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LOCAL CLASSIFICATION OF PAIRS OF SINGULAR FOLIATIONS IN
DIMENSION 2.

ADJARATOU ARAME DIAW

Abstract. We study the analytic classification of pairs of singular holomorphic folia-
tions in (C2, 0). We show that a pair of reduced, non-degenerate foliations with common
separatrices and a simple tangency is entirely determined by a complete set of invariants
composed of: the pair of holonomy representations, the couple of Camacho-Sad indices
and the common separatrices.
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Introduction

Pairs of foliations appear in many domains of mathematics namely in partial differential
equations and differential geometry. Their classification has application to the quadratic
differential equations (i.e the theory of the holomorphic 2-web on manifolds) and to the
study of Hilbert modular surfaces using modular foliations (see [2]). By flow-box theorem,
every pair of tranverse regular foliations on complex surface can be locally straightened
as a pair of foliations by vertical lines and horizontal lines. Therefore, all the important
features of pairs of foliations occur on a the tangency set. In fact, the classification of
the pair of foliations depends heavily on the nature of the tangency set. However, in [14],
O.Thom shows that the classification of pairs of foliation is quite complicated even if the
foliations are regular and the tangency set is normal crossings. Which makes it possible to
affirm that such a classification proves even more difficult in the case where the foliations
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2 A. A. DIAW

are singular. In [4], we state that almost all the local models of a configuration (i.e.
pair of foliations + the tangency set) after resolution of the singularities on a compact
complex surface are known except one. Therefore, in this article, we are going to focus
on this last case. In other terms, we want to give an analytic/formal classification of a
pair of foliations (F1,F2) on a complex surface S satisfying the following conditions:

(1) The tancency set Tang(F1,F2) = T consists of invariant algebraic curves by
foliations F1 and F2;

(2) the divisor T is normal crossings such that Sing(F1) = Sing(F2) = Sing(T );
(3) The singularities of F1 and F2 are reduced and non-degenerated.

To do this, we will first focus on the local classification of such pairs in the neighborhood
of singular points. More precisely, in this article, our main goal is to give a classification
of germs of pairs of reduced singular foliations on (C2, 0) with simple tangency. Our main
result is the following:

Theorem A (Main result). Let (F1,F2) and (G1,G2) be germs of pairs of foliations
defined by:

Fi =< xdy − λiy(1 + fi(x, y))dx >, Gi =< xdy − λiy(1 + gi(x, y))dx >,

such that λ1 ̸= λ2, both non-zero. If there exists, for i = 1, 2, a germ of analytic diffeo-
morphism Φi ∈ Diff(C2, 0) preserving each component of the curve of the separatrices
{xy = 0} and conjugating Fi to Gi, i.e.

Φ∗
iGi = Fi,

then there exists a germ of analytic diffeomorphism Φ ∈ Diff(C2, 0) conjugating the pairs
of foliations,

Φ∗Gi = Fi, i = 1, 2.

This main result can be reformulated as:

Theorem A(bis). Let (F1,F2) be a germ of a pair of foliations defined as:

Fi =< xdy − λiy(1 + fi(x, y))dx > i = 1, 2,

such that λ1 ̸= λ2, both non-zero. Any germ of analytic diffeomorphism Φ ∈ Diff(C2, 0)
preserving each component of the curve of the separatrices {xy = 0} decomposes in the
form

Φ = Φ1 ◦ Φ2

where Φi is a germ of analytic diffeomorphism preserving the foliation Fi, i.e

Φ∗
iFi = Fi, i = 1, 2.

The proof of the main result will be done in two different ways. At first, we are going
to give a proof based on the path method introduced by Jürgen Moser (see [11]). This
method consists essentially in replacing the problem of conjugation of pairs of foliations
to that of conjugation of path of pairs by making an unfolding of the pair of foliations
in (C3, 0). Furthermore, using this technique, we notice that, we can even generalize our
main result for pairs of foliation with any order of tangency k ⩾ 1 along separatrices.

