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Abstract. An A/B-Test is a method for evaluating online experiments
on target items and observing which A/B/C/... variations are better
through log reports and statistical analysis of the rewards earned by
each variation. Recent advancements in A/B-Tests through reinforce-
ment learning encompass dynamic allocation employing multiarmed ban-
dits (MAB). MABs provides A/B-Tests with fast identification of the
best variation (A or B) and helps limit the loss of the test i.e. the cost
of exploring low-reward variation. When partial information is available
before assigning variations, dynamic allocation is extended to the contex-
tual multiarmed bandit problem (CMAB). Current state-of-the-art ap-
proaches for empirically estimating the context-dependent reward func-
tion for each variation demonstrate strong performance in limiting test
loss and personalized tests. However, few studies have addressed this
problem in the context of variable-sized time series. This paper presents
a new reinforcement learning methodology to handle A/B-Tests with
variable-sized time series as context information. We provide two new
methods that obtain a minimization of the cumulative regret with a soft
computational cost. This paper also provides numerical results on real
A/B-Test datasets, in addition to public data, to demonstrate an im-
provement over traditional methods.

Keywords: A/B-Test · Mutliarmed bandit · Time series.

1 Introduction

In many domains, experimental evaluation is necessary for assessing the rel-
evance of modifications made to an existing entity according to one or more
objectives. For instance, an e-marketing team can look for the best modification
of a web page design to increase sales [6]. The original variant (A) and its vari-
ations (B/C/. . . ) are compared in parallel in a real environment. This leads to
the exploration-exploitation dilemma which opposes the cost of learning the best
variation (exploration phase) and the benefit obtained by using it in the future
(exploitation phase). To tackle this dilemma, novel A/B-Test-based approaches
have emerged especially for real-world problems [7, 21] that involve sequential
decision-making, such as selecting a variation A/B/. . . The decision-making here
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consists of assigning the items (patients, visitors, recommendations, . . . ) to the
different variations (A/B/. . . ) in order to evaluate the performance of each one
(survival rate, average basket, click rate . . . ). During this exploration, it is as-
sumed that the result, called reward, of each assignment, can be observed after
a fixed period, to evaluate the performance of each variation. At the end of this
exploration, the user can decide which variation should be implemented (i.e.,
during production) based on their performance. In [11], the authors highlighted
conducting the A/B Testing in a sequential manner and without a random stop-
ping rule to determine the completion of the experiment using a reinforcement
learning policy (also known as a multiarmed bandit, MAB). The MAB is often
formulated as the following problem: given a set of bandit “arms” (variation),
each associated with a fixed but unknown reward probability distribution [12],
an agent selects an arm to play at each iteration (when a visitor comes to the
webpage), and receives a random reward variable (click, purchase, ...), sampled
according to the selected arm’s distribution, independently of the previous ac-
tions. More formally, A is the space of actions (finite), X a set of rewards, at
each iteration t ∈ N+, an agent select an arm at ∈ A and receive a reward rt ∈ X
where ξt is a noise centered (E[ξ] = 0) and further conditionally sub-Gaussian
such as:

rt = f(at)︸ ︷︷ ︸
reward funct.

+ ξt︸︷︷︸
noise

. (1)

Note that f is initially unknown and can be the average (stationary or not)
of the chosen arm reward at. If the agent chooses, at iteration t, a suboptimal
variation, it suffers simple regret equal to the difference between the reward from
the optimal variation a⋆ and the reward from the chosen variation at at itera-
tion t. The goal of the agent is to minimize the cumulative sum of regret Rt at
t = T , i.e. the end of the A/B-Test : RT = Tµa⋆ −

∑
a∈A Na(T ) × µa where

a⋆ = argmaxa∈A µa (and µa⋆ the average of best arm) and Na(T ) is the number
of plays of an arm a at the end T of the A/B-Tests. Thus, an efficient bandit
policy must have an average regret less than the average regret of a random pol-
icy when T → ∞. A decrease in regret implies that the agent selects arms that
maximize gains, leading to an increase in average gain (e.g., average CTR) by the
end of the test. Thus, one can study both regret (to minimize) and average gain
(to maximize), the choice depending on the ability to observe rewards across all
variations. A particularly useful version of MAB is the contextual multiarmed
bandit (CMAB) [14], where at each iteration, before choosing an arm, the agent
observes a d-dimensional context feature vector ct ∈ Rd sampled from some un-
known distribution. In that case the best arm is a⋆ = argmaxa∈A⟨θa, ct⟩ with
θ ∈ Rd as the parameter of an arm. Then a reward becomes : rt = f(at, ct) + ξt.
The ct context vector encapsulates essential features of an item, such as age,
origin, and gender, revealed before allocation choices. However, conventional
CMAB approaches encounter challenges when ct contains time series data. This
inability to use time series to describe an item makes it impossible to employ
CMABs in the context of A/B-Testing related to e-commerce, where time series
are commonly used to describe website visitors. However, deploying suboptimal
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variations into production without knowing a stopping criterion in advance sig-
nificantly hinders users from conducting A/B tests on their websites. A CMAB
that utilizes time series as context would allow both the consideration of the
evolving nature of website visitors and the encouragement of users to take risks
to test variations. We propose in this paper a new approach by the inclusion of
temporal data in ct. Our methodology performs time series clustering based on
the evolving features of visitors who have interacted with the original produc-
tion page (Version A) in the past before conducting the test. This new approach
not only recognizes the significance of time series but also introduces a nuanced
preprocessing step, departing from traditional methodologies. By incorporating
time series data and employing advanced clustering techniques, our method in-
creases the average gain at the end of A/B-Test (or decreases the regret). In
addition, our innovative approach improves A/B testing practices by facilitat-
ing a deeper understanding of consumers behavior. Through the identification
of distinct patterns in marketing, our methodology insights into tailoring ex-
periments to specific audience segments. This contributes to a more nuanced
interpretation of test. According to the user’s needs, we propose two algorithms:
DBA-Ctree-Ucb and DBA-LinUCB, with significant improvements in terms
of regret. Section 2 provides an overview of the state-of-the-art in CMAB meth-
ods, both with and without presegmentation. It also introduces the technique
employed to address the temporal aspect of CMABs, and section 3 presents our
two novel algorithms. Furthermore, Section 4 presents the experimental results
obtained from various datasets. Finally, Section 5 concludes with a discussion.

