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Abstract

In this contribution it is shown how a recent quantum information-based theory of color
perception permits to account in a natural way for several well-known properties and also
to predict new ones. The quantum model is based on a completely different paradigm with
respect to the one followed in classical colorimetry and it relies on the hypothesis that color
sensations are the result of (perceptual) quantum measurements performed by human ob-
servers.

1 Introduction

As it is well-known, the classical CIE (Commission Internationale de l’Éclairage) theory is a color
reproduction (and not color perception) model based on the integration of spectral radiance of
light stimuli over the visual spectrum, weighted by the sensitivity functions of the LMS cones.
The role of retinal neurons and that of the brain is completely disregarded. As remarked by
several vision scientists, noticeably de Valois in [16], while the cones ignite the visual process,
color perception is mainly build up by ganglion cells through chromatic opposition, which is not
taken into account at all in the original CIE theory.

To remedy this and other problems, the CIE tried to create appearance-friendly color spaces,
self-declared ‘perceptually-uniform’, the most famous of which is the CIELab one. Unfortunately,
the construction of such spaces is performed firstly through non-linear and ad hoc manipulations
of the non-perceptual XYZ space and, secondly, by imposing chromatic opposition ‘at hand’ to fit
the data of an experimental setting with very strict radiometric constraints.

For these and other reasons, this kind of spaces are theoretically deceiving and they have
a questionable practical usefulness. However, in spite of these problems, they are ubiquitously
employed in colorimetry, image processing and computer vision, also in situations where their use
is implausible.

In this contribution, it is shown that a mathematically rigorous theory of color perception
can be built if, instead of concentrating on light spectra and trying to turn them into color
sensations, one focuses on the mathematical properties of the last ones, which are strong and
robust enough to permit the identification of an intrinsically hyperbolic chromatic space. The fact
that this geometric feature emerges naturally is of major importance because all the perceptual
experiments performed throughout the last century regarding color vision exhibited an hyperbolic
behavior.

It turns out that, if the hyperbolic chromatic space is interpreted as the state space of a
quantum system, then the rigorous machinery of quantum information theory permits to explain
several well-known color perception features, such as, for instance, chromatic opponency, and also
to predict new phenomena and equations that can be efficiently used in image processing.
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The plan of the paper is the following: in section 2 the origins of the quantum color perception
model will be recalled, in section 3 more recent advances will be discussed and, finally, in section 4
perspectives to further extend the theory in order to encompass and explain appearance phenomena
will conclude the paper.

2 The quantum color perception model

Disclaimer : the construction of the quantum color perception model is the result of the collabo-
ration between Michel Berthier, professor at Université de La Rochelle, France, the author of this
extended abstract, and their PhD students.

The results that have led to this theory have been published in the following papers [6, 4, 11,
7, 5, 8, 12, 9]. Due to space limitation, here it will be provided only an essential recap of the
model that has been developed, the interested reader can find further information in the papers
just quoted.

The roots of this work may be founded in the golden era of color study, i.e. the second
part of the nineteen century, when it became more and more clear to renowned mathematicians
and physicists such as Riemann, Maxwell, Grassmann and von Helmholtz, that the ensemble
of perceptual colors C is not merely a set of sensations, but a space with a rich mathematical
structure.

In [27], Schrödinger condensed the fragmented knowledge about C into a coherent set of axioms
which imply that C is a 3-dimensional regular convex cone.

In [26], Resnikoff completed Schrödinger’s axiomatic system by showing the existence of a
transitive group action on C, which implies that C is also a homogenous space. This was a piece of
major importance to understand the puzzling nature of C because it implied that C can only take
two forms: either R+×R+×R+, or R+×H, where H is a 2-dimensional hyperbolic space, see [25]
for more details. For reasons that will be clearer soon, it is important to stress that C represents
an ideal space of perceptual colors in isolation, meaning that C contains all the possible color
sensations reported by a trichromatic human being who observes a single light source in isolation
and without considering the real lower and upper bounds of human vision as light intensity varies.

The flat space R+ × R+ × R+ is the geometric prototype of any classical CIE color spaces,
whereas R+×H is a much more interesting space from an algebraic, geometric and also perceptual
point of view. R+ × H is isomorphic to H+(2,R), the space of 2 × 2 positive-semidefinite real
symmetric matrices, and to L+, the closure of the future lightcone in the 3-dimensional Minkowski
space. From now on, C will be identified with either H+(2,R) or L+.

