
HAL Id: hal-04612997
https://hal.science/hal-04612997v1

Submitted on 7 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Eikonal gradient-enhanced regularization of anisotropic
second-order tensorial continuum damage models for

quasi-brittle materials
Breno Ribeiro Nogueira, Giuseppe Rastiello, Cédric Giry, Fabrice Gatuingt,

Carlo Callari

To cite this version:
Breno Ribeiro Nogueira, Giuseppe Rastiello, Cédric Giry, Fabrice Gatuingt, Carlo Callari. Eikonal
gradient-enhanced regularization of anisotropic second-order tensorial continuum damage models
for quasi-brittle materials. Computer Methods in Applied Mechanics and Engineering, 2024, 429,
pp.117100. �10.1016/j.cma.2024.117100�. �hal-04612997�

https://hal.science/hal-04612997v1
https://hal.archives-ouvertes.fr


Eikonal gradient-enhanced regularization of anisotropic second-order
tensorial continuum damage models for quasi-brittle materials

Breno Ribeiro Nogueiraa,b,∗, Giuseppe Rastielloc,∗, Cédric Girya, Fabrice Gatuingta, Carlo Callarib

aUniversité Paris-Saclay, CentraleSupelec, ENS Paris-Saclay, CNRS, LMPS - Laboratoire de Mecanique Paris-Saclay, 4
avenue des sciences, Gif-sur-Yvette, 91190, France

bUniversita degli Studi del Molise, DiBT, Via Francesco De Sanctis, 1, Campobasso, 86100, Italy
cUniversité Paris-Saclay, CEA, Service d’Etudes Mécaniques et Thermiques, Gif-sur-Yvette, 91191, France

Abstract

Continuum damage models are often employed to represent cracking in quasi-brittle materials (e.g., concrete,
masonry and some rocks). However, from a numerical perspective, these models yield mesh-dependent results
at the structural scale without regularization. Standard regularization techniques are prone, however, to
some well-known drawbacks. To address these limitations, non-local models with evolving interactions have
been proposed. Inspired by the analogy between non-local interactions and wave propagation time in a
damaged domain, the eikonal non-local regularization introduces evolving non-local interactions through
a damage-dependent metric field. The contribution of the paper involves coupling for the first time the
gradient-enhanced version of the the eikonal non-local formulation with a second-order anisotropic damage
constitutive model. Such an aspect is essential when modeling quasi-brittle materials, since the material
response is anisotropic and associated with various well-established behaviors, including the dissymmetry
between tension and compression and unilateral effect. The manuscript provides a detailed overview of the
formulation, numerical solution methods, and test cases, demonstrating some important features of these
models. Attention is focused not only on the regularization properties of the formulation but also on its
capability to naturally represent the transition from damage to fracture.

Keywords: gradient-enhanced regularization, damage-dependent interactions, eikonal non-local
formulation, anisotropic damage model, three-dimensional simulations

1. Introduction

Various anisotropic damage models have been developed to represent quasi-brittle materials such as concrete,
masonry, and certain types of rocks. These models use different representations of damage, including vectors
(Krajcinovic and Fonseka, 1981), second-order tensors, fourth-order tensors (Krajcinovic and Mastilovic,
1995; Maire and Chaboche, 1997), and even eighth-order tensors (Chaboche, 1982). However, fourth-order
and eighth-order tensors prove to be too complex due to the large number of components, making them
challenging to fully identify. Consequently, many authors have chosen to work with second-order tensors
(Cordebois and Sidoroff, 1982; Ladeveze, 1983; Murakami, 1988; Halm and Dragon, 1998; Desmorat, 2004,
2015), which restrict the damage description to orthotropic behaviors. This assumption effectively captures

∗Corresponding Authors
Email addresses: breno.ribeiro_nogueira@ens-paris-saclay.fr (Breno Ribeiro Nogueira),

giuseppe.rastiello@cea.fr (Giuseppe Rastiello)

Preprint submitted to Computer Methods in Applied Mechanics and Engineering November 7, 2024



observed crack patterns in quasi-brittle materials, where cracks typically propagate either perpendicular or
parallel to the loading direction.
An alternative approach to modeling anisotropic damage is presented in (Bažant and Oh, 1983; Bažant,
1984; Bažant and Gambarova, 1984; Bažant and Prat, 1988; Bažant et al., 1996). This approach describes
material behavior independently on planes of various orientations (micro-planes) within a unitary sphere.
Strain or stress vectors on each plane are obtained by projecting their respective macroscopic tensors based
on static or kinematic constraints. For quasi-brittle materials, the strain tensor is projected onto each micro-
plane, and simple constitutive laws are used to compute stress tensors at micro-planes. The macroscopic
stress tensor is then obtained by integrating micro-plane contributions spherically based on the principle of
virtual work.
From a numerical perspective, when applied to simulations at the structure scale, all the models cited above
yield mesh-dependent results without regularization techniques. Non-local damage models, both integral
(Pijaudier-Cabot and Bažant, 1987) and gradient-enhanced (Peerlings et al., 1996), have been employed to
recover objective results. However, these methods fail to reproduce realistic cracking behavior due to issues
like parasite damage diffusion, incorrect damage initiation, and attraction to domain boundaries (Geers
et al., 1998; Simone et al., 2004; Pijaudier-Cabot et al., 2004; Krayani et al., 2009; Pijaudier-Cabot and
Dufour, 2010; Giry et al., 2011; Desmorat, 2015; Rastiello et al., 2018; Ribeiro Nogueira et al., 2022). These
drawbacks arise because the interactions are considered constant and isotropic in classic approaches.
To address these limitations, a new class of non-local evolving interaction models, known as transient internal
length models, has been developed. Geers et al. (1998) proposed one of the earliest evolving interaction
models, where the gradient parameter varied with strain but remained isotropic. Isotropic damage-dependent
evolving interactions were introduced in (Poh and Sun, 2017), utilizing the micromorphic framework to derive
a similar gradient-enhanced model. Giry et al. (2011) developed a stress-based evolving interactions integral
model, more suitable to handle free boundaries. As stress fields are employed, the interactions become
inherently anisotropic. A gradient-enhanced version of this anisotropic interactions approach was presented
in (Vandoren and Simone, 2018). Negi et al. (2020) proposed an anisotropic transient-gradient approach
based on (Poh and Sun, 2017), coupling the effects of damage and stress fields in the interactions. Several
other evolving interaction models have been proposed in the literature (e.g., Pijaudier-Cabot and Dufour
(2010); Nguyen (2011); Rojas-Solano et al. (2013); Nguyen et al. (2018); Amani (2023)).
Inspired by the analogy between non-local interactions and wave propagation time in damaged media,
Desmorat and Gatuingt (2007) and Desmorat et al. (2015) introduced the Eikonal Non-Local (ENL) reg-
ularization. This approach models non-local interactions that depend on the damage field, potentially
incorporating anisotropy. In this method, non-local interaction distances are determined as the solution
to a stationary eikonal equation with a damage-dependent metric field. Rastiello et al. (2018) presented a
two-dimensional (2D) implementation of the integral ENL regularization for isotropic damage. Additionally,
Thierry et al. (2020) and Ribeiro Nogueira et al. (2022) conducted studies on the regularization properties
of the ENL approach in 1D settings. Marconi (2022) conducted two-dimensional computations utilizing an
ENLG regularized isotropic damage model and investigated the coupling between damage and plasticity
within a one-dimensional framework. Recently, Ribeiro Nogueira et al. (2024) provided a novel theoretical
derivation of the gradient-enhanced version of ENL formulations and applied it to 2D isotropic damage
mechanics simulations.
Classic non-local models, characterized by a constant internal length, have been employed in the context of
anisotropic damage models in previous works. For example, Desmorat et al. (2007) utilized the conventional
non-local integral approach alongside a second-order damage tensor constitutive relation. Kuhl et al. (2000)
incorporated a classic gradient-enhanced model, based on the strain tensor, to regularize the anisotropic
microplane formulation for quasi-brittle materials. Zreid and Kaliske (2014) proposed a simplified gradient-
enhanced regularization of microplane models, where a scalar quantity is used in the regularization instead of
the strain tensor. Additionally, Fassin et al. (2019) introduced a gradient-extended second-order anisotropic
damage tensor model while maintaining the internal length isotropic and constant. Initial anisotropic non-
local regularization, pertaining to materials with intrinsic anisotropy, has also been applied for modeling
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composites (Wu et al., 2015; Jin and Arson, 2018; Forghani et al., 2019; Yin et al., 2020; Lu and Guo, 2022).
Similar concepts have been explored in the phase-field community (Li and Maurini, 2019; Teichtmeister
et al., 2017; Nagaraja et al., 2023), where the crack energy density was modified using structural tensors
containing information about preferential microstructure directions.
This paper introduces a novel approach by coupling an evolving anisotropic interaction gradient-enhanced
regularization (Desmorat et al., 2015; Ribeiro Nogueira et al., 2024) with an anisotropic damage constitutive
behavior (Desmorat, 2015). The key concept is that anisotropic behavior in quasi-brittle materials, such as
concrete, is induced by damage, while the medium is initially considered isotropic. The induced anisotropy
is incorporated through the ENLG model, where non-local interactions naturally evolve from isotropic to
anisotropic based on a damage-dependent Riemannian metric.
The manuscript is structured as follows. Sections 2 and 3 provide a brief overview of the general equations
of Desmorat’s anisotropic damage model (Desmorat, 2015) and the ENLG regularization. A visualization
technique based on using ellipsoids is then introduced for representing damage and metric tensors, and to
illustrate how induced anisotropic behavior naturally results in evolving anisotropic interactions. Section 4
details the numerical solution of the coupled problem. A staggered scheme is applied to solve the variational
formulation at the global level, and an iterative Newton-Raphson procedure is used for constitutive law
integration at the quadrature points. Finally, Section 5 offers a discussion concerning the main features of
the presented formulation based on the 2D simulation of well-known experimental tests. A purely numerical
test case is then developed to show the influence of anisotropic non-local interactions on damage evolution.
Finally, a first three-dimensional simulation is briefly presented, followed by some conclusions to close the
article.