2 State of the art

2.1 Classical MAB problem
The goal of the agent is to use knowledge from past observations to maximize
long-term rewards : at+1 = Ft(a1, r1, . . . , at, rt). To achieve this, the agent must
determine and select systematically the arm with the highest average reward
a⋆ = argmaxa∈A µa as soon as possible, thus striking a balance between explo-
ration (testing different arms) and exploitation (selecting the arm with the high-
est expected reward). Rather than focusing on cumulative rewards, which have
no theoretical guarantee, theoretical analyses of bandit models focus on cumula-
tive regret [12]. Observing convergent cumulative regret implies that the agent
consistently makes the correct choices systematically after a time t ∈ [1; T ]. As
such, cumulative regret leads to theoretical bounds that are presented for many
bandit algorithms in the literature. An in-depth technical analysis of the classi-
cal MAB was given in [13], where policies assuming only one best arm regardless
of the item features (ct) asymptotically reach a regret of O(log T ). However, to
establish a theoretical bound on regret, it is essential to compare the perfor-
mance against a reference model, often referred to as an oracle, which can learn
from all the available data. Among the MABs classically used is Ucb algorithm
[12] which, for each arm a ∈ A, constructs an adaptive upper confidence inter-
val on the mean: UCB(a, t) = µ̂a(t) + αucb

√
2 log(t)
Na(t) with αucb ∈ R∗

+ a positive
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parameter and Na(t) is the number of selections of the arm a up to round t.
At t, the U.C.B algorithm chooses argmaxa∈A UCB(a, t). Other methods, such
as Ucb variants, Thompson Sampling, KL-UCB or EXP3 algorithms [20], can
be used as alternatives to Ucb. However, these algorithms have a regret bound
that is strongly dependent on the joint distribution of the arms. The learning
process takes longer when the means of the arms are close. One possible solution
to maximize this difference is to leverage the partial information available before
selecting an arm, which is defined as the context.

2.2 Contextual Multi Armed Bandit

In the CMAB problem, the agent receives partial information such as item fea-
tures, referred to as context, before making a decision at each iteration. More
formally, at each iteration t, the agent observes a particular item described by a
d-dimensional feature vector ct ∈ Rd. The agent chooses an arm at ∈ A to apply
to this item based on past contexts and rewards observed in previous iterations.
Like in classical MAB, the agent cannot observe rewards from arms other than
at. The context in the CMAB can be defined differently depending on how con-
texts are revealed and how assumptions are made about the reward function. In
our case, each different context ct is no longer a vector but a d time series of
maximal size m, represented by a matrix d×m. We distinguish the vector repre-
sentation ct from its matrix representation ct which results in rt = f(at, ct) + ξt

where ct ∈ Rd×m. This problem of context dimension was first studied in The
Query-Ad-Algorithm [3]. The Query-Ad-Clustering algorithm achieves a regret
of O(T 1− 1

2+|C| +ϵ), where C is the set of possible contexts and an ϵ positive con-
stant. In the Query-Ad-Clustering algorithm, the reward estimates are accurate
as long as the context partitions are similar to each other. However, when the
context dimension is large, the regret bound becomes almost linear. This issue is
addressed in [16], where the arm rewards are assumed to depend on an unknown
subset of the context. It is demonstrated that the regret in this case depends only
on the number of relevant groups [8] and requires a learning prestep; however, no
details are given on how to achieve this group segmentation. Two approaches are
possible in AB testing to define these groups: learning them during preprocessing
(data collected before conducting the test) or online with contextual bandit.

Preprocessing approaches Preprocessing approaches assume the existence
of natural groups, each having a Gaussian reward distribution [16], which can
be determined online [15] or before the MAB allocation. The approach involves
learning a set of groups G and a mapping group function association g before the
A/B-Test. Let’s g : Rd → {0; 1}|G| with |G| ∈ N the number of possible groups.
When a new visitor described by ct is submitted to the agent, the function
g(ct) classifies it into one of these groups (g(ct) = g̃t with g̃t ∈ G) and then
a non-contextual bandit strategy assigns it to an arm according to previous
rewards. So partitioning between several groups limits regret when divergence
is maximized. In [6] the authors propose the use of the Ctree-Ucb algorithm
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to construct the association function g using a conditional inference tree [9] (see
Alg. 1 in Appendix) before applying several Ucb bandits. Their partitioning
involves collecting data from the original variation A and defining groups based
on past visitors’ features. Each of these groups has a reward distribution that
can be modeled by a Gaussian distribution. Group detection here is a type of
recursive partitioning method that involves the following basic steps:

– Step 1. Select the feature predictor that best separates different values of
the reward distribution with a statistical p-value. The p-value error was
corrected with a Bonferroni correction (a method to counter the problem of
multiple comparisons).

– Step 2. This variable is split, and the data are divided into two datasets.
– Repeat steps 1 and 2 recursively until no further splits can be made based

on predefined p-value rejection (according to the αCTREE risk).
– A tree-like group partitioning model g is produced (see Fig 1).

