataset shows that
our method outperforms other approaches in maintaining stable
hue values. Similar studies on other color patches are available in
Appendix H.

Normalization: Most color restoration methods need to
perform white balancing as a final processing step. This
is usually done using the Gray World Hypothesis algo-
rithm [12]. Instead, we choose to apply a simple channel-
wise histogram stretching.

Processing time: The full pipeline processing time de-
pends on the number of images in the dataset and evolves
linearly with the number of observations in SUCRe’s opti-
mization. Details are provided in Appendix C.

4.3. Quantitative evaluation

Evaluating the performance of underwater color restoration
methods is a challenging task. Ground truth restored colors
are generally unavailable for real-world underwater images.
Nonetheless, synthetic datasets like Varos or images con-
taining color charts like those included in the Sea-thru D5
dataset can be employed to provide reference values. This
allows for the use of so called full-reference metrics [27].
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(a) Underwater image (b) Sea-thru* [2] (c) Water-Net [27]
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(e) TACL [30] (f) SUCRe (ours)

Figure 7. Visual inspection. Restoration results of different methods in diverse underwater scenarios. The proposed approach successfully
recovers colors of distant elements where other methods struggle. Zooming in on the images is encouraged. As mentioned in Fig. 3, pixels
without depth information are rendered black for SUCRe and Sea-thru*.

We may also employ proposed no-reference metrics to as-
sess other factors like contrast and saturation [35, 47]. How-
ever, recent literature has raised doubts about the ability of
the latter to accurately measure the correction of physical
phenomena such as attenuation and scattering [22, 27].

PSNR and SSIM are full-reference measures of image
similarity that are particularly useful when entire ground
truth restored images are available. UCIQE [47] and
UIQM [35] are commonly used no-reference metrics for
evaluating the visual quality of restored underwater im-

ages. The CIEDE2000 (A Eyp) formula was developed by
the International Commission on Illumination to evaluate
color differences [43] and is commonly used in underwa-
ter color restoration [5, 28]. We hereby compute it between
the restored and expected color patches of the Sea-thru D5
dataset. The 1) error was introduced by Berman et al. [8]
and is designed specifically for images with color charts of
known colors distributed throughout the scene. For a given
color chart in an image, the 1) error is defined as the average
angle in RGB space between grayscale patches and a pure



Parameters estimation

PSNR SSIM

Single-view Multi-view
J,B,B,y — 10.15  0.39
B, B, J 11.32 042
— J, B, B,y 12.13 042

Table 3. Ablation study on Varos. We show the benefits of lever-
aging multi-view observations for the estimation of the UIFM pa-
rameters and the restored image.

gray color. We redefine the error to take into account all
twelve color patches in the color calibration charts used in
the Sea-thru D5 dataset:

_ 1 I, -FE
Y=—23 cos’ (””) : 8)
12 pz L] - 1Byl

where P is a set containing pixel indices of the twelve color
patches in the given color chart and E, denotes the expected
RGB values of the color patch with pixel index p.

Table 2 reports PSNR, SSIM, UCIQE [47] and
UIQM [35] metrics on the Varos dataset, as well as 1Z er-
ror in degrees [8] and CIEDE2000 (AFEyg) color differ-
ence [43] on the Sea-thru D5 dataset. Results show that the
proposed approach significantly outperforms other meth-
ods on every full-reference metric. Similarly to previous
works [22, 27], we find that there is little correlation be-
tween PSNR/SSIM objective criteria and UCIQE/UIQM
metrics. Furthermore, the low standard deviations on Sea-
thru DS errors show that SUCRe retains a high performance
across color chart positions, a unique quality of our method
that is highlighted in Figs. 5 and 6.

4.4. Qualitative evaluation

As can be seen on Figs. 2, 3 and 7, our method success-
fully restores the colors of far away elements (see last row of
Fig. 7). The use of multiple overlapping views overcomes
the low intensities and partial loss of color information due
to 8-bits quantization. In other words, our method fully ex-
ploits the virtual dynamic range augmentation offered by
multiple observations of the color charts in different images.
Additionally this ensures color consistency across elements
of the scene at different distances from the sensor. Figure 4
illustrates that, when texturing a 3D mesh, restoring under-
water images using our approach leads to significant im-
provements, including finer details as well as plausible and
coherent colors.