2. Anisotropic eikonal gradient-enhanced damage formulation

The ENL formulation, as proposed by Desmorat et al. (2015), introduces a novel perspective on evolving non-
local interactions. The underlying assumption is that damage induces deformation in the space within which
interaction distances are computed. The interaction distances between the material points are obtained
by solving a time-independent isotropic eikonal equation (a Hamilton-Jacobi stationary equation) with a
damage-dependent Riemannian metric function. In this deformed space, the interaction distance between
two points corresponds to the length of the shortest (geodesic) path connecting them (see Rastiello et al.
(2018), for more details and illustrations).

2.1. Eikonal non-local formulation and anisotropic interactions

According to the general framework of anisotropic damage mechanics involving a second-order tensor damage
variable D, the differential problem for calculating the non-local variable ē that controls damage evolution
is computed as follows:

ē− c√
det g

∇ ·
(√

det g g−1 · ∇ē
)

= e Ω (1)

g−1 · ∇ē · n = 0 ∂Ω (2)

where g is a damage-dependent Riemannian metric tensor (it completely defines the deformation of the
space where, according to the eikonal formalism, the non-local variable ē lives):

g = (I − D)−1 (3)

In these equations, e is the local counterpart of ē, I is the second-order identity tensor, Ω is the considered
domain, n is the outward normal vector to its boundary ∂Ω, c is a parameter homogeneous to the square
of a length (introducing an initial length scale in the formulation), ∇ is the gradient operator, ∇· is the
divergence operator, and the symbol · denotes the simple contraction between tensors.
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Equation (1) was derived by Desmorat et al. (2015) from the integral-type version of the ENL model by
following the same procedure employed by Peerlings et al. (1996) to derive the classic Gradient-enhanced
Non-Local (GNL) formulation. Recently, Ribeiro Nogueira et al. (2024) proposed a robust thermodynamics
framework based on the Micromorphic Media Theory (Forest, 2009) to derive the ENL formulation. Using
concepts from differential geometry, the authors independently derived (1), obtained the boundary condition
(2) (a detail not covered by Desmorat et al. (2015)), characterized energy dissipation, and verified the
Clausius-Duhem inequality.

Considerations of the free-energy potential and material symmetry. To derive the ENLG model based on a
micromorphic media framework, Ribeiro Nogueira et al. (2024) introduced the following free-energy poten-
tial:

ρψ = ρψ(ε,D, ē, ∇̃ē) = ρψ0 + ρψnl(ē, ∇̃ē; g−1) (4)
where ρψ0 represents a local contribution associated with a specified damage model, and ρψnl(ē, ∇̃ē; g−1)
is the non-local contribution:

ρψnl(ē, ∇̃ē; g−1) = 1
2h(e− ē)2 + 1

2hc∥∇̃ē∥2
g (5)

= 1
2h(e− ē)2 + 1

2dē · g−1 · dē (6)

Here, h is a parameter homogeneous to a stiffness, ∇̃ denotes the gradient computed in a curved space, ∥•∥g
is the Riemannian norm, and dē denotes a 1-form. See the cited work for more details.
It is noteworthy that when employing the Euclidean metric, the expression ρψnl(ē, ∇̃ē; g−1) simplifies to
that of the conventional GNL model (Peerlings et al., 1996, 2004). Specifically, ρψnl

GNL(ē,∇ē) = 1
2h(e −

ē)2 + 1
2hc∥∇ē∥2 = 1

2h(e − ē)2 + 1
2 ∇ē · ∇ē (which is similar to the phase-field crack density functions). For

an isotropic medium, it can be readily verified that the latter potential maintains invariance under rotations
and reflections, satisfying the isotropy condition ρψnl

GNL(ē,Q ⋆ ∇ē) = ρψnl
GNL(ē,∇ē),∀,Q ∈ O(3), where

O(3) denotes the orthogonal group, defined as O(3) = {Q | Q⊤ · Q = I}, and ⋆ denotes a general action of a
group.1 In the case of an anisotropic medium, it is expected that ρψnl

GNL(ē,Q ⋆∇ē) = ρψnl
GNL(ē,∇ē) for all

Q ∈ H ⊂ O(3), where H denotes a specified symmetry group of the anisotropic material. This ensures that
the anisotropic free energy remains invariant under actions respecting the material symmetry.
Now, the representation theorem (Boehler, 1987) enables the representation of the free energy as an isotropic
function by introducing a structural tensor, denoted as M. This is achieved by ensuring that Q ⋆ M = M
holds for Q ∈ H ⊂ O(3). In the context of the ENLG model, this requirement holds true with consid-
ering the structural tensor equal to the inverse of the damage-dependent Riemannian metric (M = g−1).
Consequently, one has:

ρψnl(ē,Q ⋆ ∇̃ē; Q ⋆ g−1) = ρψnl(ē, ∇̃ē; g−1) ∀ Q ∈ O(3) (7)

This formulation exhibits notable similarities with those developed by Teichtmeister et al. (2017). In a
similar way, Reese et al. (2021) explored the use of an anisotropic damage variable as a structural tensor in
the definition of free energy.

2.2. Comparison with other gradient formulations with evolving non-local interactions

The general formalism for gradient-damage models can be expressed as follows:

ē− ϕ∇ · (Φ1 · ∇ē) = e Ω (8)
Φ2 · ∇ē · n = 0 ∂Ω (9)

Now, different choices for functions (ϕ,Φ1,Φ2) lead to specific models:

1Here, given a second order tensor A, one has: Q ⋆ A = Q · A · Q⊤.
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(i) GNL model by Peerlings et al. (1996):

ϕ = c Φ1 = I Φ2 = I (10)

(ii) Micromophic model by Poh and Sun (2017):

ϕ = c Φ1 = g(D)I Φ2 = I (11)

where g(D) is is an exponentially decreasing function of an isotropic damage variable D. It is chosen
such that g(0) = 0 and g(D → 1) → R, with R > 0 a small parameter accounting for residual non-local
interactions. According to this formulation non-local interactions are isotropic.

(iii) Stress-based gradient-damage model by Vandoren and Simone (2018):

ϕ = c Φ1 = R · c(σ) · R⊤ = R ·
(
σi

ft
si ⊗ si

)
· R⊤ Φ2 = Φ1 (12)

where σi is the i-th principal stress component, si is the corresponding eigenvector, ft is the material
strength, and R is the rotation tensor from the basis of principal stress directions to the external basis
in which ∇ē is written. This approach allows modeling introduced anisotropic non-local interactions
(see Vandoren and Simone (2018) for modified expressions of tensor c(σ)).

(iv) ENLG model by Desmorat et al. (2015) and Ribeiro Nogueira et al. (2024):

ϕ = c√
det g

Φ1 =
√

det g g−1 Φ2 = g−1 (13)

Some theoretical similarities and differences between these formulations were analyzed by Ribeiro Nogueira
et al. (2024). Additionally, the stress-based micromorphic model by Negi et al. (2020) retains the localizing
damage character from (Poh and Sun, 2017), and couples it with anisotropic interactions based on (Vandoren
and Simone, 2018). It is worth noting that, despite the differences mentioned above, both Negi et al. (2020)
and Vandoren and Simone (2018) employed a scalar damage variable, with no applications to anisotropic
damage behavior (e.g., tensorial damage or microplane) being developed.

A few comments on anisotropic damage and anisotropic interactions. Here, we distinguish between damage-
induced anisotropy at the Representative Elementary Volume (REV) scale and its effects on induced
anisotropic non-local interactions at the structural level:

• At the REV level, quasi-brittle materials can be considered as initially isotropic in the sense that
the measured elastic properties are the same in all directions. However, during the softening phase,
these properties degrade due to the emergence of micro-cracks, which typically form along preferential
directions (Berthaud, 1991; Passelègue et al., 2018). Modeling techniques should account for this
behavior (see, e.g., Ramtani et al. (1992); Papa and Taliercio (1996); Lemaitre et al. (2000)). Recently,
Loiseau et al. (2023) demonstrated based on discrete element simulations that isotropic damage models
are inadequate for describing the macroscopic stress state of materials experiencing non-proportional
loading. This limitation also becomes apparent in the comparison between isotropic and anisotropic
damage models in the simulation of a simple non-proportional loading-unloading REV test case (see
Appendix B).

• Anisotropic damage behavior in the Fracture Process Zone (FPZ) plays also a significant role at the
structural scale. Recent observations from the so called “gap-test"(Nguyen et al., 2020) demonstrated
the dependency of the fracture energy and the effective FPZ size on the crack-parallel stress, i.e., the
normal stress in the propagation direction, or “T-stress” (Bažant et al., 2022a,b). This behavior entails
an increase in fracture energy at moderate crack-parallel compression, attributed to greater friction
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in inclined micro-cracks. At high compression levels, it is characterized by a widening of the FPZ
and a decrease in fracture energy. According to (Bažant et al., 2022a,b; Bažant and Nguyen, 2023),
to capture these effects, modeling techniques should incorporate two main ingredients: a tensorial
softening (anisotropic) damage law at the REV level, capable of representing oriented micro-cracks,
and two (evolving) independent characteristic lengths for the direction of the damage band and the
transverse direction (anisotropic non-local interactions).

The ENLG anisotropic damage model introduced in this contribution, eventually coupled to other suitable
tensorial damage laws, may contain the necessary ingredients to capture the T-stress effect. It’s worth noting
that other approaches, such as crack-band with microplane or lattice approaches, achieve similar outcomes
(Bažant et al., 2022b; Lyu et al., 2023). Additionally, various non-local models with anisotropic interactions
(e.g., Giry et al. (2011); Vandoren and Simone (2018); Negi et al. (2020)) account for two evolving internal
lengths.