To train the inference tree, Ctree-Ucb uses the data present before starting
the test (denoted as L, collected on variation A ). While the set of data from
variation B is not observed, the authors in [6] show that in many cases of A/B-
Tests the groups observed on A are also observed in B. During the test, all
new items are matched to a predefined group (from the tree). Each group can
be supported by a noncontextual bandit. When a new item is presented to the
agent, it is automatically assigned to a group based on its features, and an arm
is assigned to it through the associated MAB, ensuring a satisfactory response
time (millisecond time scale). This allows for a lower cumulative regret than
other online learning methods, an interpretability due to the inference tree, and
does not slow down the user experience (< 200 milliseconds), since the group
learning step is performed only once and only non-contextual MABs are used
afterwards. The alternative approach to the preprocessing step is learning the
context function online, which is described in the following section.

Combinatory function Another possible approach is to learn the reward con-
text function without any information before the test. A popular framework for
contextual bandits is LinUCB proposed in [14], and variants [5] which assume
a linear combination between the context and the d-parameters of each arm.
LinUcb estimates the expected reward of each arm a as a linear regression of
the context vector ct, where θa ∈ Rd is the regression coefficient of an arm
reward function to be learned. We denote by αLinUcb the parameter for the im-
portance of exploration as αLinUcb = 1 +

√
(log 2/δCI)/2 where 1 − δCI is the

confidence interval. We assume that M is an invertible matrix; and denote by
M−1 ∈ Rd×d the updated weight, which can be interpreted as the covariance
of the coefficient θa. Hence, LinUcb considers the upper confidence bound as
θ̂a

T
ct +αLinUcb

√
c⊤

t M−1ct. The arm at selected is the one maximizing the upper
confidence bound: at = argmaxa∈A(θ⊤

a ct + αLinUcb
√

c⊤
t M−1ct). LinUcb gives

a regret in O(
√

Td). Modified versions of this algorithm, such as SupLinUcb
with kernel functions, are studied in [13] where the regret is O(

√
Td). When
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Fig. 1: Example of a conditional inference tree generated from the original page
(AB Test dataset [6]) There are 5 groups with different CTR, determined by
factors such as the number of past visits on the site (visit.y), user agent, and
browser name. A separate UCB MAB will be employed for each identified group.

d is very large, inverting the matrix M can become computationally expensive
and require a significant number of items. To handle nonlinear reward functions,
recent works such as kernelized stochastic bandits [24] or deep neural networks
[23], have considered the past selected arms and received rewards as training
samples. [22] computes a gradient-based upper confidence bound with respect to
the trained neural network strategy to select arms. However, when the context
is a large vector, the aforementioned approaches need to work on batch style
or become computationally expensive, which leads to a significant amount of
regret.

2.3 Large-scale context

The algorithms detailed in the previous section have strong restrictions on the
dimension of the context, where ct must be a vector of numerical non correlated
values. These restrictions limit the use of bandit algorithms when the features
to be considered are time series (ct ∈ Rd×m). One solution to this problem is to
flatten the time series of each temporal feature. One of the several problems with
this approach is that if the size of feature vectors is large, it introduces significant
variability in the bandit’s performance, leading to a large amount of data to be
collected. To address the problem of size context vectors, [4] proposed empiri-
cally building a LASSO-type statistical model and integrating it into a bandit
problem. However, this approach requires that the features be independent of
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each other, which is not the case when the features come from the same time
series. In [18], the use of LSTM for handling time series data has the drawback of
requiring a large number of visitors and frequent model retraining. This results in
significant computational costs associated with deep learning methods and slows
down the display of the test page, making it impractical for e-commerce applica-
tions. Considering temporal features is a difficult task without prior knowledge
of the data. Additionally, we found no information in literature about A/B-
Testing contextual bandit algorithms that can adapt to data of variable size.
The following section presents our contribution to address this issue.

3 Contribution

3.1 Illustrative dataset

We detail our approach using the AB tasty dataset 1 (owned by AB TASTY©).
AB Tasty Dataset 1 comes from an AB testing platform that compares two
versions of the same web page for an e-commerce site. The allocation of A or B
to a visitor is randomized with a static allocation. Each visitor is assigned to a
single variation until the end of the test (conducted over 15 days). If the visitor
has made a purchase from the test page, a reward of 1 is assigned; otherwise,
the value is 0. The data contains the history of visitor sessions generated before
arriving on the test page: for each visitor, ct includes the following information
from the visitor’s first visit day on the site until the day he/she arrives on the
tested page.

– presence_time_serie: series of binary values indicating for each day whether
the visitor visited the site or not.

– connexion_time_serie: series of hours of connections (when the visitor
arrived at the site).

– time_spend_time_serie: series of visitor’s session duration (milliseconds).

There are n = 5156 visitors, the shortest session is 2 days, and the longest session
is 14 days.

3.2 Two new algorithms DBA-Ctree-Ucb and DBA-LinUCB for
handling times series for A/B-Tests

Currently, there is no existing state-of-the-art method that effectively handles
an evolving item context. However, the data presented prior to the beginning
of the test could enable the transformation of this context, making it usable by
a traditional context bandit method. This preprocessing step has already been
employed in Ctree-Ucb [6] to create an item segmentation that maximizes the
difference between arm means and has demonstrated a significant decrease in
cumulative regret. Our contribution proposes a model for replacing a visitor’s
time series with clusters and demonstrates how this improves dynamic allocation
compared to transforming series into averages. We introduce two novel exten-
sions, DBA-Ctree-Ucb and DBA-LinUCB, which complement the search for
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context-dependent optimal variations with preprocessing utilizing DBA-DTW-
kmeans. As we said in the introduction, domains such as e-marketing, and the
recognition of evolving customer profiles are crucial for effectively targeting con-
sumers, personalizing offers, and improving the user experience in an A/B test.
Time series clustering can handle complex and multidimensional data, taking
into account various variables such as purchase history, online interactions, ge-
ographical data, etc. By utilizing this method, marketers obtain a holistic view
of consumer profiles and identify specific subgroups within the population. The
clustering parameters can be adjusted based on the study objectives, such as
the desired number of clusters or sensitivity to changes. To include time series
clustering in a dynamic allocation algorithm, we propose two algorithms: DBA-
Ctree-Ucb and DBA-LinUCB. These algorithms improves the Ctree-Ucb
and LinUcb algorithms, respectively, which do not handle temporal aspects. It
is important to note that the user is expected to obtain an original variation
(such as web page A) and the historical data (such as logs) of the items that
have undergone this original variation. These data, collected before their arrival
on the test page, form learning clusters required for the DBA-LinUCB and
DBA-Ctree-Ucb algorithms. Each temporal series in the known items is re-
placed as a categorical feature: a cluster. The following section details our choice
for time series clustering.