In the last part of his paper, Resnikoff remarked that these two spaces coincide with the domain
of positivity of the only two non-associative 3-dimensional formally real Jordan algebras: H(2,R),
the vector space of real symmetric 2 × 2 matrices endowed with the Jordan matrix product, i.e.
A ◦ B = (AB + BA)/2, A,B ∈ H(2,R), and R ⊕ R2, which is called spin factor when equipped
with the Jordan product (α,v) ◦ (β,w) = (αβ + v ·w, αw + βv), α, β ∈ R, v,w ∈ R2 and v ·w
denotes the Euclidean inner product of R2, see [3] for more information about Jordan algebras.
The only fact that is essential to recap in this document is that H(2,R) and R⊕R2 are naturally
isomorphic as Jordan algebras via the transformation

χ : H(2,R)
∼−→ R⊕ R2

A =

(
α+ v1 v2
v2 α− v1

)
7−→ χ(A) = (α, (v1, v2))t.

(1)

Here is where the quantum assumption comes into play: on one side, Jordan algebras were built
by the German mathematical physicist Pascual Jordan to provide a more suitable framework for
quantum observables than that of Hermitian operators on Hilbert spaces, on the other side, there
are several reasons why interpreting perceptual colors as quantum observables makes more sense
than treating them as classical one, see in particular [5, 12] for a detailed discussion about this
topic.
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The quantum states associated to these observables are more easily computed by considering
H(2,R) instead of the spin factor: in this case, states are represented by density matrices, i.e. unit
trace matrices belonging to H+(2,R), explicitly,

S =

{
ρ(s1, s2) ≡ 1

2

(
1 + s1 s2
s2 1− s1

)
, s1, s2 ∈ R, s21 + s22 ≤ 1

}
∼= D, (2)

where D is the unit disk in R2. The normalization of the trace is a linear constraint responsible for
the fact that S is embedded in a 2-dimensional space. Notice that S is the analog, in this quantum
framework, of the chromatic diagram build by the CIE through a projective transformation, which
is a much more difficult operation to handle than the trace normalization.
S is the state space of the easiest quantum system, called rebit, the real analog of a qubit,

i.e. a system which can only be measured in two states. Physical examples of qubits are given
by an electron with spin up or down and a photon polarized horizontally or vertically. However,
regarding rebits, no concrete examples were available before the development of the quantum
color perception model, in which the two states that can be measured have a precise, and very
important, meaning. To understand their interpretation, it is enough to write a generic density
matrix in the so-called Bloch representation, i.e. to decompose ρ on the basis of H(2,R) given by
(σj)

2
j=0, where σ0 = I2 and

σ1 =

(
1 0
0 −1

)
, σ2 =

(
0 1
1 0

)
(3)

are the two real Pauli matrices. (σj)
2
j=0 is an orthogonal basis of H(2,R) with respect to the

Hilbert-Schmidt (HS) inner product, i.e. 〈A,B〉HS = Tr(AB), for all A,B ∈ H(2,R), and
‖σj‖HS = 2 for all j = 0, 1, 2, so

ρ(s1, s2) = ρ0 +
s1
2
σ1 +

s2
2
σ2 ≡ ρ0 +

1

2
vρ · ~σ, (4)

where ρ0 := I2/2 and vρ = (s1, s2)t = (Tr(ρσ1),Tr(ρσ2))t ∈ D is called Bloch vector and D is
referred to as the Bloch disk. Notice that the components of the Bloch vector are the expectation
values of the two real Pauli matrices on the state defined by ρ, so vρ = (〈σ1〉ρ, 〈σ2〉ρ)t.

Using polar coordinates, i.e. (s1, s2) = (r cosϑ, r sinϑ), r ∈ [0, 1], ϑ ∈ [0, 2π), one easily finds
that the generic expression of a density matrix can be written as follows

ρ(r, ϑ) = ρ0 +
〈σ1〉ρ

2
[ρ(1, 0)− ρ(1, π)] +

〈σ2〉ρ
2

[ρ (1, π/2)− ρ (1, 3π/2)] . (5)

It turns out that, for all ϑ, ρ(1, ϑ) is a rank-1 projector, i.e. a pure state, and ρ(1, ϑ1), ρ(1, ϑ2)
project on orthogonal directions precisely when ϑ1 and ϑ2 correspond to antipodal points on the
unit circle. Since orthogonality in quantum theories represents incompatible states, eq. (5) codifies
a generic chromatic state as the superposition of two chromatic opponencies between incompatible
states, red-green and yellow-blue in Hering’s theory, see [20], weighted by the expectation values
of the real density matrices, plus an offset state represented by ρ0, which is parameterized by the
center of the Bloch disk D.