4.5. Additional insights

Ablation study: Table 3 investigates the impact of using
multiple views when estimating different parts of the com-
plete model. The first row shows Sea-thru* results, where

1207 — psnr

+ nframes PSNR SSIM
—— SSIM
11.8 4 L 0.41 50 11.48 0.39
100 11.61 0.39
11.7 1 F0.40 500 11.63 0.40
700 11.62 040
11.5 - 0.39 1000 11.64 0.40
' . T 2000 11.71 0.40
0 1500 3000 3000 1197 041

=+ n frames

Table 4. Degradation study on Varos. We evaluate the impact
of the number of sequential input frames on the performance of
our approach. As the Varos dataset has a recording rate of 10fps,
using + 50 frames as input is equivalent to using 100 frames, or
10 seconds of video.

both the UIFM parameters (3, B and ) and the restored
image J are estimated using a single image. In the second
row, the UIFM parameters are fixed to those obtained with
Sea-thru*, yet the restored image is obtained using multi-
view observations to minimize the same error as SUCRe
(Eq. (7)). The last row shows SUCRe results, where all
parameters are estimated in a multi-view setting. Results
show that SSIM improves mainly by the recovery of low
contrast areas when J is estimated using multiple views.
While PSNR values indicate that using multi-view obser-
vations for estimating both the UIFM parameters and the
restored image is required to obtain the peak performance
exhibited by our approach.

Degradation study: As the underwater vehicle explores
the seabed, it captures more images and acquires additional
information that was not available in previous images. Ta-
ble 4 shows that our approach is able to consistently make
use of this information to improve restoration results, yield-
ing higher PSNR and SSIM values when presented with
more candidate matching images.

5. Conclusion

In this paper, we introduced SUCRe, an underwater image
color restoration approach that makes use of multi-view ob-
servations to simultaneously estimate the parameters of an
underwater image formation model along with the restored
image. We demonstrated that the use of overlapping views
allows resolving the colors of pixels that are barely visible
in the target original image. It also leads to more accurate
and consistent color renditions of elements at different
distances from the sensor. Results on deep-sea and natural
light datasets show that color restoration has much to benefit
from multi-view observations of the same pixels. Further-
more, images restored with SUCRe could be used as targets
to train single-view deep-learning methods. We hope
this method is a step forward towards helping us view the
world under the surface the same way we see the one above.
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SUCRe: Leveraging Scene Structure for Underwater Color Restoration

Supplementary Material

The following pages provide additional details on the
experiments conducted in the main paper. Appendix A
presents the residual analysis which justifies the use of a
least squares estimator. Appendix B illustrates how the un-
derwater image formation model used in the paper fits deep-
sea images. Appendix C shows the linear trend in process-
ing time with respect to number of observations of the ref-
erence implementation of our approach. Appendix D de-
scribes the accompanying videos. Appendix H provides ad-
ditional plots similar to Fig. 6, tracking the hue values of all
remaining color patches at different distances.

A. Least squares

Assuming that the errors between our model and mea-
sured individual per-channel pixel intensities follow a zero-
centered Normal distribution, the least squares estimator
leads to the maximum likelihood solution. This is the tech-
nique used in SUCRe to obtain parameters of Eq. (6). Fig-
ures 10 to 12 serve to analyze the fitting residuals on a real-
world deep-sea image (Fig. 3). The deviation from normal-
ity of the residuals remains small, which supports the choice
of model and estimator.

B. Application to deep-sea images

Figure 8 shows how the underwater image formation model
described by Eq. (6) fits a deep-sea image (Fig. 3). The plot
illustrates that the estimated model accurately captures the
evolution of observed pixel intensities with distance. This
suggests that the main components described by the model,
i.e., backscattering and color attenuation, adequately cap-
ture the main phenomena affecting pixel intensity changes
in our specific application.

C. Processing time

The processing time of our approach can be divided into two
main components: i) pairing pixels between the image to be
restored and every other images; ii) the optimization proce-
dure described by Eq. (7). The pairing step depends on the
size of the images and the number of candidate matching
images in the dataset. Figure 9 illustrates that the optimiza-
tion step evolves linearly with the number of matched ob-
servations. To restore an image from a dataset comprising
4,875 images with a resolution of 1920 by 1080 pixels, our
approach takes about 50 seconds to compute pixel pairs and
1 minute and 40 seconds for the optimization procedure us-
ing 100 millions matched pixel observations, for a total of 2
minutes and 30 seconds processing time. All computations

were performed with 32 CPU threads and a RTX A5000
GPU.
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Figure 8. Fitting the underwater image formation model on
a deep-sea image. Each green curve represents one point ob-
served in multiple images at different distances (curves have been
smoothed for visualization purposes). To illustrate how the under-
water image formation model used in SUCRe fits these intensities,
the black dotted lines show how different initial pixel intensities
evolve with distance according to the estimated model.
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Figure 9. Processing time vs. number of observations. Scatter
plot illustrating the relation between the number of observations
in an image and the processing time of restoring it. Each point
corresponds to an image of the Eiffel Tower dataset. The number
of observations is the total number of pixels that have been paired
to another pixel in the processed image. The processing time of the
optimization procedure follows a very consistent linear increase
with the number of observations. The intercept of approximately
50 seconds is due to the pairing step that computes pixel pairs for
all 4,875 images in the dataset.
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Figure 10. Residual errors distributions. Histograms of residual errors on a deep-sea image (Fig. 3) illustrate that their distribution is
close to a Normal.
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Figure 11. Normal probability plots. The x-axis refers to the expected quantiles of a normal distribution, while the y-axis corresponds to
the actual quantiles of the residuals. Points following a straight line suggest that the data follows a Normal distribution. Plots on all three
channels indicate that the residuals are close to being normally distributed.
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(c) Residuals vs. fits on blue channel

Figure 12. Residuals vs. fits. These plots are used to identify patterns in the residuals that may indicate problems with the model, such as
non-linearity or heteroscedasticity. A well-fitting model should have residuals randomly scattered around zero independently of the fitted
value, which is the case on all three channels.