Choice of time Series Clustering Since the context of a user is represented
by d time series, a solution could be to transform these series by d clusters. In
our case, we decided to use a partitioning approach based on the similarity be-
tween items. Partitioning methods are computationally efficient and can handle
large A/B-Test datasets with ease. To implement such a method, we needed to
set a similarity measure. Indeed, in time series clustering methods, if one wants
to compare series with irregular sampling or of different sizes, particular atten-
tion must be given to the choice of similarity measure. There are many methods
for measuring similarity between time series. The most well-known method is
Euclidean distance, which involves calculating the sum of the squared distances
between the corresponding elements of the considered sequences at each time
step. If this distance is commonly admitted, it cannot be used in our case be-
cause it requires that the series be the same length. Length resampling would be
problematic for a marketing application as it would risk losing the evolutionary
aspect of the customer path. However, in our work, we place ourselves in a case
where the observation of the context variables can be irregular. For example, one
visitor may visit the site more frequently than another. The similarity measure
DTW (dynamic time warping) is a metric between two series of different sizes
widely recognized as relevant for many application domains. The DTW method
matches the elements of the sequences by aligning them in a way that respects
the total order of the sequence of values, without crossing the associations (see
Alg. 2 in Appendix). DTW can be sensitive to noise, but this is not a problem in
our web application where the data is not noisy. A warping path is constructed
by computing the minimum cumulative distance between all possible pairs of
points in the two-time series. It is usually calculated using the Euclidean dis-
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tance, but other distance metrics can also be used. Once the warping path is
obtained, the DTW distance is computed as the sum of the distances along the
path. The objective function optimally solved by DTW corresponds to the min-
imization of the sum of the costs of the different associations. Fig 8 in Appendix
illustrates the concept of the similarity measure DTW.

After defining the similarity metric used in our approach, we propose to use
an averaging method based on the barycentre (Dynamic Barycenter Average,
see Alg. 3 in Appendix) [17]. Once the series have been aligned using DTW and
represented by their average series using DBA, the K-means divide the data
into K clusters by similarity, where K is a predefined number (see Alg. 4 in
Appendix). It assigns each series to the cluster whose average series is closest to
it in terms of DTW similarity. Our number of clusters is based on the Silhouette
score: it measures how similar a series is to each other. The Silhouette score,
denoted as S(i), is computed using the formula :

S(i) = b(i) − a(i)
max{a(i); b(i)}

where a(i) is the average DTW distance from the ith series to others in the
same cluster, and b(i) is the average distance from the ith series to series in the
nearest cluster to which it does not belong. The optimal number of clusters is
the one that maximizes the average Silhouette score. A higher Silhouette score
indicates better-defined clusters. Our experiments have demonstrated that this
is the most reliable indicator for determining the number of clusters (see Ex-
perimentation section). By combining these three components, the DBA-DTW-
kmeans method identifies clusters of similar profiles, taking into account tempo-
ral variations and using a more flexible similarity measure. The Fig 2 shows an
example with centroids obtained from DBA-DTW-Kmeans on the preprocess-
ing step (774 visitors) on AB Tasty Dataset 1. We apply DBA-DTW-kmeans to
presence_time_serie, connection_time_serie and time_spend_time_serie
that describe visitors to AB Tasty dataset 1.

Fig. 2: The series represents 5 centroïds based on the presence/non-presence per
day series associated with visitors (from the first day of their visit to the site to
the day they appeared on the page being tested). If the visitor does not log on
during the day, the series is set to 0.
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Dynamic allocation Each time series is replaced by the centroid to which
it is closest. For DBA-Ctree-Ucb the tree model g is learned from L, where
each time series has been substituted with the number of clusters to which
it belongs. The second step of these two algorithms corresponds to the online
A/B-Test step involving Ctree-Ucb and LinUcb. Cluster replacement can
then be directly utilized by a contextual bandit model. Consequently, in the
DBA-LinUCB/DBA-Ctree-Ucb version, the allocation is down according to
a LinUcb/Ctree-Ucb modelling (see Alg. 5 and Alg. 6 in Appendix). The
global schema of our idea is drawn in Fig 9 in Appendix. The offline part is com-
mon to both methods: the past log is used to generate the clusters. An additional
step for DBA-Ctree-Ucb also creates the segmentation tree that will be used
in the online part. The online part corresponds to the start of the test. The time
series of new items are replaced by the nearest cluster, and the allocation of vari-
ation depends on the bandit strategy used (according to the segmentation tree g
for DBA-Ctree-Ucb and according to the upper bound of a linear regression
for DBA-LinUCB). The DBA-LinUCB algorithm uses a linear approach to
estimate the parameters between clusters and potential rewards. This approach
assumes that this reward function can be approximated by a linear function.
The DBA-Ctree-Ucb divides the cluster sets into distinct groups, enabling
the capture of more complex and nonlinear function links between the context
and rewards. It evaluates each group and identify optimal variation according
to each group by the Ucb strategy. This approach facilitates faster exploration
when one or more groups demonstrate sensitivity to the test while avoiding un-
necessary slowdown in cases where the test would yield no changes for some
items (e.g. Fig 3).