While the points of the ∂D, the unit circle, parameterize pure states, it is well-known, see e.g.
[19], that it exists only one maximally mixed state in the case of a rebit and it is parameterized
by the center of D. This is precisely the state ρ0 which is also characterized by the fact of
having maximal the von Neumann entropy, defined as S(ρ) = −Tr(ρ log2 ρ), and not carrying any
chromatic information. For this reason, ρ0 is called the achromatic state.

Thanks to this final identification, it follows that formula (5) is precisely the quantum descrip-
tion of the chromatic information that can be gathered from an isolated color stimulus in Hering’s
theory, as admirably resumed by the physiologist D. Hubel in [21].
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3 The growing importance of quantum information for the
advancement of the color perception model

As previously remarked, the observables belonging to the infinite cone L+ and the chromatic states
contained in the Bloch disk D represent an ideal situation in which the real limitations of human
ability to perceive colors are not taken into account. However, the visible threshold and glare
limits imply that the space of perceived colors perceived by a real normal trichromatic observer
is actually a finite-volume convex subset, usually called color solid, of the infinite cone L+.

The modern quantum information theory offers a surprisingly reach and well-suited set of tools
to handle this and other issues properly. The main observation from which all the results that
will be discussed in this section descend is that a perceived color is the result of a (quantum)
measurement that a human observer performs by looking at a color stimulus. Since the quantum
model is based on data gathered from observers adapted to the illuminant conditions of a visual
scene, the hypothesis of adaptation must also be assumed to hold true, where, in the quantum
color perception theory, an observer is considered adapted when the state chosen to match the
perception of a non-selective patch, or a broadband light spectrum, is ρ0, i.e. the achromatic state.

As it is well-known, in quantum theories, even of isolated systems, the measurement process
is intrinsically probabilistic and the concept that encodes this feature is called effect, see e.g. [23,
14, 19] for an overview on this fundamental object. In the quantum color perception framework,
an effect is defined to be an element ηe of H+(2,R) bounded between the null and the identity
2 × 2 matrix (with respect to the Loewner ordering of positive semi-definite matrices, i.e. B ≤
A ⇐⇒ A−B ∈ H+(2,R)). The matrix ηe can be written explicitly as follows

ηe =

(
e0 + e1 e2
e2 e0 − e1

)
, (6)

with e0, e1, e2 ∈ R belonging to the following effect space:

E =

{
(e0, e1, e2) ∈ R3, e0 ∈ [0, 1], e21 + e22 ≤ min

e0∈[0,1]

{
(1− e0)2, e20

}}
. (7)

As it can be seen in Figure 1, E is a closed convex double cone with a circular basis of radius
1/2 located at height e0 = 1/2 and vertices in (0, 0, 0) and (1, 0, 0), associated to the null and the
unit effect, respectively [12]. The geometry of E happens to be in perfect agreement with that of
the perceived color spaces advocated by Ostwald and de Valois, see e.g. [15]. Thus, if we assume
perceived colors to be the result of measurements represented by effects, then it is natural to
bound the infinite cone L+ of virtually perceivable colors to the color solid E of actually perceived
colors.
The effect vector in the Bloch disk associated to ηe is given by

ve :=

(
e1
e0
,
e2
e0

)t
. (8)

Effects parameterize a fundamental class of state transformations called Lüders operations, which
are convex-linear positive functions ψe defined on the state space S and satisfying the constraint:

0 ≤ Tr(ψe(ρ)) ≤ 1, for all ρ ∈ S. (9)

This implies that ρ will lose the property of having unit trace after a Lüders operation, becoming a
so-called generalized density matrix representing a post-measurement generalized state which does
not belong to the Bloch disk anymore, but to the color solid E . The value of Tr(ψe(ρ)) has actually
a very important meaning: in fact it has been proven in [9] that Tr(ψe(ρ)) can be associated to
the brightness Be(ρ) of the perceived color ψe(ρ) ∈ E .