D. Videos

The accompanying videos' show that our approach yields
consistent colors independently of the distance between
the camera and the scene. Moreover, the videos show
that Haze-Lines [8] is not well-suited for underwater color
restoration of video feeds because it relies on a per-frame

estimation of Jerlov water types [45]. Consecutive changes
in the water category selection leads to flickering images in
the video. While Water-Net performs a consistent restora-
tion across frames in the video, backscattering and color at-
tenuation remain highly visible and low contrast areas can-
not be resolved without exploiting multiple views of the
scene.

Ittps : / / www . youtube . com / playlist ? list =
PLe92vnufKoYL1fkExt smEZULREK7AOLiW
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(a) Original image

(b) Stitched image

(c) SUCRe

Figure 13. SUCRe vs. image stitching. Creating new images by stitching closest observations of the scene results in distorted colors and
apparent seams. In contrast, SUCRe yields consistent colors across the entire image.

E. Limitations

The complete process of light propagation under water is far
more complex than the model presented in this paper. We
make the assumption that backscatter and absorption prop-
erties are spatially and temporally consistent within all the
images. In practice, the water medium experiences spatial
and temporal changes, such as smoke coming out of hy-
drothermal chimneys, that invalidate this assumption. A
complete model encompassing all light propagation phe-
nomena that impact underwater images would require far
more than the three parameters per channel used in this
study.

It is also important to acknowledge that SUCRe is lim-
ited by its requirement of 3D scene information. The
method is entirely dependant on the SfM quality. Poor
3D reconstruction will result in incorrect pixels pairing and
impact the multi-view optimization procedure. Moreover,
non-static scene elements are discarded during the SfM pro-
cess and averaged out during SUCRe optimization. Because
of this, SUCRe cannot render dynamic objects.

F. SUCRe vs. image stitching

Our approach performs a multi-view optimization using ob-
servations of the same pixels at difference distances. One
could argue that SUCRe performance only stems from the
availability of closer observations of the scene. To this end,
we compare our method with a more naive approach: we
build restored images by stitching together the intensities of
each pixel’s closest observation. Figure 13 show that this
naive approach leads to distorted colors across the restored
image, mainly due to viewpoint changes. Moreover, there

are very apparent seams at places where different view-
points where used to build the image. To put it simply,
some parts of the stitched image result from one-meter ob-
servations, while other parts results from ten-meters obser-
vations. In contrast, the optimization procedure conducted
by SUCRe smooths pixel intensities based on Eq. (6) model,
including observation distance variation, and ensuring con-
sistent colors across the entire image.

G. Parameters analysis

The B, 3 and y parameters outlined in Eq. (6) carry phys-
ical meanings. Under consistent water conditions, they are
expected to exhibit similar values. In Fig. 14, we present
the estimation of these parameters using real-world images
from the Eiffel Tower dataset. Our findings reveal that while
these parameters undergo substantial changes within simi-
lar conditions, these changes are primarily correlated with
the variance in the distance maps of the restored images.
The parameters exhibit notable variations when the distance
maps have low variance, yet they appear almost identical in
cases where the distance map exhibits high variance. This
behavior stems from the minimization problem articulated
in Eq. (7): in instances of very low distance variance, the
available range for estimating the parameters of the model
is constrained. However, this does not imply that the esti-
mated parameters fail to capture the modeled phenomena.

H. Tracking hue values

Similar to Fig. 6, Figs. 15 to 25 show the restored hue val-
ues of all other color patches whose appearance is greatly
affected under water.
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Figure 14. Distance map variance vs. parameters estimation.
For each image of the Eiffel Tower dataset, we plot its estimated
B, ( and y parameters on the red channel against the variance of
its distance map.
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Figure 15. Hue vs. distance on the yellow color patch.
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Figure 16. Hue vs. distance on the green color patch.
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Figure 17. Hue vs. distance on the light blue color patch.
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Figure 18. Hue vs. distance on the dark blue color patch.
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Figure 19. Hue vs. distance on the magenta color patch.
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Figure 20. Hue vs. distance on the brick color patch.
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Figure 21. Hue vs. distance on the orange color patch.
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Figure 23. Hue vs. distance on the purple color patch.

Original image
Fusion
Sea-thru*
Water-Net
FUnlE-GAN
Haze-Lines
TACL

SUCRe (ours)

4.

IS

7.8 11.2 14.6 18.0 21.
Patch distance (m)

—
~

Figure 24. Hue vs. distance on the beige color patch.
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