4 Experiments

Here, we present the results of the DBA-Ctree-Ucb and DBA-LinUCB mod-
els on real-world datasets. We compare our algorithms with Ctree-Ucb [6] and
LinUcb [1] which require transforming each context time series by taking the
average of its values. These experiments observe whether clustering (which is
defined by a partial observation of the data) significantly reduces regret. The
choice of the number of clusters is first evaluated using the Silhouette index [19].
All experiments are reproducible in our R package from our GitHub repository4.

AB Tasty Dataset 1 We present the results on the dataset introduced in section
3.1. The available payoffs are those associated with the pages presented in the
case of a static allocation, so observing the regret requires a k-nearest neighbors
replacement technique : we replaced the missing values by sampling from the
visitors at a minimal distance (<10% of the sequence for each series). If no similar
visitor profile exists, a reward is randomly drawn from the alternative page
dataset. The "k-nearest neighbors" method, employed to replace missing data,
keeps the correlation between the time series and the corresponding generated
4 https://github.com/manuclaeys/banditWithR
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Fig. 3: Preprocessing tree obtained by DBA-Ctree-Ucb on AB TASTY dataset
1. Each leaf represents a click rate. 4 groups are identified from the pre-processing
dataset.

rewards. Unlike predefined theoretical replacement models, this method does not
rely on such models, which may introduce a strong dependency between missing
values and their replacements in small datasets; however, this is not the case in
our experiment.

Number of clusters and regret The cumulative regret of DBA-Ctree-Ucb and
DBA-LinUCB is influenced by the choice of number of clusters, as depicted in
the three graphs of Fig 4. Our method chooses to parameterize the number of
clusters based on the Silhouette index (here 5, 5, 10 for the three series). When
employing DBA-Ctree-Ucb, the use of an inference tree to partition visitors
into subgroups introduces the possibility of grouping clusters with no significant
differences (statistically) if the number of clusters is set too large (see Fig 3).
On the other hand, for DBA-LinUCB, the learning time and regret increase
linearly with the number of clusters. Consequently, choosing an inappropriate
value will lead to a longer learning process and result in a greater level of regret.
The centroids generated by DBA-Ctree-Ucb and DBA-LinUCB must be
interpretable from a marketing perspective by the user. Those presented in Fig.
2 represent, for example, visitor patterns such as: the regular visitor (3), those
prospecting for a product (1, 4, and 5) with varying intervals between visits, and
those who do not return (2). By coupling with other types of series DBA-Ctree-
Ucb identifies "high-potential" or "low-potential" visitors. In the generated tree
(see Fig. 3), DBA-Ctree-Ucb identifies 4 visitor groups, each with a varying
CTR. New visitors placed in these groups had an independent allocation by Ucb
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policy, and the user was able to identify at the end of the test which variation
was better for each group. It should be noted that generally, groups with very
low CTR are usually less sensitive to the test. For example, visitors in group
7 (see Fig. 3) showed no preference between variations. This visitor group was
highly represented in the traffic, and its ’isolation’ helped accelerate learning for
the other groups.
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Fig. 4: Cumulative regret obtained by DBA-Ctree-Ucb (red) and DBA-
LinUCB (light blue) over number of clusters for AB Tasty dataset 1 on
presence_time (left), connexion_time (middle) and time_spend (right). For
each graph, the algorithms are trained using only one of the three series as feature
context information. In comparison, Silhouette’s indexes suggest the following
settings (presence_time =5,connexion_time = 5,time_spend = 10)

The evolution of cumulative regret according to time for all methods is pre-
sented in Fig. 5. It is observed that the gap between DBA-Ctree-Ucb and the
other methods widens during learning. The cumulative regret (to minimize) ac-
cording to clusters setting for DBA-Ctree-Ucb and DBA-LinUCB is shown
in Fig. 4 and confirms that the silhouette index is a good indicator for choosing
the number of clusters before starting the test. The average click-through rates
(to maximize) as a function of the number of clusters are also referenced in Tab 1
for comparing all methods with different settings (number of clusters, web page
used for preprocessing). The lower performance of DBA-LinUCB compared to
DBA-Ctree-Ucb can be explained by the fact that if the number of clusters
is large, DBA-LinUCB will require more data than DBA-Ctree-Ucb. The
differences in terms of regret may seem small, but as the objective of the test
is a click to buy, the probability of success is relatively low, regardless of the
variation displayed. The average click rate at the end of A/B-Test was 14.14%
for DBA-Ctree-Ucb, 12.79% for Ctree-Ucb and < 12% for DBA-LinUCB,
LinUcb and UNIFORM (see Table 1).

Complementary experiment : AB Tasty 2 We provide a complementary exper-
iment on another AB Tast dataset (AB Tasty dataset 2). These data have the
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Fig. 5: Cumulative Regret Ucb, LinUcb, Ctree-Ucb, DBA-Ctree-Ucb and
DBA-LinUCB on AB TASTY dataset 1

same type of time series and come from a video streaming website. The objec-
tive of the AB Test is to increase the click-through rate of the tested page. To
learn the clusters and groups, we test several configurations. One uses 30% of
the visitors (1591), and the other uses all the visitors (5306). The reader can
see the results in the table 1, in particular the interest of the two new approach
proposed to increase the average click rate at the end of the experiment. DBA-
Ctree-Ucb identified 2 visitor groups (see Fig 6) where Ctree-Ucb did not
identify any groups. The Silouhette index suggested setting 10,5 and 10.