In this paper, we focus on presenting the model, its characteristics, and numerical implementation. Evalu-
ating its capability to verify experimental size-effect and gap-tests is beyond the scope of this work and is
left for future contributions.

2.3. Anisotropic non-local interactions

In contrast to gradient formulations with isotropic damage-dependent non-local interactions, the ENL for-
mulation provide anisotropic interactions by utilizing the inverse of the metric in (13). This section conducts
a qualitative analysis of damage dependent non-local interactions.

Tensor representation via ellipses (2D) and ellipsoids (3D). Given a vector x in the orthonormal basis
{ei} and a symmetric second order tensor T written in the basis {ei ⊗ ej}, a homogeneous polynomial
p(x) = T(x,x) = x ·T ·x can be associated with T by exploiting the fact that this latter is a bi-linear form.

Now, considering the principal basis {vi ⊗ vi} of tensor T, such that T = Tivi ⊗ vi (with Ti denoting the
eigenvalues of T), and writing x in the basis {vi}, the homogeneous polynomial p(x) reads:

p(x) = x · T · x = Tix
2
i =

{
T1x

2
1 + T2x

2
2 (T ∈ R2 × R2)

T1x
2
1 + T2x

2
2 + T3x

2
3 (T ∈ R3 × R3)

(14)

where Einstein summation was used. It is straightforward to observe that equation:

p(x) = 1 (15)

corresponds to the equation of a parametric ellipsoid in R3 and an ellipse in R2. Therefore, one can directly
visualize T once its principal basis is known by simply plotting function (15).2

To obtain a better visualization of T, one can also plot:

p(x) = x · T−2 · x = T−2
i x2

i =


x2

1
T 2

1
+ x2

2
T 2

2
(T ∈ R2 × R2)

x2
1
T 2

1
+ x2

2
T 2

2
+ x2

3
T 2

3
(T ∈ R3 × R3)

= 1 (16)

As the inverse and the square of a symmetric tensor are both isomorphisms (structure-preserving bijections),
the above polynomial preserves all the properties of (15).

2This visualization technique is often employed for representing the stress tensor (via the Lamé’s stress ellipsoids), Reynolds
stress anisotropy (Hamilton and Cal, 2015) or in diffusion-tensor imaging (Westin et al., 2002).
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Figure 1: Ellipse representation of tensors D and g−1.

Damage and metric tensors representations in 2D. Consider the general form of the two-dimensional damage
tensor D and the corresponding metric inverse g−1 (written in their principal basis):

D = D1v1 ⊗ v1 +D2v2 ⊗ v2 g−1 = (1 −D1)v1 ⊗ v1 + (1 −D2)v2 ⊗ v2 (17)

Figure 1 shows their polar visualizations using ellipses in R2 (oriented according to the principal basis).
Four different cases are considered to illustrate the influence of the anisotropic damage (figure 1 left) on g−1

(figure 1 right) (which can be seen as a non-local interactions tensor):

• In the undamaged state, the damage tensor D = 0 is represented by a single point located at the
origin of the axis, whereas g−1 = I is represented by a circle. This corresponds to considering isotropic
non-local interactions, reducing the ENLG model to the GNL model (Peerlings et al., 1996).

• If isotropic damage takes place (D1 = D2 = D = 0.9), the interaction tensor is equally reduced in all
directions (orange circle in Figure 1 right).

• Anisotropic interactions are modeled when damage-induced anisotropy appears. The green curve
corresponds to D1 = 0.7 and D2 = 0.3 with v1 =

√
2/2(ex + ey) and v2 =

√
2/2(−ex + ey). Since the

largest damage value occurs at 45◦, non-local interactions are strongly reduced in this direction.

• The red curve corresponds to the almost uni-axial damage case in the direction of the axis x, i.e.,
D1 = 0.9 and D2 = 0.05 with v1 = ex and v2 = ey. Therefore, the ellipse representing non-local
interactions is stretched further in the vertical direction, meaning that almost no non-local interactions
occur in the horizontal direction.

Damage and metric tensors representations in 3D. The same considerations hold for the three-dimensional
case. Figure 2 shows the ellipsoid visualization of tensor g−1 for various uni-axial damaged states. Here,
damage is considered to occur only in x direction:

D = D1v1 ⊗ v1 = Dxxex ⊗ ex g−1 = (1 −Dxx)ex ⊗ ex (18)

As expected, in the undamaged case, interactions are represented by a sphere. When damage occurs in the
x direction, non-local interactions are progressively reduced in this direction. The higher the damage level,
the more important the shrinkage of the ellipsoid in the corresponding direction.
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Figure 2: Ellipsoid representation of tensor g−1 for various damaged states on x direction.

2.4. Quasi-static ENLG damage mechanics boundary value problem

Let us consider a split of ∂Ω into two sub-domains ∂Ωt and ∂Ωu such that ∂Ωu ∪ ∂Ωt = ∂Ω and that
∂Ωu ∩ ∂Ωt = 0. Dirichlet boundary conditions (u = ud) are imposed on ∂Ωu whereas stress tractions
(σ · n = td) are imposed on ∂Ωt. Moreover, let us introduce the following admissibility spaces:

U = {w | w ∈ H1(Ω) , w = ud on ∂Ωu} (19)
U(0) = {w | w ∈ H1(Ω) , w = 0 on ∂Ωu} (20)

V = {w | w ∈ H1(Ωh)} (21)

where H1 denotes a square integrable Sobolev space.

It is straightforward to demonstrate (Ribeiro Nogueira et al., 2024) that, under quasi-static conditions, the
variational augmented equilibrium problem to be solved at any time t for finding a solution of the ENLG
damage mechanics problem involves seeking an admissible displacement field u ∈ U and an admissible
non-local equivalent strain field ē ∈ V satisfying:∫

Ω
σ(u) : ε(v) dV =

∫
∂Ωt

td · v dS ∀ v ∈ U(0) (22)∫
Ω

√
detg ēη dV +

∫
Ω
c
√

detg (g−1 · ∇ē) · ∇η dV =
∫

Ω

√
detg eη dV ∀ η ∈ V (23)

8



where σ is the Cauchy stress tensor, ε is the small-strain tensor, v is the virtual displacement field, and η
is the virtual non-local strain field.
The coupling between the two equations arises from the dependence of σ and g on the non-local strain via
the damage tensor (ē governs its evolution), and the dependency of e on the displacement via the selected
equivalent strain definition:

σ = σ(u,D(ē)) g = g(D(ē)) e = e(ε(u)) (24)

3. Anisotropic damage model

For illustrative purposes, this work adopts the constitutive model proposed by Desmorat (2015) for quasi-
brittle materials. Different second-order damage models can be employed with the ENLG regularization,
without necessitating modifications to its theoretical or numerical framework.
According to the chosen model, damage is represented using the second-order Ladevèze tensor H = (I −
D)− 1

2 . Denoting once again with vi the eigenvectors of D and with Di the corresponding eigenvalues, the
Ladevèze tensor reads H = Hivi ⊗ vi = (1 − Di)− 1

2 vi ⊗ vi. As a consequence, Hi = 1 when Di = 0
(undamaged state), and Hi → ∞ when Di → 1 (fully damaged state). The unbounded nature of Hi

enhances the formulation’s ability to model the extreme scenario of fully damaged material at infinite strain
(Desmorat, 2015). Moreover, from a numerical perspective, the unboundedness simplifies the handling of
upper bounds (see, e.g., Desmorat et al. (2007)) for damage tensors when implementing the constitutive law
at the integration point level.

3.1. Three-dimensional constitutive model

Gibbs free enthalpy. The Gibbs free enthalpy reads:

ρψ∗
0 = ρψ∗

0(σ,H) = tr (H · σ′ · H · σ′)
4G + 1

18K

[
1
3tr H2 ⟨tr σ⟩2 + ⟨−tr σ⟩2

]
(25)

where ⟨·⟩ denotes the Macaulay operator, •′ = • − 1
3 tr(•)I denotes the deviatoric part of tensor • and, G

and K are the shear and bulk modulus, respectively.

Constitutive relations. The strain tensor is obtained as:

ε = ρ
∂ψ∗

0
∂σ

= 1
2G (H · σ′ · H)′ + 1

9K

[
1
3tr H2 ⟨tr σ⟩ + ⟨−tr σ⟩

]
I (26)

The stress-strain constitutive relation is given by:

σ = Ẽ : ε (27)

where Ẽ represents the effective (damaged) Hooke’s tensor, defined as:3

Ẽ = 2G
[
H−1 ⊗ H−1 − H−2 ⊗ H−2

tr H−2

]
+m(H)I ⊗ I m(H) =

{
3K

tr H2 if tr ε > 0
K otherwise

(29)

Here, ⊗ denotes the tensor product4 and ⊗ is the symmetrized tensor product.5

3For an undamaged medium, H = I and the undamaged Hooke’s tensor is retrieved. With λ = K − 2G/3 being the Lamé’s
parameter, one has:

Ẽ = E = 2G

[
I ⊗ I −

I ⊗ I
tr I

]
+

3K

tr I
I ⊗ I = 2G I ⊗ I + λ I ⊗ I (28)

4Given three vectors a, b and c, the tensor product is defined as (a ⊗ b) · c = (a · c)b.
5Given three second order tensors A, B and C, the symetrized tensor product is defined as (A ⊗ B) : C = A · C · B. Here,

symbol : denotes the double contraction between tensors; given two second order tensors A and B, one has, A : B = AijBij .
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Damage criterion function. The local damage criterion function reads:

f = e− κ (30)

where e is an equivalent measure of the strain (computed using, e.g., the Mazars (1984) or Von Mises
definitions), and κ is the consolidation function:

κ = κ0 + SRs
v(tr H − 3) (31)

In non-local computations, the damage criterion function (30) is simply modified by substituting e with ē.