On the other hand, we give another proof of this result by introducing a new method
which is sharper than the path method in the sense that it highlights all the complete
invariants of a pair of foliations. Indeed, in the method of the path, only the order of
tangency of the pair of foliations is taken into account.

Inspired by the work of F. Loray in (see [5]) and that of recently published by F. Loray,
F. Touzet and O. Thom (see [7]), we define an invariant, a meromorphic one-form along
a separatrix which measures the divergence of a pair of foliations along this separatrix.
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Thus, by considering pairs of foliations with this same invariant, we can construct a local
conjugation of the pairs of foliations in the neighborhood of a point in the punctured
horizontal separatrix, denoted by H := {y = 0} \ {0}. After this, it suffices to find a way
to extend this conjugation around the punctured disc H. In this work, we show that this
extension is possible only if the foliation F1 (resp. F2) has the same monodromy as the
foliation G1 (resp. G2). This is summarized by the following theorem:

Theorem B. Let (F1,F2) and (G1,G2) be two germs of pairs of foliations. Let us denote
by hFi

( resp. hGi
) the germ of holonomy of the foliation Fi (resp. Gi) with respect to the

horizontal separatrix.
If there are two germs of analytic diffeomorphisms φ1 and φ2 in (C, 0) which conjugate
the holonomies along the horizontal separatrix, i.e.

hG1 = φ1 ◦ hF1 ◦ φ−1
1 and hG2 = φ2 ◦ hF2 ◦ φ−1

2 .

then there exists a neighborhood U of a corona on H and a germ of analytic diffeomor-
phism Φ on this neighborhood conjugating the pairs of foliations:

Φ∗Fi = Gi on U.

Finally, the additional work that remains to be done is to find an analytic extension
of this germ diffeomorphism Φ in the neighborhood of the origin 0 ∈ C2. To obtain
this kind of extension, we will use the fact that there is a transversely formal germ

of diffeomorphism Φ̂ defined on the disk and which conjugates the pairs of foliations.
Furthermore, it is important to emphasize that the existence of this transversely formal
conjugation relies on the formal version of the theorem A(bis).

In this paper, we also pointed out some special results concerning pairs of foliations
no longer having simple tangency divisor. However, it is important to mention that,
the study of such pairs deserves more attention and we would hope to investigate it in
another work.
The structure of this paper is composed of four sections. In the first section, we define all
of the basic notions required for the understanding of the classification of pairs of singular
foliations. The second section is entirely devoted to the analytic classification of pairs of
foliations by passing through the path method. In the third section, we introduce the
notion of transversely formal classification of pairs of foliations with a simple tangency
and finally, in the fourth section, we give a complete list of analytic invariant to classify
the germs of pairs of singular foliations.

Notations. Denote the ring of formal series on (C2, 0) by Ô2, its maximal ideal by m̂2

and the group of formal diffeomorphisms of (C2, 0) by D̂iff(C2, 0). The convergent settings
of the previous sets are the germs of holomorphic functions on (C2, 0) denoted by O2, its
maximal idea denoted by m2, and the group of diffeomorphisms of (C2, 0) by Diff(C2, 0).

Let us denote by X(C2, 0) (resp. X̂(C2, 0)) the set of germ of holomorphic (resp. formal)
vector field at 0 ∈ C2, with an isolated singularity at the origin. In addition, note that,
in the sequel, any germ of vector fields will be identified by one of its representative in a
sufficiently small neighborhood of 0 ∈ C2.

1. Basic issues of local nature

1.1. Family of objects one wants to study. Let S be a complex surface. A local
one-form on S is a pair (U, ω) of an open set U ⊆ S and a holomorphic one-form ω
defined in U .
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Definition 1.1. A singular foliation on S is a collection F = {(Ui, ωi)i∈I} of local one-
forms with isolated zeros such that:

(1) {Ui} is an open covering of S.
(2) For each pair i, j ∈ I, if Ui ∩ Ui ̸= ∅, then

ωi = φij ωj

for some non-vanishing holomorphic function φij defined on Ui ∩ Uj.

Remark 1.2. The singular locus of the foliation F is given by the union of the singular
locus of each one-form ωi. We have:

Sing(F) =
⋃
i∈I

Sing(ωi).