Localization Data for Posture Reconstruction In this experiment, we assess the
performance of DBA-Ctree-Ucb and DBA-LinUCB in a non-e-commerce
setting using the ’Localization Data for Posture Reconstruction’ dataset [10].
The dataset comprises 164860 positional measurements from five patients, each
represented by three time series (V 1, V 2, V 3) capturing displacements along the
x, y, and z axes. The objective is to differentiate between ’sitting’ and ’sitting
on the floor’ activities based on these measurements. Our A/B test categorizes
activities as A (’sitting on the floor’) and B (’sitting’), with rewards assigned for
successful detection. We frame this as a classification problem, aiming to identify
patient activities accurately without imputation, unlike traditional e-commerce
datasets. The study involves 1000 items and various bandit configurations. The
results are on Tab 2. The parameter settings are according to the max Silhou-
ette index: KV 1 = 10, KV 2 = 10, KV 3 = 10. The regret comparison is shown in
Figure 7 provides additional evidence to support the effectiveness of the method
effectiveness for signal-type series. For this dataset, DBA-LinUCB achieves
the best performance. The lower performance of DBA-Ctree-Ucb can be ex-
plained by the fact that the sensors are not strongly correlated with each other,
and the choice of sensor used for learning strongly influences the algorithm’s
performance.
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Fig. 6: Preprocessing tree obtained by DBA-Ctree-Ucb on AB TASTY dataset
2. Each leaf represents a click rate. 2 groups are identified from the pre-processing
dataset.

Fig. 7: Cumulative regret Ucb, LinUcb, Ctree-Ucb, DBA-Ctree-Ucb and
DBA-LinUCB for Position Dataset

5 Discussion of results and conclusion

The choice of cluster number K, based on the Silhouette index, indicates that the
algorithm is suitable for parameter selection. We tested 6 other quality indices,
none of which yielded such results. One crucial aspect of our method is the reduc-
tion in context size, which leads to a significant decrease in computation time.
Since the cluster identification component is executed offline, it does not decrease
the efficiency of the online A/B-Test test step. The DBA-Ctree-Ucb method
enables the grouping of previously learned clusters if the reward distributions
(on variation "A") are statistically identical. Therefore, setting the number of
clusters too large has minimal impact on the regret, as clusters with identical



AB Tasty Dataset 1 AB Tasty Dataset 2
Conf30,70

DBA-Ctree-Ucb L = P1 L = P2 L = P1 L = P2
Nb clusters
3;5;5 13.80±1.1% 12.56±1.1% 9.53±1% 9.53±1%
5;5;10 14,14±1.2% 13.47±1.2% 9.53±1% 9.53±1%
10;5;10 13.67±1.2% 12.82±1% 9.92±1% 8.66±1%
DBA-LinUCB
Nb cluster
3;5;5 11,61±1.1% 8.39±1%
5;5;10 11,89±1.2% 8.51±1%
10;5;10 11.81±1.2% 9.19%
Ctree-Ucb 12.79%±1% 11.47%±1% 9.07% 9.09%
LinUcb 11.56%±1% 8.57±1%
UNIFORM 11.49%±1% 8.26%±1%

Table 1: Average click rate at the end of the test
according to different settings for AB Tasty dataset
1 and 2

Localization Dataset
Conf30,70

DBA-Ctree-Ucb
Nb cluster L = V 1 L = V 2 L = V 3

5 ;5 ;10 68.9% ±3% 44.1% ±4% 43,6% ±3%
10 ;10 ;10 69,8% ±3% 58.6% ±4% 66,8% ±3%
10 ;15 ;15 68,8%±4% 57.3%±4% 35,6%±4%
DBA-LinUCB
Nb cluster
5 ;5 ;10 76% ±3%
10 ;10 ;10 81,7% ±3%
10 ;15 ;15 74,6% ±3%
LinUcb 66,2% ±2%
Ctree-Ucb 33.7%±3% 32.2±3% 31.5±4%
UNIFORM 32,5% ±1%

Table 2: Average classification
rate at the end of the test
according to different settings
for Localization Dataset

reward distributions are grouped together. Our experiments also demonstrated
that DBA-Ctree-Ucb and DBA-LinUCB facilitate business interpretation of
clusters. For instance, separating a "perfect prospect" from a "visitor who arrived
by mistake" can be challenging. Their visits are nearly short before they reach
the test page. By combining different types of clusters (one based on presence
and the other on time spent on the site) and predicting their click probabilities,
we can differentiate between these two profiles and determine the most suitable
variation. DBA-Ctree-Ucb/DBA-LinUCB appears to be a more advanta-
geous method than Ctree-Ucb/LinUcb in terms of regrets. Clusters allow for
the construction of more homogeneous groups in terms of reward distribution
rather than relying solely on series averages. Separating groups based on series
mean values makes learning highly sensitive to extreme values, which the clus-
tering model avoids. However, DBA-Ctree-Ucb requires a correlation between
the earnings of different variations: the earnings distribution of a group, whether
on variation A or B, follows the same distribution (with the same variance), but
the means may differ. In a further work we will show how this pre-processing
step has helped the user to create more personalized variation B by generative
DNN.
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Appendix

Fig. 8: Similarity of two series by DTW. (left) Matrix and optimal alignment
path calculated by DTW. (right) Resulting alignment of the two sequences

Algorithm 1 CTREE algorithm
Require:
1: – An Alpha risk hyperparameter αCTREE ∈]0, 1[

– A dataset of features ct ∈ C and response rt ∈ X .
2: Calculate the the test statistics statj0 for the observed data
3: Permute the observation in the node
4: Calculate stat for all permutations
5: Calculate the p-values (from the number of test statistics stat, where |stat| >
|stat0|)

6: Correct p-values for multiple testing according a Bonferroni correction.
7: if H0 (no statistical difference between distributions) are not rejected (p-value

> αCTREE for all Xj) then return
8: Select feature X∗

j with the strongest association (smallest p-value)
9: Search for the best split of X∗

j (maximize test statistic stat0) and partition data
10: Apply CTREE to both of the new partitions
Output: A hierarchical partitioning g function
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Algorithm 2 Algorithm DTW
Require:
1: – A sequence S1 = ⟨s11, . . . s1|S1|⟩.