Here, S, s and κ0 are material parameters, and Rv is the triaxiality function (Lemaitre, 1996). According
to Desmorat (2015), this latter function is computed as:

Rv = min
[
1 + 9

2
1 − 2ν
1 + ν

⟨−TX⟩2
, B

]
TX = σH/σeq (32)

where σeq is the Von Mises equivalent stress and σH = tr σ/3 is the hydrostatic stress. Moreover, ν stands
for Poisson’s ratio and B is a new material parameter bounding the triaxility function in bi-compression.

Damage evolution. In the original model by Desmorat (2015), the direction of damage evolution is controlled
by the effective strain tensor ⟨ε̃⟩ = ⟨E−1 : σ⟩. The choice of using ⟨ε̃⟩ as the damaging direction was initially
introduced by Chambart (2009) to avoid numerical instabilities at high strain levels. In the present work,
the positive part of the total strain tensor is employed. Using the normalized form proposed in (Loiseau,
2023; Masseron et al., 2023), one can write:

Ḣ = λ̇P P = ⟨ε⟩
∥⟨ε⟩∥

(33)

where P is the normalized damage direction tensor and λ̇ is the damage multiplier respecting the usual
Karush–Kuhn–Tucker (KKT) loading-unloading conditions.

According to Leroux (2012), such a choice allows better representing experimental crack paths. As a counter-
part of this, a bifurcation can be obtained in the behavior when this choice is made. It should be noticed that
is not a strong limit of the present implementation since instabilities were never experienced in numerical
simulations.

3.2. Plane-stress conditions

In addition to the 3D conditions, the simulations in Section 5 will assume plane-stress conditions. The
plane-stress formulation is derived using the same approach as applied by Jirásek and Suárez (2016) to the
anisotropic damage model proposed by Desmorat et al. (2007).

Constitutive relations. The stress tensor is written as the sum of an in-plane (x, y) and out-of-plane (z)
contribution as:

σ = σ2 + e2εz σ2 = Ẽ2 : ε2 (34)

where:

Ẽ2 = 2G
[
H−1

2 ⊗ H−1
2 − H−2

2 ⊗ H−2
2

tr H−2
2 +H−2

z

]
+ K̃I2 ⊗ I2 K̃ =

{
3K

tr H2+H2
z

if tr ε > 0
K otherwise

(35)

e2 = K̃I2 − 2GH−2
2 H−2

z

tr H−2
2 +H−2

z

(36)
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with (•)2 denoting the two-dimensional counterpart of tensor (•). Accordingly H2 and ε2 contains only
the in-plane components of H and ε, respectively. From the three-dimensional constitutive relation, the
component σz of the stress tensor is expressed as:

σz = Ẽεz + e2 : ε2 (37)

with:
Ẽ = 2GH−2

z tr H−2
2

tr H−2
2 +H−2

z

+ K̃ (38)

Enforcing the plane strain condition σz = 0, the out-of-plane strain component reads:

εz = −e2 : ε2

Ẽ
(39)

Substitution into (34) yields:
σ = Ẽ⋆ : ε2 Ẽ⋆ = Ẽ2 − e2 ⊗ e2

Ẽ
(40)

Damage evolution. Damage evolution occurs as follows:

Ḣ2 = λ̇P2 Ḣz = λ̇Pz (41)

with:
P2 = ⟨ε2⟩

∥⟨ε⟩∥
Pz = ⟨εz⟩

∥⟨ε⟩∥
(42)

4. Numerical formulation

The variational formulation for the gradient problem requires solving the weak form of the equilibrium,
taking into account anisotropic damage. Given that the effective Hooke’s tensor Ẽ is expressed in terms
of H for the employed damage model, anisotropic vanishing non-local interactions are introduced in the
variational formulation through the damage-dependent Riemannian metric g = (I − D)−1 = H2 = H · H.

4.1. Space/time discretized variational formulation

A spatial finite element method is used, such as the meshed domain is denoted by Ωh. For quasi-static
analysis, a pseudo-time discretization is introduced to represent the applied load, with n denoting the step
of the corresponding time tn. An iterative staggered solution is adopted, and Picard iteration is used to solve
the augmented equilibrium problem. Linear shape functions are employed for both the displacement and
the non-local equivalent strain fields (P1 fields), while the damage, strain, and stress fields are represented
by piece-wise constant functions (P0 fields). This choice guarantees consistency between fields during the
computation of constitutive behavior and helps avoid stress oscillations (Peerlings, 1999; Simone et al.,
2003a).
The solving process can be summarized as follows (all quantities without a subscript are to be understood
as referring to the present pseudo-time step tn+1):

(i) Given the damage tensor at the previous iteration Hh,k, one finds uh,k+1 ∈ Uh at iteration k+ 1 such
that:6 ∫

Ωh

ε(uh,k+1) : Ẽ
(
Hh,k

)
: ε(vh) dV =

∫
∂Ωh

t

td · vh dS ∀ vh ∈ Uh(0) (43)

where Uh and Uh(0) are the discretized counterparts of the admissibiliy spaces U and U(0)

6At the first iteration (k = 0), the non-local strain and damage fields are initiated based on the last converged solution, i.e.,
ē0 = ēn and H0 = Hn.
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(ii) The local strain field is computed based on the updated displacement field, i.e.:

eh,k+1 = e(ε(uh,k+1)) (44)

In computations, the Mazars and the Von Mises strain measures are employed.7

(iii) Given ek+1, one searches for ēh,k+1 ∈ Vh satisfying:∫
Ωh

det Hh
n ē

h,k+1ηh dV +
∫

Ωh

cdet Hh
n h(ēh,k+1; Hh

n) · ∇ηh dV =
∫

Ωh

det Hh
n e

k+1ηh dV ∀wh ∈ Vh

(47)
where:

h(ēh,k+1; Hh
n) = (Hh

n)−2 · ∇ēh,k+1 (48)
It is noteworthy that a key assumption made here is related to Hh

n, which represents the Ladevèze
damage variable from the previous converged step. The hypothesis posits that the damage field
responsible for modifying interactions remains unchanged throughout the iterations within a time
step computation. This is in agreement with Rastiello et al. (2018), where the geodesic distances are
computed with the last converged damage scalar field and are then utilized to compute the non-local
equivalent strain field in the subsequent step. Additionally, it has been observed that convergence
problems and oscillations in the solution fields arise when considering Hh,k in equation (47).
The term (Hh

n)−2 · ∇ēh,k+1 primarily contributes to reducing interactions (the gradient effect). As
observed by Vandoren and Simone (2018), vanishing non-local interactions can lead to numerical
oscillations in the response and affect convergence rate. Following a similar idea as proposed by Poh
and Sun (2017), residual non-local interactions can be eventually considered by modifying equation
(48) as:

h(ēh,k+1; Hh
n) =

[
(Hh

n)−2 + ξI
]

· ∇ēh,k+1 ξ ≪ 1 (49)
This allows for the consideration of the gradient term with minimal contribution upon damage re-
localization.

(iv) Once ēk+1 is computed, one updates Hh,k+1 = H(ēh,k+1) and substitutes it in equation (43) to
continue the iteration process. The numerical algorithm is detailed in Appendix A.

(v) This process is repeated until convergence with respect to an L2-norm for both fields, given by:

∥ēh,k+1 − ēh,k∥2 =
∫

Ωh

(ēh,k+1 − ēh,k)2dV ≤ TOLu (50)

∥uh,k+1 − uh,k∥2 =
∫

Ωh

(uh,k+1 − uh,k)2dV ≤ TOLe (51)

where TOLu and TOLe are user-defined tolerances.

The numerical implementation of the presented formulation is developed in a in-house finite element code at
CEA (Badri et al., 2021; Badri and Rastiello, 2023), which is based on the FreeFEM++ finite element solver
(Hecht, 2012).

7The Mazars equivalent strain (Mazars, 1984) is defined as:

e =
√

⟨ε⟩ : ⟨ε⟩ (45)

whereas the von Mises definition (De Vree et al., 1995) is:

e = e(ε(u)) =
k − 1

2k(1 − 2ν)
I1 +

1
2k

√
(k − 1)2

(1 − 2ν)2 I2
1 +

12k

(1 + ν)2 J ′
2 (46)

where k is a parameter corresponding to the ratio of the material strength in compression to that in tension. The invariants of
the strain tensor are defined as I1 = trε and J ′

2 = 1
6

(
3ε : ε − tr2ε

)
.
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Figure 3: L-shape test – Geometry (thickness = 100 mm) and boundary conditions (Winkler et al., 2001, 2004) (left) and an
example of a finite element mesh containing 205 972 CST elements (right).

Modifications to account for plane-stress conditions. As previously detailed, the decomposition of variables
into out-of-plane and in-plane components is crucial. Given that σz = 0, the argument of the bi-linear form
in equation (43) becomes:

ε(uh,k+1) : Ẽ
(
Hh,k

)
: ε(vh) = ε2(uh,k+1) : Ẽ⋆

(
Hh,k

2 , Hh,k
z

)
: ε2(vh) (52)

Thus, by substituting this expression into equation (43), the weak form of equilibrium still holds. It is
further assumed that ∇ē · ez = 0, leading to:

(Hh
n)−2 · ∇ēh,k+1 = (Hh

2)−2
n · ∇ēh,k+1 (53)

Consequently, the variational equation (47) remains valid. The main distinction from the previous case is
that:

det Hh
n = Hh

n,xxH
h
n,yyH

h
n,z − (Hh

n,xy)2Hh
n,z = Hh

n,1H
h
n,2H

h
n,z (54)

4.2. Material law at integration point level

A fully implicit integration algorithm is employed for implementing the anisotropic damage model. This
choice, while differing from the explicit approach utilized by Desmorat (2015), offers enhanced robustness by
ensuring convergence even for larger strain increments. The implementation is carried out using the mfront
constitutive laws generator (Helfer et al., 2015). The interface between the finite element solver and the
constitutive model integrator is handled through a custom interface developed with mgis (Mfront Generic
Interface Support). Details concerning the material law integration are discussed in Appendix A, whereas
representative local responses at integration point level are addressed in Appendix B.