Note that, by duality we can define the foliation F by replacing the one-forms ωi by their
dual vector fields Xi ( i.e ∀ i ∈ I, ωi(Xi) = 0). This dual is uniquely determined up a
multiplicative invertible function.

We say that a local one-form (U, ω) on S is a local generator of the foliation F if the
augmented collection

{(Ui, ωi)i∈I} ∪ {(U, ω)}
satifies the conditions (1) and (2) of the above definition. From now on, we will suppose
that the collection F is satured, meaning that it contains all such generators.

In this work, we are interested in a germ of holomorphic singular foliations. Roughly
speaking, a germ of foliation at 0 ∈ C2 is given by a germ of local generator (U, ω) at 0.
Throughout this article, unless otherwise stated, any germ of a foliation is represented by
a holomorphic one-form ω defined an open neighborhood of 0 ∈ C2 and having a unique
singularity at the origin.

Definition 1.3 (Formal vector fields).

A formal vector field X̂ ∈ X̂(C2, 0) is a derivation of the ring of formal series. In the local
coordinate (x, y), it can be written as

X̂ = â1(x, y)∂x + â2(x, y)∂y

where âi ∈ m̂2, for any i = 1, 2.

Remark 1.4. It is well-known that if the linear part of a formal vector field X̂ is nilpotent,
then its formal flow given by

exp(tX̂)(x, y) =
∞∑
j=0

tj

j!
X̂j(x, y)

converges in the formal setting and defines a formal diffeomorphism of (C2, 0).

Next, for any k ⩾ 1, let us denote by X̂k(C2, 0) the set of formal vector fields X̂ defined

as X̂ = â1(x, y)∂x + â2(x, y)∂y where âi ∈ m̂k
2.

Thanks to Cerveau-Moussu we have the following result. For more details the reader
can see [3].

Proposition 1.5. The flow of a nilpotent formal vector field X̂ ∈ X̂k>1(C2, 0) is polyno-

mial in variable t, i.e. exp(tX̂)(x, y) ∈ (C[t][[x, y]])2.

In particular, the time one-map of the formal flow verifies the following formula which
is called the Baker-Campbell-Hausdorff formula.
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Lemma 1.6 (Baker-Campbell-Hausdorff formula). Let X̂ and Ŷ be two nilpotent formal

vector fields in X̂(C2, 0). Then, there exists a nilpotent formal vector field Ẑ ∈ X̂(C2, 0)
such that:

exp(X̂) ◦ exp(Ŷ ) = exp(Ẑ),

Moreover, we have:

Ẑ = X̂ + Ŷ +
1

2
[X̂, Ŷ ] +

1

12
[X̂, [X̂, Ŷ ]] + · · ·

In this work, we also consider special formal vector fields which are called a logarithmic
vector fields introduced by K. Saito [for more details, see [12]]. Let us consider T a reduced
analytic curve of (C2, 0) and for any point p ∈ T, let Op be is the germ of holomorphic
functions at p.

Definition 1.7. A germ of holomorphic vector field X at p is logarithmic with respect
the divisor T, if for any reduced equation hp of T in a neighborhood of p, we have the
following:

X.hp = fp hp, where fp ∈ Op.

We denote by Der(− log T )p, the set of germs at p of logarithmic vector fields with
respect T . Furthermore, if a vector field is logarithmic at any point of T, we shall say
that the vector field is logarithmic along the divisor T.

Thanks to K. Saito, we have:

Proposition 1.8. Let (v1, v2) be two germs of vector fields in Der(− log T )p. If there
exists an invertible function u ∈ Op such that the function determinant det(v1, v2) verifies

det(v1, v2) = uhp,

then the vector fields v1 and v2 form a basis of the Op-module Der(− log T )p.

Remark 1.9. Let us recall that, in [12], K. Saito stated that the above Proposition is
also true in the formal setting.

1.2. The notion of equivalence of germs of foliations.

Definition 1.10. Let F and G be two germs of foliations on (C2, 0). Assume that the
foliation F (resp. G) is represented by the one-form ω (resp. ω′).