– A sequence S2 = ⟨s21, . . . s2|S2|⟩.
– A cost matrix costmat of size |S1| × |S2| initialized to 0.

2: costmat[1, 1]← δ(s11, s21)
3: for i ∈ {2, . . . , |S1|} do
4: costmat[i, 1] = costmat[i− 1, 1] + δ(s1i, s21)
5: for j ∈ {2, . . . , |S2|} do
6: costmat[1, j] = costmat[1, j − 1] + δ(s11, s2j)
7: for i ∈ {2, . . . , |S1|} do
8: for j ∈ {2, . . . , |S2|} do

9: costmat[i, j] = δ(s1i, s2j) + min

{ costmat[i− 1, j]
costmat[i, j − 1]

costmat[i− 1, j − 1]

}
Output: costmat

Algorithm 3 Algorithm D.B.A
Require:
1: – A learning set L.

– Saver = ⟨saver,1, . . . , saver,|Saver|⟩ the initial average sequence.
– S1 = ⟨s11, . . . , s1|S1|⟩ the first sequence of the set L.
– . . .
– Sn = ⟨sn1, . . . , sn|Sn|⟩ the last sequence of the set L.

2: Let m the maximal size of all sequences in L.
3: Let assocT ab an empty table of size |Saver| contain in each cell l all the elements

associated with l in Saver.
4: Let costmat ∈ Rm×m the cost matrix for DTW (See Alg 2).
5: for Si ∈ L do
6: costmat← DT W (Saver, Si)
7: l← |Siaver|
8: j ← m
9: while l ⩾ 1 or j ⩾ 1 do

10: assocT ab[l]← assocT ab[l] ∪ sij

11: (l; j)← second(costmat[l; j])
12: for l ∈ 1 . . . |Sn| do
13: S+

aver = barycenter(assocT ab[l])
Output: S+

aver
Note that D.B.A. utilizes a matrix that returns for each cell (access with first()) func-
tion all elements associated with this cell (access with second()).
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Algorithm 4 Pseudo code of K-means D.B.A DTW
Require:
1: – A number of desired cluster K

– A learning set L = {S1, . . . Sn} of n sequence.
– Iter maximal number of iteration

2: Randomly choose a cluster for each time series
3: while Iter do
4: Calculate the mean for each cluster according to D.B.A (See Alg. 3)
5: Assign each sequence to the closest centroid according do DTW (See Algo. 2)

Output: A set of centroid

Algorithm 5 Algorithme DBA-Ctree-Ucb
Require:
1: – A learning set Lpre-test_A

– A set of T items Ltest_A_B to be tested.
– vectClust a d dimensional vector of desired number of clusters for each d type

of series.
– An accepted risk αCTREE ∈ [0, 1].
– A positive parameter α ∈ R+.

2: Init matrixClusters an empty matrix of all centroides
3: for Each time series of type j ∈ d in Lpre-test_A do
4: Subset j-type series in Lpre-test_A,j

5: matrixClusters←K-means-DBA-DTW( Lpre-test_A,j), add vectClust[j] cen-
troïds

6: Generate a k() function that return a d-vector of the closest clusters according to
matrixClusters

7: for Each item ct ∈ Lpre-test_A do
8: ct ← k(ct)
9: Generate a g() function that return a leaf group association according to

CTREE(Lpre-test_A, ϵ)
10: while ct ∼ Ltest_A_B do
11: Receive an item ct from Ltest_A_B
12: Assign ct to a group according g ◦ k(ct)
13: if Na,g◦k(ct)(t) = 0 then
14: at = a

15: at = argmaxa∈A {µ̂a,g◦k(ct),t + α

√
2∗log(

∑
a∈A

Na,g◦k(ct)(t))

Na,g◦k(ct)(t) }
16: Assign the item ct to arm at

17: Receive a reward rct,at

18: Update µ̂a,g◦k(ct),t and Na,g◦k(ct)(t)
19: Remove ct from Ltest_A_B

Output: A sequence of T arm choices and rewards
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Algorithm 6 Algorithm DBA-LinUCB
Require:
1: – A learning set Lpre-test_A

– A set of T items Ltest_A_B to be tested.
– vectClust a d dimensional vector of desired number of clusters for each d type

of series.
– A positive parameter α ∈ R+.

2: Init matrixClusters an empty matrix of all centroides
3: for Each time series of type j ∈ d in Lpre-test_A do
4: Subset j-type series in Lpre-test_A,j

5: matrixClusters←K-means-DBA-DTW( Lpre-test_A,j), add vectClust[j] cen-
troïds

6: Generate a k() function that return a d-vector of the closest clusters according to
matrixClusters

7: Define D = |K| as the number of possible cluster (hot-one encording)
8: for a ∈ A do
9: Initialize Aa = ID, the identity matrix of size D by D of arm a

10: Initialize ba = 0D, a null vector of size D

11: while ct ∼ Ltest_A_B do
12: Receive an item ct from Ltest_A_B
13: for a ∈ A do
14: Update parameters θ̂t,a = A−1

a ba

15: end for
16: Choose at = argmaxa∈A µ̂a,t = k(ct)T θ̂a,t + α

√
k(ct)T A−1

a k(ct)
17: Receive a reward rk(ct),at

18: Update Aat = Aat + k(ct)k(ct)T

19: Update bat = bat + rct,at k(ct)
Output: A sequence of arm choices and rewards
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DBA-Ctree-Ucb convergence

If a group of items g̃ have a σ
g̃
-subgaussian distribution of reward for a s number

of trials with s ≤ n and a given 1 − δ probability, the real average reward of an
arm a is bounded by:

1
s

s∑
t=1

X
a,t,̃g

≤ µ
a,̃g

+

√
2σ2

a,̃g
log 1

δ

s
(2)

with traditionally δ = 1
n2 [2].