5. Results and discussion

Numerical 2D simulations are presented to elucidate the principal features of the proposed formulation.
Initially, the simulation of the L-shape test, as conducted by Winkler et al. (2001, 2004), is carried out un-
der plane-stress conditions. Subsequently, the focus shifts to the simulation of the three-point bending test
developed by Gálvez et al. (1998). Both tests serve as a common benchmark for validating cracking models,
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Figure 4: L-shape test – Study on the impact of ξ on the structural responses and damage maps (maximum principal damage
component D1).

especially in scenarios involving mixed-mode conditions. A novel test case simulating non-proportional load-
ing on a hexagonal specimen is then proposed to illustrate the differences between isotropic and anisotropic
damage models. Finally, a few 3D results are provided for illustrative purposes and to initiate discussion on
perspectives for future developments.

5.1. Mixed-mode 2D L-shape test

Figure 3 illustrates the geometry, boundary conditions, and an example of a finite element mesh utilized. In
all meshes, the characteristic element size le is reduced in the central part of the specimen, where, based on
experimental evidence, damage is expected to occur.8 To study mesh convergence, three different meshes
are employed in the numerical simulations, containing 58 710 (le = 0.8 mm), 205 972 (le = 0.4 mm) and
753 143 (le = 0.2 mm) Constant Strain Triangles (CST), respectively. The displacement is constrained
in the x and y directions at the bottom of the specimen. A displacement-controlled point load is applied
vertically to represent the force denoted as F in the figure. The material is assumed to follow the anisotropic
damage model described earlier, with the equivalent strain calculated using the Mazars definition (45). This
decision was made to accurately predict both the peak load and the overall softening regime, following the
recommendations of Nguyen et al. (2018) and as also used by Sarkar et al. (2019) for the same reasons.
Several authors (Oliver et al., 2004; Nguyen et al., 2018) have noted that the elastic material parameters
provided by Winkler et al. (2001, 2004) cannot be directly applied in numerical simulations as they lead to an

8Finite element meshes are generated using the GMSH mesh generator. Accordingly, the characteristic element size corre-
spond to the length of mesh edges.
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Figure 5: L-shape test – Warp by scalar plots of the first damage eigenvalue D1 and the norm of the displacement field ∥u∥

overestimation of the initial structural stiffness.9 In the following, to achieve an elastic response consistent
with experimental data, Young’s modulus is set to E = 17 000MPa (instead of E = 25 850MPa, as in
experiments), while the Poisson’s ratio is kept equal to the experimental value (ν = 0.18). Five additional
material parameters must be defined for using the anisotropic damage model detailed in Section 2. In
this section, the remaining material parameters are set to {c, κ0, S, s, B} = {7.32 mm2, 1.4 × 10−4, 3.91 ×
10−4, 4.9, 5/3}. The analysis is carried out for three different values of ξ to examine the influence of residual
non-local interactions on structural responses and damage evolution.

5.1.1. Role of residual non-local interactions on mesh-convergence and damage re-localization

Structural response and mesh convergence. Figure 4 presents the structural responses and corresponding
damage maps (principal value D1) for various residual non-local interactions parameter ξ values. Conver-
gence in the overall response with mesh refinement is attained for ξ = 0.08 and ξ = 0.04, employing a
mesh containing 753 143 elements with le = 0.2,mm in the refined region. Similarly, a trend toward mesh
convergence is observed around the peak load in simulations with ξ = 0.008 using the same mesh. However,
differences emerge in the post-peak phase between meshes with le = 0.4,mm and le = 0.2,mm. Furthermore,
the response showcases decreased brittleness with increasing ξ values, for a given set of material parameters.

Damage evolution. The reduction in brittleness observed in the structural response for larger values of ξ
can be attributed to damage diffusion (Figure 4 (top)). In the original ENLG model (ξ = 0), non-local
interactions vanish upon damage re-localization (Di → 1). However, with appropriately chosen ξ > 0,
moderate residual non-local interactions persist, leading to minor damage spreading around the re-localized
zone. This behavior also influences the propagation direction associated with the damage band. For instance,

9For example, Nguyen et al. (2018) considered E = 21 000MPa and applied the point load at the right of the specimen (not
at 30 mm from it). Wang et al. (2023) made the same assumption concerning the point load position but retained the original
material parameters. Zreid and Kaliske (2014) applied the point load at a certain distance from the extremity and considered
E = 18 000MPa in computations.
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Figure 6: L-shape test – Components of the damage tensor at the end of the simulation. Solid white lines represent the envelope
of experimental crack paths from Winkler et al. (2001, 2004).

the damage band is almost horizontal for ξ = 0.08, whereas it progressively becomes more curved as ξ
decreases.

These aspects are further illustrated in Figure 5, which compares the ability of the ENLG approach to
simulate the tendency toward damage-to-fracture transition for ξ = 0.04 and ξ = 0.008. The first damage
eigenvalue D1 is depicted in Figure 5 (bottom left and right), indicating damage re-localization in a narrow
zone for both cases. However, the damage spreads over a larger zone for ξ = 0.04 compared to ξ = 0.008
(as shown in the zoomed-in damage maps). An approximation of a jump in the displacement field (Figure
5 (top)) is observed for both values of ξ, which corresponds, in the limit case, to the kinematics of a crack
description (discontinuity). Nonetheless, the simulation better describes this approximation with ξ = 0.008
(as seen in the zoomed-in displacement field). It’s important to note that this is merely a post-processing
analysis of the results because the adopted continuous finite element formulation cannot capture displacement
jumps.

On the choice of ξ. According to this analysis, the smaller the value of ξ, the better the capability of
the ENLG numerical model in representing damage re-localization, thus indirectly depicting a progressive
damage-to-fracture transition. As a counterpart to this, finer and finer meshes are needed to achieve mesh
convergence of the structural response. The value of ξ in simulations should therefore be carefully chosen
depending on the available computer resources (finer the mesh, larger are CPU times) and the intended
application of the model.
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Figure 7: L-shape test – Convergence upon mesh refinement (left) and structural response obtained (le = 0.2 mm mesh)
compared to the experimental one (Winkler et al., 2001, 2004) (right).

5.1.2. Additional analyses and comparison with experimental results

To compare the results from the numerical simulations with experimental data from the literature, we retain
the value of ξ = 0.04 for the following analyses. This choice allows for converged results with a relatively
high number of elements, yet remaining numerically feasible within a sequential solving framework10 without
excessive spreading of damage.

Representative structural response and mesh convergence. Figure 7 (right) shows the optimal (compared to
experimental results) structural response obtained with {κ0, S} = {1.7×10−4, 3.81×10−4}, while all the other
parameters remain unchanged from the previous section. The overall response aligns with the experimental
results, demonstrating that achieving reasonable quasi-brittle responses with the ENLG model, coupled
with the presented anisotropic constitutive behavior, is feasible. Improved fitting might also be attained
by modifying the damage evolution law, since the parameter S controls locally the peak and the post-peak
behavior (see, e.g., Loiseau (2023)).

Damage evolution. In addition to the structural responses, one can analyze the damage profiles obtained to
evaluate the capability of the present approach to represent “cracking” behaviors. Figure 6 (top) shows the
in-plane components (Dxx, Dyy, Dxy) of the damage tensor at the end of the simulation. As expected, the
highest damage level is obtained in the y direction (Dyy > Dxx > Dxy), which is mainly perpendicular to the
"pseudo-crack" direction. The off-diagonal component Dxy is more pronounced close to the corner, where
damage starts. There, the principal damage directions are slightly rotated with respect to the main axes
(x, y). As shown in Figure 6 (bottom), similar considerations hold when considering the principal damage
components (D1, D2). Moreover, the envelope of crack paths obtained by Winkler et al. (2001, 2004) are
represented in Figure 6 by solid white lines. One observes good agreement when comparing the damage band
obtained by the ENLG model with the experimental crack paths. However, the curved cracking behavior is
less present due to the choice of ξ = 0.04, which could be better represented for simulations with ξ = 0.008, as
shown in Figure 4. A fitting procedure for ξ = 0.008 becomes prohibitive in the sequential solver framework
of this contribution due to CPU time, as more elements are required to obtain a converged response.
To highlight the capabilities of the ENLG model to represent a tendency toward a transition from damage
to fracture, Figure 8 displays profiles of the major principal component of the damage tensor and the

10Parallel solving techniques were not yet studied and are left for future work.
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Figure 8: L-shape test – Major principal damage component and displacement magnitude along a line approximately aligned
with the major principal damage direction in the center of the damaged band for three phases of the damage evolution

resulting displacement field along a line oriented approximately in the major damage principal direction.
As shown in the figure, the damage field progressively increases in the region preceding the “pseudo-crack".
Subsequently, the damage tends to reach a unitary value in the central zone of a band, whose maximum
size remains stationary. As seen before, this is better represented for simulations where ξ = 0.008, but it
can be still observed here (ξ = 0.04) at the propagation front of the damage band. At the same time, the
displacement field clearly indicates a tendency toward a discontinuity centered in the middle of the damage
band. It is worth noting, however, that this discontinuity cannot be represented in the formulation presented
here, as the displacement field is assumed to be continuous by construction.