This interpretation permits to recover the three-dimensionality of color perception in the quan-
tum model: the chromatic information is embedded in the state ρ ∈ S, which defines the object
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Figure 1: The double cone representing the effect space can be interpreted as the color solid of
actually perceived colors inside the infinite cone L+.

of a perceptual measurement associated to an effect e and, once the observation is done, the real
value Be(ρ) contains the achromatic information of brightness.

The analytical expression of the post-measurement generalized state ψe(ρ), see [14], is:

ψe(ρ) = η1/2e ρη1/2e , (10)

η
1/2
e is the so-called Kraus operator associated to e and it is the square root of ηe, i.e. the only sym-

metric and positive semi-definite matrix such that η
1/2
e η

1/2
e = ηe. Straightforward computations

lead to the following explicit formula for brightness

Be(ρ) = Tr(ψe(ρ)) = e0(1 + ve · vρ), (11)

which permits to define the chromatic state belonging to S uniquely associated to ψe as follows:

ϕe(ρ) =
ψe(ρ)

e0(1 + ve · vρ)
. (12)

Remarkably, in [12], it has been shown that the state change ρ 7→ ψe(ρ) induced by the act
of observing a color is implemented through a 3-dimensional normalized Lorentz boost in the
direction of ve and that the post-measurement chromatic state vector is the Einstein-Poincaré
relativistic sum of ve and vρ, i.e.

vϕe(ρ) = ve ⊕ vρ, (13)

defined as follows: if ‖ve‖ < 1, then

ve ⊕ vρ =
1

1 + ve · vρ

{
ve +

1

γve

vρ +
γve

1 + γve

(ve · vρ)ve

}
, (14)

where γve is the e−Lorentz factor defined by

γve =
1√

1− ‖ve‖2
, (15)

and, if ‖ve‖ = 1,
ve ⊕ vρ = ve. (16)

This formalizes the link between color perception and relativistic theories guessed in [28] on a
heuristic basis.

As recalled at the beginning of this section, an observer is supposed to be adapted to the visual
scene when the perceptual measurement is performed, thus the post-measurement state ϕe(ρ)
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should be free from possible spurious chromatic features induced by a non-neutral illumination.
This has been confirmed in the papers [18] and [10]. In particular, in the last one, an efficient
white balance algorithm was built through the use of split-quaternions, which permit to implement
the Lüders operation via a two-sided multiplication, or ‘sandwich’. Figure 2 show a result of this
algorithm in comparison with the classical von Kries white balance.

Figure 2: Left : input image of ‘Panko’. Center : output image after the von Kries white balance.
Right : output image after the Lüders white balance implemented with split quaternions. The
white balanced images have been obtained using the same illuminant estimation. It can be seen
that the Lüders white balance overperforms the von Kries one in reducing the presence of the
orange cast.

Finally, also the chromatic attributes of hue and saturation have been rigorously defined in the
quantum framework. Given the perceived color ψe(ρ) ∈ E , its saturation is

Sat(ψe(ρ)) = R(ρϕe(ρ)||ρ0)

=
1

2
log2(1− r2ϕe(ρ)

) +
rϕe(ρ)

2
log2

(
1 + rϕe(ρ)

1− rϕe(ρ)

)
,

(17)

where R is the relative entropy between the states appearing as its arguments and rϕe(ρ) =
‖vϕe(ρ)‖, while its hue is the pure chromatic state ϕ∗e(ρ) defined by

ϕ∗e(ρ) := arg min
ρ∈PS

R(ρ||ρϕe(ρ)), (18)

where PS are the pure chromatic states, parameterized by the points of the border ∂D of the
Bloch disk. The explicit expression of the density matrix associated to the pure chromatic state
ϕ∗e(ρ) is

ρϕ∗
e(ρ)

=
1

2

(
1 + cosϑϕe(ρ) sinϑϕe(ρ)

sinϑϕe(ρ) 1− cosϑϕe(ρ)

)
, (19)

where
cosϑρ,ϕe(ρ) =

vρ · vϕe(ρ)

rϕe(ρ)
. (20)

4 Conclusion and future perspectives

In this contribution it has been recalled that a radical change of paradigm with respect to the
classical CIE theory permits to build a mathematically rigorous color perception model.
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This change is grounded on the fact that the color space is not built starting from the extremely
complicated, and still misunderstood, mix of physics and psychophysics that lead to the concept
of metameric classes of color spectra, but solely from the perceptual features exhibited by color
sensations. These last ones determine uniquely the only two possible forms that the color space
can have and, once the flat option is discarded because not coherent with experimental data, only
a single intrinsically hyperbolic color space C remains.
C is the domain of positivity of two isomorphic Jordan algebras of dimension 3 over R, inter-

preted as the state cone of a quantum system, which happens to be a rebit, the real counterpart of
a qubit. Surprisingly, this fact has a tight link with Hering’s opponency theory of color perception:
in fact, the outcomes of perceptual measurements that can be performed on color stimuli can only
express the weights of chromatic opponency between two mutually incompatible couples of pure
states, which, in Hering’s theory, are identified with red-green and yellow-blue.