We assume the case where a prediction function assign items to a group
g̃ where it’s reward follows a σ

g̃
-gaussian distribution regardless of the arm

applied. The experiences in the next section indicate that this hypothesis can be
confirmed in practice. Define a reward at iteration t:Xt = X

At ,̃g
and N

At ,̃g
(t)

the number of time when the arm At in group g̃ have been played. By definition
of regret:

R
n,̃g

=
∑
a∈A

∆
a,̃g

E[N
a,̃g

(n)] (3)

.
With ∆

a,̃g
= µ

a⋆ ,̃g
− µ

a ̸=a⋆ ,̃g
. The regret increase of ∆

a,̃g
when

(a) U.C.Ba ̸=a∗(g̃, t) > µ
a∗ ,̃g

(b) U.C.Ba=a∗(g̃, t) < µ
a∗ ,̃g

Let’s G
a,̃g

the event of (a) or (b) define by a constant ua,y:

G
a,̃g

= {µ
a∗ ,̃g

< min
t∈[n]

U.C.Ba=a∗(g̃, t)} ∩ {µ̂
a,̃g,ui

+ σ
g̃

√
1
ua

log 1
δ

< µ
a∗ ,̃g

}

where if G
a,̃g

happens, the regret converge to a finite value and so if G
a,̃g

occur, then N
a,̃g

(n) ≤ u
i,̃g

. Let GC

a,̃g
the complementary event.

E[N
a,̃g

(n)] = E[I{G
a,̃g

}N
a,̃g

(n)] + E[I{GC

a,̃g
}N

a,̃g
(n)]

≤ u
a,̃g

+ P[GC

a,̃g
]n

Bound of complementary event GC

a,̃g
is done in two parts:

GC

a,̃g
=

{
µ

a∗ ,̃g
⩾ min

t∈[n]
U.C.Ba=a∗(g̃, t)} ∪ {µ̂

a,̃g,ua

+ σ
g̃

√
2
ua

log 1
δ
⩾ µ

a∗ ,̃g

}
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{µ
a∗ ,̃g

⩾ min
t∈[n]

U.C.B(g̃, t)} ⊂ ∪s∈[n]{µ
a∗ ,̃g

⩾ µ̂
a∗ ,̃g,s

+ σ
g̃

√
2
s

log 1
δ

}

P[µ
a∗ ,̃g

⩾ min
t∈[n]

U.C.Ba=a∗(g̃, t)] ≤
n∑

s=1
P[µ

a∗ ,̃g
⩾ µ̂

a∗ ,̃g,s

+ σ
g̃

√
2
s

log 1
δ

]

≤ nδ

And so P[GC

a,̃g
] ≤ nδ + P[µ̂

a,̃g,ua
+

√
2

ua
log 1

δ ⩾ µ
a∗ ,̃g

]. We remind that ∆
a,̃g

=

µ
a∗ ,̃g

− µ
a,̃g

Assume a positive constant c where ∆
a,̃g

− σ
g̃

√
2

ua
log 1

δ ⩾ c∆
a,̃g

:

P[µ̂
a,̃g,ua

+ σ
g̃

√
2
ua

log 1
δ
⩾ µ

a∗ ,̃g
] = P[µ̂

a,̃g,ua
(4)

+ σ
g̃

√
2
ua

log 1
δ
⩾ ∆

a,̃g

+ µ
a,̃g

]
= P[µ̂

a,̃g,ua
− µ

a,̃g
⩾ ∆

a,̃g

− σ
g̃

√
2
ua

log 1
δ

]

≤ P[µ̂
a,̃g,ua

− µ
a,̃g

⩾ c∆
a,̃g

]

≤ exp (−
uac2∆2

a,̃g

2σ2
g̃

)

The last line of the equation 4 refers to a bounded error for a random variable

following a Gaussian σ distribution. So P[GC
a ] ≤ nδ+exp (−

uac2∆2

a,̃g

2σ2

g̃

). We looking

for ua that satisfy:

∆
a,̃g

− σy

√
2
ua

log 1
δ
⩾ c∆

a,̃g

ua ⩾
2σ2

g̃
log 1

δ

∆2
a,̃g

(1 − c)2

If δ = 1
n2
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E[N
a,̃g

(n)] ≤
2σ2

g̃
log 1

δ

∆2
a,̃g

(1 − c)2 + 1 + n exp (−
uac2∆2

a,̃g

2σ2
g̃

) (5)

≤
2σ2

g̃
log 1

δ

∆2
a,̃g

(1 − c)2 + 1 + n
−1+ c2

(1+c)2

The function −1+ c2

(1+c)2 is strictly negative and for any c < 1
2 . The equation

5 can be re written as :

E[N
a,̃g

(n)] ≤
2σ2

g̃
log n2

∆2
a,̃g

1
2

+ 2

For any group g̃ the regret is bounded by:

R
n,̃g

=
∑
a∈A

∆
a,̃g

E[N
a,̃g

(n)]

=
∑
a∈A

16σ2
g̃

log n2

∆
a,̃g

+ 2
∑
a∈A

∆
a,̃g

This finally define the cumulative regret for any group g̃ based on past data from
a = A (the original variation to improve). If the conditional inference tree define
a set of G admissible groups where ∀g̃ ∈ G, N (ν

g̃,a=A
, σ

g̃,a=A
) is statistically

different (with an accepted risk of ϵ) and |G| the number of possible groups, the
cumulative regret during the A/B-Test is

RDBA-Ctree-Ucb
n =

∑
g̃∈G

R
n,̃g

=
∑
g̃∈G

(
∑
a∈A

16σ2
g̃

log n2

∆
a,̃g

+ 2
∑
a∈A

∆
a,̃g

)

≤ |G| max
g̃∈G

[σ2
g̃
](

∑
a∈A

16 log n2

∆
a,̃g

+ 2
∑
a∈A

∆
a,̃g

)
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