5.2. Mixed-mode 2D three-point bending test

The geometric details and boundary conditions for this case are illustrated in Figure 9 (top). This con-
figuration corresponds to the small specimens examined in the referenced study, featuring a notch with a
width of 2 mm. Four finite element meshes were utilized in the numerical simulations, comprising 4333,
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Figure 9: Three-point bending test – Geometry (thickness = 50 mm) and boundary conditions (top) and example of a mesh
containing 178 476 elements (bottom).

13422, 47564, and 178476 CST elements, respectively (Figure 9 (bottom)). All meshes are locally refined
around the notch tip where the onset of damage is expected to occur.. The displacement was applied at
the upper part of the beam under CMOD (Crack Mouth Opening Displacement) control (calculated as the
relative displacement of points A and B in figure 9).11 The material parameters for this test are chosen as
{E, ν, c, κ0, S, s, B} = {38′000 MPa, 0.2, 1.0 mm2, 6×10−4, 2×10−4, 4.9, 5/3}. Moreover, ξ = 0.04. Similar
to the L-shape test, Mazars’ equivalent strain is utilized in the computations.

5.2.1. Mesh-convergence in terms of damage maps and structural response

Figure 10 shows the damage maps (depicting the first principal damage value D1) obtained for the different
meshes alongside the corresponding structural responses. One can observe convergence of the damage
pattern upon mesh refinement, as well as in terms of the structural response. Regarding the overall response,
convergence is achieved with a mesh containing 178 476 elements with le = 0.1 mm in the refined region.
Thus, the characteristic size of elements required to obtain convergence in this example is two times smaller
than the one for the L-shape test. This can be attributed to the use of a smaller gradient parameter c used
for the three-point bending test.

5.2.2. Representative results

Representative structural response and comparison to experimental results. Similar to the L-shape test, the
elastic parameters provided by Gálvez et al. (1998) lead to an overestimation of the initial structural stiffness.
To achieve an elastic response consistent with experimental data in this test case, the Young’s modulus is set
to E = 33 000 MPa in the following simulations. Additionally, to ensure good agreement between simulations
and experimental results, the following parameters are also modified: {κ0, S} = {7 × 10−4, 2.4 × 10−4}. All
other parameters remain the same as those used to obtain the results depicted in Figure 10.
The structural responses obtained for the different meshes are depicted in Figure 11 (left). With the new
set of parameters, mesh convergence is again achieved with the mesh containing 178 476 elements (with

11A simple path-following algorithm is employed for this purpose, treating the magnitude of the external load as a novel
unknown and enhancing the damage mechanics equilibrium problem through an additional constraint equation. A detailed
description of the final algorithm is omitted here for conciseness, but further information can be found in (de Borst, 1987;
Rastiello et al., 2019, 2022), among others.
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Figure 10: Three-point bending test – Mesh convergence in terms of damage maps and structural response.

le = 0.1 mm in the refined region). In Figure 11 (center), a comparison is presented between the experi-
mental and numerical (converged) structural Force vs. CMOD responses. It is shown that the numerical
simulation provides a good estimation of the ultimate force and effectively captures significant quasi-brittle
behavior. Figure 11 (right) compares the experimental crack paths (depicted in white) with the damage
pattern (D1 in this case) obtained using the ENLG model at the simulation’s conclusion. A good agreement
with experimental results is evident, particularly concerning the direction of damage propagation. This
underscores the ENLG regularization’s ability to replicate realistic crack paths while providing reasonable
quasi-brittle responses at the structural scale. However, far from the notch and near the upper part of the
beam, the damage pattern tends to the left of the envelop crack paths.

Damage evolution. The evolution of the damage maps obtained using the mesh with le = 0.1 mm mesh for
three different loading stages (CMOD = 0.02 mm, 0.06 mm and 0.1 mm) is presented in Figure 12.

Consistent with experimental observations, the damage band exhibit an orientation to the right of the notch
and a slight curvature toward the top of the beam. The Dxx profile indicates considerable damage along the
x direction, although it does not consistently align with the principal directions in all elements. Similarly,
the Dyy profile, along with the profile for the off-diagonal term Dxy (central column in Figure 12), reveal
that principal directions deviate from the Cartesian axes.

Similar considerations on the damage mechanisms emerge when analyzing the eigenvalues of the damage
tensor. The last two columns in Figure 12 depict color maps for D1 and D2, obtained at the Gauss points
(D1 represents the largest damage eigenvalue). The D1 damage map clearly illustrates the emergence of an
equivalent "macro-crack" in a specific preferential direction. As anticipated, neither D1 nor D2 correspond
precisely to the Dxx and Dyy damage maps; instead, they represent a combination of the two. This is crucial
for accurately modeling the direction of crack paths and the associated principal damage perpendicular to
them. The evolution of D1 highlights also the minor spread of damage upon re-localization. It presents a
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Figure 11: Three-point bending test – Convergence upon mesh refinement in terms of the overall response (left). Comparison
between numerical (le = 0.1 mm mesh) and experimental responses (center). Comparison between experimental crack paths
(white solid lines) and the damage pattern obtained at the end of the simulation (right).

sharp profile at the propagation front of the damage band and spreads damage behind it due to the residual
non-local interactions.

Non-local interactions evolution. Considering the obtained results regarding principal damage orientation,
it is anticipated that nonlocal interactions are significantly diminished in the direction of the major principal
damage component. If ellipses are used to represent such interactions, their radius is expected to contract
in the same direction. Figure 13 illustrates the evolution of interaction ellipses (i.e., tensor g−1 = H−2) for
points where CMOD = 0.02 mm, 0.06 mm and 0.1 mm in Figure 11. For the sake of visualization, the coarse
mesh containing 4 333 elements was used. Blue disks denote the initial isotropic nature of interactions at
the beginning of the simulation, where g−1 = I.

At CMOD = 0.02 mm, damage initiates from the notch and reached high levels in certain elements. As
depicted in Figure 13, ellipses are oriented in the direction of damage propagation and compressed perpen-
dicular to it. Elements traversed by collapsed ellipses lose the ability to communicate with their neighbors as
interactions are reduced. However, elements to the right of the highly damaged zone can still communicate
with neighbors from the right and top, which are parallel to the collapsed zone. Ahead of the zone where
ellipsoids are formed, blue disks indicate that elements have not yet undergone damage. Damage propagates,
and the collapsed ellipses’ behavior observed at CMOD = 0.02 mm also spreads to the top of the beam at
CMOD = 0.06 mm and CMOD = 0.1 mm.

The evolution of the interaction ellipses, as demonstrated here, reveals the interesting characteristics of the
ENLG formulation when coupled with an anisotropic damage model. The ENLG model inherently accounts
for two independent material characteristic lengths for the direction of the damage band and one transverse
to it. In other words, the anisotropic nature of the non-local interactions allows for a natural distinction
between the transverse and parallel directions to the damage band.12

12According to Bažant et al. (2022a), the nonlocal material characteristic length should vary as a function of the normal
stress in the principal direction of the damage tensor in the developing damage localization band terminating in fracture. The
ENLG model, coupled with an anisotropic damage model, exhibits this desired behavior.
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Figure 12: Three-point bending test – Evolution of damage patterns for different levels of CMOD. From left to right, the
components Dxx, Dyy and Dxy of the damage tensor are depicted in the first three columns. The last two columns show the
corresponding damage principal values D1 and D2.

5.3. Hexagonal specimen under non-proportional loading

To illustrate a scenario where isotropic and anisotropic damage models may yield different results, we
suggest examining the response of an hexagonal specimen submitted to non proportional loading. The aim
of this purely numerical test-case is solely to highlight how the ENLG formulation with anisotropic non-local
interactions and anisotropic damage behavior can result in distinct damage paths compared to an isotropic
ENLG model, particularly concerning the influence of preexisting directional damage on damage propagation
in a different direction. It is important to note that our intention is not to assert the superiority, if any, of
anisotropic damage models over isotropic ones.

Fassin et al. (2019) showed that anisotropic and isotropic damage models may yield significantly different
results regarding damage patterns under non-proportional loading conditions. However, their analysis was
limited to the impact of anisotropic damage behavior in structural simulations, while the non-local inter-
actions remained isotropic and constant. In the example presented below, we focus on how the induced
anisotropic damage behavior leads to evolving anisotropic non-local interactions through the ENLG model
and how this can affect the damage patterns.
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Figure 13: Three-point bending test – Evolution of interactions ellipses representing the tensor g−1 = H−2 corresponding
to two different CMOD levels (= 0.02 mm, 0.06 mm). The second (smaller) eigenvalue (g−1)2 is colored and represents the
principal direction of the reduced interactions.

The geometry and boundary conditions are given in Figure 14 (bottom), along with the magnitude of the
applied displacement for each step (Figure 14 (top)). The specimen is a regular hexagon with 50 mm side
length, submitted to a non-proportional loading applied in three major steps: (i) Compression loading at
Step A until uc = umax

c to introduce a diffuse damage in the specimen; (ii) Unloading phase at Step B until
uc = 0 to release the compression load; (iii) Tension loading at Step C until ut = umax

t to localize damage
from the corners.

5.3.1. Damage models and material parameters

Three different models are employed for this example: the ENLG (evolving isotropic interactions) model
coupled with a simple isotropic damage constitutive law (Ribeiro Nogueira et al., 2024), the ENLG (evolving
anisotropic interactions) model coupled with the tensorial anisotropic damage law by Desmorat (2015),
and the GNL (isotropic and constant interactions) model (Peerlings et al., 1996) coupled with the same
anisotropic damage law.