It is important to stress that this result is obtained by considering the simplest, most natural,
representation of density matrices associated to chromatic states, i.e. the Bloch representation, and
not by performing a posteriori statistical analysis, see e.g. [13, 24], or by introducing opponency
‘by hand’, as done by the CIE in the construction of the so-called ‘uniform color spaces’.

Starting from the quantum interpretation of C, the powerful tools and results of quantum
theories permit to proceed in the analysis of color perception without imposing any superstructure
at will, but solely by identifying judiciously the color perceptual features that correspond to either
well-known results of quantum information or by proving new ones in the context of rebit systems.

Following this line of work, a whole new vocabulary for color perception has been created in
[9], with concepts as hue, saturation, brightnees, lightness, chroma, colorfulness appearing in a
mathematically well-defined system of definitions free from the typical circularity of standard color
dictionaries.

Indirect proofs of the soundness of this new proposal are provided by the possibility to explain
quite easily the phenomenon of lightness constancy and also to create new, non-linear, white
balance algorithms able to reduce color cast better than classical methods, see [9, 10]. In doing
so, the concept of state transformation via Lüders operations plays a fundamental role and it is
truly remarkable that this kind of functions are tightly related to relativistic theories, as proven
in [12], which, in turn, is completely coherent with the hyperbolic nature of the color space C.

The strategy adopted to build the quantum color perception model is clearly much more in
line with the habits of mathematical physics than with those of classical colorimetry, however,
despite its high level of abstraction, this approach has the clear advantage to avoid the creation of
a plethora of different proposals for color spaces and attributes, something that has been plaguing
this research field for almost a century.

Up to this point, no incoherence with known results has been found but, of course, the con-
struction of the quantum color perception model is still ongoing and there are several research
paths that must be explored in order to consider this novel proposal a benchmark that can compete
also empirically, and not only theoretically, with the classical CIE theory.

First of all, it is imperative to associate color stimuli, in the form of light spectra, to chro-
matic states. In its ‘operational’ definition, a quantum state is taken to be an equivalence class of
preparations of a system in order to perform measurements of its observables, colors in this case,
where the equivalence consists in the fact that the measurement outcomes must agree indepen-
dently of the preparation. Concretely, this means that if two color stimuli produce the same set
of (perceptual) measurement outcomes for color attributes, then they must be considered as two
representatives of the equivalence class that defines the same chromatic state. Notice that this
is very different than considering them as metameric stimuli in the canonical colorimetric sense,
in fact, metameric stimuli are supposed to give rise to the same tristimulus values, while in the
quantum model no reference to how the cones transform light spectra is made. This is of crucial
importance, because, as stressed in the introduction, the role of opponency mechanisms and of
higher brain functions taking place in the visual zones may lead to same chromatic sensation even
for stimuli having equal tristimulus values, see e.g. [17].

Consequently, the experiments apt to determine the correspondence between perceptual chro-
matic states and color stimuli must switch from the canonical integration of these last ones over
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the LMS cones sensitivities, to the Hurvich-Jameson hue cancellation and hue scaling experiments
for the determination of the degree of opponency, see e.g. [22], which, as exhibited by formula
(5), would provide the expectation values of the real Pauli matrices that appear in the density
matrices.

Another extremely important perspective is the rigorous mathematical comprehension of the
phenomenon of adaptation: being a dynamical event, it is likely that it should be expressed either
in the form of the result of a differential equation, as e.g. the Lindblad master equation [2], or of
a so-called quantum channel [19]. The last hypothesis is what led to the complete classification of
rebit channels in [1].

Preliminary results have shown that, as a result of adaptation, a chromatic state changes in
a way that involves, at once, the perception of hue, saturation and brightness, which is a further
evidence of the importance of having precise definitions of such attributes. More precise and
detailed studies are needed to obtain quantitative formulae which can be confronted to empirical
data.
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