In the isotropic case, damage is modeled through a scalar variable D ∈ [0, 1] and the constitutive law reads
σ = (1 − D)E : ε = Ẽiso : ε. The damage criterion function remains the same as for the anisotropic
model, whereas the isotropic damage evolution is considered as D = 1− κ0

κ exp (−Bt(κ− κ0)), where Bt is a
material parameter (see Appendix B for a comparison between isotropic and anisotropic damage models at
the material point level). For all the models, the non-local Von Mises equivalent strain with k = 10 was used
to ensure a larger damage threshold in the compression phase compared to the Mazars’ strain. To compare,
at least qualitatively, the numerical results obtained with the different models, the remaining material
parameters used for simulating this test case were calibrated to provide a similar initial damage state right
after Step A. In particular, the elastic properties are set to {E, ν} = {17 000 N/mm2, 0.18} for all the models.
Similarly, the initial length scale parameter is c = 12 mm2 for all the models. The remaining parameters are
chosen as {κ0, Bt} = {9.5 × 10−5, 700} for the isotropic ENLG model, {κ0, S, s, B} = {7.0 × 10−5, 9.25 ×
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Figure 14: Hexagonal specimen test – Geometry and boundary conditions (thickness = 100 mm).

10−5, 4.9, 1.2} for the anisotropic ENLG model, and {κ0, S, s, B} = {8.0 × 10−5, 5.8 × 10−5, 4.9, 1.3} for the
GNL anisotropic model. The residual interactions parameter is set to ξ = 0 for all the models.

5.3.2. Representative results

Damage evolution. The damage patterns obtained for each model are depicted in Figure 15 for four loading
steps. For the anisotropic damage behavior, only the first principal damage component is represented,
whereas the scalar damage variable is used for the isotropic model.
At Step 20 (uc = umax

c ) one can observe that, for all the models, a diffuse damage takes place in the central
part of the specimen due to the extensions perpendicular to the loading direction. At Step 80, a horizontal
damage band starts to grow from the corners due to the applied tension loading in the vertical direction.
Until this point, the three models give very similar results. Pronounced differences can be noticed from
Step 86 to Step 101. In the case of the anisotropic ENLG model, the horizontal damage bands become
curved when crossing the central zone, which was previously damaged during the compression load. On the
contrary, the damage bands are not affected by the preexisting damage in the central region for the ENLG
isotropic and GNL anisotropic models, resulting in a almost fully horizontal damage pattern. In this second
case, this behavior mainly results from constant isotropic non-local interactions, leading to the diffusion of
damage.

Anisotropic interactions and damage-dependent Riemannian metric acting as a structural tensor. To gain
further insight into why the damage patterns become curved for the ENLG anisotropic model, it is useful
to study how the induced anisotropic behavior affects the evolution of the non-local interactions during the
loading steps.
Figure 16 shows, for each element, the plane defined by the first damage eigenvector (i.e., the eigenvector
associated with the damage eigenvalueD1) for the ENLG anisotropic damage model, which can be considered
representative of elementary “pseudo-cracks” developing within each element. One can observe that in the
diffuse damage phase (Step A), the equivalent “pseudo-cracks" are parallel to the loading (compression)
direction. This observation also holds for the GNL anisotropic model; however, this is not true for the
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Figure 15: Hexagonal specimen test – Damage patterns obtained for the different models during the test.

ENLG isotropic case, given that the notions of damage principal directions cannot be represented with a
scalar variable. Then, during the tensile loading phase in the vertical direction, equivalent “pseudo-cracks"
are horizontal and start to rotate during damage propagation in the central regions of the specimen (Figure
16 right) for the ENLG anisotropic model as an effect of the preexisting damage generated in the compression
phase.

The key point here is that the anisotropic damage behavior induces anisotropic non-local interactions by
the means of the inverse of the metric g−1 for the ENLG anisotropic model (equation (13)). It acts as
a structural tensor (see equations (6) and (7)), defining the impact of the damage-induced orthotropic
material symmetry in the non-local contribution of the free-energy. This is also confirmed by the analysis
of interaction ellipses and the corresponding damage patterns for different loading steps (Figure 17). One
observes that, at Step 20, the interaction ellipses are, again, oriented in the direction of crack propagation
and compressed perpendicular to it.

This creates an induced internal structure with a preferential direction of damage propagation, which affects
the damage pattern during the subsequent tension load. Such behavior is typically obtained for materials
with intrinsic (initial) anisotropy (Teichtmeister et al., 2017; Gültekin et al., 2018; Li and Maurini, 2019;
Gerasimov and De Lorenzis, 2022; Pranavi et al., 2023; Wu et al., 2015; Jin and Arson, 2018; Forghani et al.,
2019; Yin et al., 2020; Lu and Guo, 2022). The main difference with the previously cited works is that,
here, the material undergoes a transition from isotropic to anisotropic behavior, and the influence of such a
damage nature on non-local interactions is naturally taken into account by the evolving damage-dependent
metric g.
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Figure 16: Hexagonal specimen test – Straight lines colored by D1 values representing equivalent cracks perpendicular to
damage first principal direction.

5.4. Toward 3D simulations – Mixed-mode 3D three-point bending test

The developments regarding the ENLG anisotropic model presented in this contribution can be readily
extended to 3D. For illustrative purposes, let us consider the 3D simulation of a mixed-mode three-point
bending test. A relatively coarse mesh (le = 1.0,mm in the refined region, with 121 021 elements and 66 000
degrees of freedom) was generated. The material parameters for this test are chosen as {E, ν, c, κ0, S, s, B} =
{38 000 MPa, 0.2, 4 mm2, 6 × 10−4, 2.71 × 10−4, 4.9, 5/3}. Moreover, the residual interactions parameter
was set to ξ = 0.0005.

Damage evolution. Figure 18 displays the maps of the six damage components of the symmetric damage
tensor in the central region of the beam. Consistent with observations from the 2D simulation of the same
test, the damage band exhibits an orientation to the right of the notch. It can be clearly observed that the
component Dzz remains considerably smaller than Dxx and Dyy across most regions. This confirms that
major damage mechanisms take place in the plane x − y. Additionally, Figure 19 shows the maps of the
corresponding three eigenvalues of the damage tensor. Similar to the 2D simulation, the first eigenvalue D1
indicates that an equivalent “pseudo-crack” appears, which is associated to the damage principal direction.

On the scalability of the model. This 3D simulation highlights a disadvantage of the model. As explained
earlier, achieving converged results requires very fine meshes in the simulations. For instance, in the 2D
simulation of the three-point bending test, a refinement level of le = 0.1,mm was necessary to achieve a
converged structural response consistent with the reference experimental results. In 2D, this resulted in a
mesh containing 178 476 elements (approximately 260 000 degrees of freedom) and a “reasonable” computa-
tional time. However, for a 3D simulation of the same experimental test, using a mesh with le = 0.1,mm in
the refined region leads to a number of degrees of freedom exceeding 10 million. Consequently, the analysis
becomes computationally prohibitive with the sequential solver employed in this work. The use of parallel
solving techniques should be considered in this case. Moreover, while local refinement has been employed in
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Figure 17: Hexagonal specimen test – First row shows the evolution of interactions ellipses representing the tensor g−1 = H−2

corresponding to three different steps (20,75 and 95) of the applied loading. The second (smaller) eigenvalue (g−1)2 is colored
and represents the principal direction of the reduced interactions. Second and third rows depict the corresponding damage
patterns of components Dyy and Dxx of the damage tensor.

this contribution, in practical scenarios, the crack path is not known a priori. Mesh adaptation techniques
could thus become useful for the simulation of larger-scale structures.

6. Conclusions

The gradient-enhanced Eikonal model has been successfully employed to regularize a tensorial anisotropic
damage law based on Ladevèze’s damage variable H. This model was chosen for the sake of providing an
example, but different second-order damage models (eventually using the damage variable D instead of H)
can be coupled with the ENLG regularization without modifying the general framework.

The variational formulation of the coupled problem was established by linking H and the damage-dependent
Riemannian metric g from the ENLG model. A procedure for considering residual non-local interactions
was proposed. The framework is applicable to the regularization of anisotropic damage mechanics models
in both 2D and 3D analyses.
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Figure 18: 3D three-point bending test – Maps of the six components (Dxx, Dyy , Dzz , Dxy = Dyx, Dxz = Dzx, Dyz = Dzy)
of the damage tensor D.

The developed plane stress model was utilized to simulate three different test cases in 2D. In the L-shape test,
the numerically obtained structural response exhibited quasi-brittle behavior consistent with experimental
observations. Additionally, the numerically obtained damage patterns closely matched the experimental
one. Mesh convergence was obtained with a fine mesh.

In the simulation of a mixed-mode three-point bending test, the damage-induced anisotropic character of
non-local interactions was enhanced. Tensor visualization using ellipses highlighted the role of the inverse
of the metric (i.e., of damage) in reducing non-local interactions when damage occurs. A realistic damage
pattern was obtained, while maintaining agreement with experimental results in terms of the Force vs.
CMOD curve. The eigenvectors of the damage tensor provided crucial information about equivalent “pseudo-
crack” growth direction and propagation.

A purely numerical test case was then proposed to highlight a few differences between models with isotropic
and anisotropic non-local interactions. The response of a hexagonal specimen under non-proportional loading
was studied. It was demonstrated that, as expected, the tensorial damage behavior induces an internal
structure based on the material symmetry (initially isotropic material becomes orthotropic when damage
develops). In the case of the ENLG model coupled with anisotropic damage, damage patterns become curved
when crossing a previously damaged region in a specific preferential direction thanks to the anisotropic
interaction kernel induced by the damage-dependent Riemannian metric.

Finally, a first 3D simulation was briefly presented to highlight that using the proposed formulation in such
a setting is already possible. However, additional numerical developments, particularly concerning parallel
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Figure 19: 3D Mixed-mode three-point bending test — Maps of the three eigenvalues (D1,D2,D3) of the damage tensor D.

solving techniques using domain decomposition methods (see, e.g., Badri et al. (2021); Badri and Rastiello
(2023)) become necessary to perform damage mechanics simulations with meshes that are fine enough to
achieve mesh-converged results (millions of degrees of freedom). Additionally, mesh adaptation techniques
could become useful, especially when crack paths are unknown.

The ENLG model coupled with anisotropic damage exhibited intrinsic characteristics, such as anisotropic
damage and evolving non-local interactions, important for reproducing experiments outlined as “distinctive”
in (Bažant et al., 2022a; Bažant and Nguyen, 2023). Future investigations should focus on simulating these
tests and also on verifying the capabilities of the proposed formulation in addressing size-effects in notched
and unnotched three-point bending tests (Grégoire et al., 2013). Adaptations to the behavior law, such
as considering residual stresses, may also enhance fitting to both ultimate force and post-peak behavior
simultaneously.

The damage re-localization features of the ENLG formulation and directional information provided by the
anisotropic damage model could also be useful in developing modeling strategies that explicitly represent
the transition from continuum damage to fracture (see, e.g., Simone et al. (2003b); Negi and Kumar (2022)).

Finally, in scenarios involving multi-physics coupling, such as diffusion in cracked structures (e.g., estimating
leakage rates in containment walls), the anisotropic damage framework presented here can be useful or
predicting the evolution of the material’s anisotropic permeability/diffusion properties (Bary et al., 2000;
Rastiello et al., 2015, 2016).
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Appendix A. Implicit damage model integration at Gauss point level

Constitutive model integration is performed once one has computed uh,k+1 and ēh,k+1. These fields being
knows, , the goal is to determine H and Ẽ. For brevity, the global iteration index (k+ 1) and the subscript
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h are omitted. Additionally, for ease of variable initialization, the model is reformulated using the tensor
A = H − I. Consequently, in the undamaged state, tr (A) = 0. The evolution of damage is thus calculated
as follows:

(i) Compute the total strain ε = εn + ∆ε based on the last computed displacement.

(ii) Compute TX,n = tr σn

σeq,n
to obtain the triaxility function Rv,n at the previous step.

(iii) Compute a trial of the criterion function:

ftry = ē− κn κn = κ0 + SRs
vtr (An) ē = ēk+1 (A.1)

– If ftry < 0, there is no damage evolution, i.e., Ak+1 = An.
– Otherwise, an iterative procedure is employed to find a solution satisfying f(A) = 0. In this case

(we denote with letter i the local sub-iterations):
∗ The damage rate direction tensor Pn is defined after having computed the total (or effective)

strain tensor at previous time step.
∗ One then looks for δAi+1 such that:

f i+1 ≈ f i + df

dA

∣∣∣∣
i

: δAi+1 = f i − SRs
vtr (δAi+1) = 0 (A.2)

with:
f i = ē− κ0 − SRs

vtr (Ai) tr (δAi+1) = δλi+1 tr Pn (A.3)
Finally, one has:

δλi+1 = ē− κ0

SRs
vtr Pn

− tr (Ai)
tr Pn

(A.4)

and then:
Ai+1 = Ai + δλi+1Pn (A.5)

∗ Once local convergence is achieved, one sets:

Ak+1 = Ai+1 (A.6)

(iv) Update the Ladevèze damage variable at convergence:

Hk+1 = Ak+1 + I (A.7)

compute the effective Hooke’s tensor Ẽ = Ẽ (Hk+1) from equation 29, and compute the stress tensor
σk+1 = Ẽk+1 : ε. Finally, the tensorial damage variable Dk+1 is computed.

Plane stress modifications in constitutive behavior integration. While the general process for integrating
constitutive behavior remains largely unchanged, there are specific modifications introduced for plane stress
conditions. These adjustments include:

(i) The same procedure as described earlier is applicable to ε2.

(ii) Triaxility is computed with the two-dimensional stress tensor σ.

(iii) The variation in the damage multiplier is determined by:

δλ = ēn+1 − κ0

SRs
v (tr P2,n + ⟨ε̃z,n⟩ ) − tr (Ai

2) + rHz

tr ⟨ε̃2,n⟩ + ⟨ε̃z,n⟩
(A.8)

where A2 = H2 − I2. Thus, one has:

δA2 = δλ ⟨ε̃2,n⟩ δAz = ⟨ε̃z,n⟩ (A.9)

30



(iv) At convergence, update the Ladevèze damage variable H2,n+1 = rHi+1
2,n+1 + I2, compute the two-

dimensional effective Hooke’s tensor Ẽ⋆
n+1 = Ẽ⋆ (H2,n+1, Hz,n+1) from equation 40, and calculate

the stress tensor σn+1 = Ẽ⋆
n+1 : ε2,n+1. Finally, compute the tensorial damage variable D2,n+1 =

I2 − H−2
2,n+1 and Dz,n+1 = 1 −H−2

z,n+1.

Representative local responses obtained using the chosen anisotropic damage model at the integration point
level are presented in Appendix B.

Appendix B. Representative local responses of the anisotropic damage model

Representative responses simulated using the anisotropic damage model discussed in Section 2 are provided.
These numerical results are obtained through mtest, an open-source Python tool distributed alongside
Mfront. This tool enables the simulation of complex loading conditions at the integration point level,
facilitating the testing and validation of constitutive law implementations without the need for a finite
element solver.

Appendix B.1. Pure tension/compression

Figure B.20 (top) displays a typical response obtained with the anisotropic damage model under ten-
sion and compression. The parameters used for this test are the ones proposed in (Desmorat, 2015), i.e.,
{E, ν, κ0, S, s, B} = {37 000 MPa, 0.2, 9e − 5, 1.45e − 4, 4.9, 5/3}. The tension-compression dissimetry be-
havior is illustrated in Figure B.20 (top-right). This dissimetry arises due to micro-cracks developing as a
consequence of extensions perpendicular to the applied load, induced by the Poisson’s effect. As a result,
damage variable components evolve more slowly under compression conditions.

Figure B.20 (bottom) depicts the corresponding evolution of the damage variable under tension and compres-
sion. In uniaxial tension along x, micro-cracks develop perpendicular to the applied load, as qualitatively
represented in Figure B.20 (bottom-left). Consequently, the damage component Dxx rapidly evolves to
unity, reflecting the direct tension applied in this direction. Meanwhile, due to Poisson’s effect, shrinkage
occurs on y and z (resulting in negative strains), causing the damage components Dyy and Dzz to remain
unchanged. In contrast, uniaxial compression along x leads to micro-cracks developing parallel to the ap-
plied load, as illustrated in Figure B.20 (bottom-right). Extensions (resulting in positive strains) appear on
y and z, causing the damage component Dxx to remain static. The damage principal directions align with
y and z but are associated with indirect extensions. Consequently, Dyy and Dzz are equal and evolve much
more slowly than in the direct tension case.

Appendix B.2. Non-proportional loading

Non-proportional loading is simulated here to illustrate one of the advantages of employing the anisotropic
damage model over an isotropic one. The total loading time is discretized into 2000 pseudo-time steps. A
non-proportional load is applied, initially imposing an increasing strain component εxx until step 500 (see
Figure B.21). Subsequently, an unloading phase occurs until step 1000, where εxx = 0 and σxx = 0 (see
Figure B.21). From step 1000 until 2000 (end of the simulation), an increasing strain component εyy is
applied (depicted by the red curve in Figure B.21), with no conditions imposed on the other components.
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Isotropic vs anisotropic models. The stress-strain response obtained with the isotropic model is shown in
Figure B.22 (top-left). Elastic parameters are consistent with the ones previously used: E = 37000 MPa
and ν = 0.2. Moreover, κ0 = 1e− 4 and the exponential parameter Bt = 1000, which are typically used for
the isotropic damage evolution considered here. Figure B.22 (top-right) illustrates that the response follows
the same effective modulus during unloading on x and loading on y. This is expected since, once damaged,
all components of the effective Hooke’s tensor Ẽiso are affected by the same factor (1 − D). Consequently,
Ẽiso remains isotropic.

On the contrary, the Hooke’s tensor evolves from isotropic to orthotropic in the case of the tensorial damage
model used here. The stress-strain response for the loading case presented is depicted in Figure B.22
(bottom-left). For comparison purposes, elastic material parameters are kept consistent with those used for
the isotropic model. The other parameters are taken as in section 4.2. The response does not follow the
same effective modulus during reloading on the y direction, reflecting the induced anisotropy due to damage.
The effective Hooke’s tensor components evolve differently as damage takes place. For instance, from the
expression of the effective Hooke’s tensor (Equation 29), one observes that:

Ẽ1111 = 2G
[
H−1

11 H
−1
11 − H−2

11 H
−2
11

tr H−2

]
+ 3K

tr H2 Ẽ2222 = 2G
[
H−1

22 H
−1
22 − H−2

22 H
−2
22

tr H−2

]
+ 3K

tr H2 (B.1)

are naturally different once damage occurs. As illustrated in Figure B.22 (bottom-right), the components
Ẽ1111 and Ẽ2222 are initially the same in the elastic phase (i.e., when the material is isotropic). However,
they evolve differently as a function of the damage state. This induced anisotropic behavior is essential for
accurately capturing the anisotropic nature of non-local interactions, which is represented in this work by a
damage-dependent Riemannian metric.
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Figure B.20: Desmorat’s model response in tension (top-left) and compression (top-right) on axis x. Evolution of damage
tensor components under tension (bottom-left) and compression (bottom-right). Micro-cracks are illustraded to highlight the
preferential directions of damage.
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Figure B.21: Non-proportional applied strains at a quadrature point.
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Figure B.22: Isotropic damage model: stress-strain response during non-proportional loading (top-left) and respective evolution
of Ẽiso components throughout the steps (top-right). Desmorat’s model: stress-strain response during non-proportional loading
(bottom-left) and respective evolution of Ẽ components throughout the steps (bottom-right).
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