(1) The one-forms ω and ω′ define the same foliation if and only if we have:

ω ∧ ω′ = 0.

(2) F is analytically conjugated to G (or F ∼ G) if and only if there exists a germ of
analytic diffeomorphism Φ: (C2, 0) → (C2, 0) such that

Φ∗ω′ ∧ ω = 0.

In formal sense, we have:

Definition 1.11. The germs of foliations F and G are formally equivalent if there exists

a germ of formal diffeomorphism Φ̂: (C2, 0) → (C2, 0) such that Φ̂∗G = F, i.e

Φ̂∗ω′ ∧ ω = 0

in formal one-forms.

In general, it is not accurate to obtain an analytic conjugation of foliations from a
formal one, but sometimes, we can perform the formal equivalence of the foliations by
using the notion of transversely formal conjugation.
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Definition 1.12 (Transversely formal series.). Let V ⊂ C be an open set (it can
contain 0 or not) and C := V ×{0} ⊂ C2 its embedding into the horizontal axis. A formal

power series
∑
n⩾1

an(x)y
n is transversely formal along C, if all the functions x 7→ an(x)

are analytic on C. Note that the power series can be divergent along the y-direction. We
denote by O(C)[[y]] the group of formal power series which are transversely formal along
C.

Remark 1.13. We shall say that a vector field is a transversely formal vector field on
(C2, C) if it can be written as

X̂ = Â(x, y)∂x + B̂(x, y)∂y,

where the functions Â and B̂ are transversely formal along C. Likewise, a formal diffeo-

morphism Φ̂ is transversely formal along C, if it can be expressed in the form

Φ̂(x, y) = (x+ yf̂(x, y), yĝ(x, y))

where f̂ , ĝ ∈ O(C)[[y]] and g(x, 0) does not vanish along C.

We denote by Diff(C × (̂C, 0)) the group of transversely formal diffeomorphisms.

1.3. The invariant to understand if foliations are equivalent. If two singular folia-
tions are equivalent, the most important invariants are the separatrices, the Camacho-Sad
indices and the holonomies.

Let F be a germ foliation defined on (C2, 0). Let us consider (U, ω) a representative of
F where U is an open neighborhood of 0 ∈ C2 and ω is a holomorphic one-form defined
by

ω = A(x, y)dx+B(x, y)dy

such that A(0, 0) = B(0, 0) = 0 and A(x, 0) = 0. Thus, it is clear that the curve {y = 0}
is an invariant curve and we shall call it the horizontal separatrix of F. In general, we
have the following definition:

Definition 1.14. A separatrix of F is a germ of an analytic curve at 0, invariant by the
foliation.

Remark 1.15. Note that the number of separatrices of a foliation is invariant under the
action of the analytic diffeomorphism on (C2, 0).

Now, if we consider X = B(x, y)∂x − A(x, y)∂y, the dual of the one-form ω, then the
eigenvalues µ1, µ2 of the linear part DX(0) of X at 0 ∈ C2 are well defined. If the
eigenvalue µ2 is not zero, then the quotient λ = µ1

µ2
is called the Camacho-Sad index of F

with respect to the horizontal separatrix. This quotient λ is unchanged by multiplication
of X by a non-vanishing holomorphic function. Moreover, one can see that it depends
only on the germ of the foliation.

More precisely, if a foliation admits a smooth separatrix, then the Camacho-Sad index
is defined as follows:

Definition 1.16. Let C be a smooth separatrix of F. Assume that local coordinates are
chosen such that C := {y = 0}. The Camacho-Sad index of F with respect to C is defined
as:

CS(F, C, 0) = −Resx=0
∂

∂y

(
A

B

)
(x, 0) ,

where Resx=0 is the residue at 0 ∈ C.
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Remark 1.17. It is important to remark that the Camacho-Sad index is invariant by
any change of coordinates preserving the horizontal separatrix: we shall say that it is an
analytic invariant of the foliation.

Let us now discuss of the concept of holonomy which is one of the most important
analytic invariant of the foliation.

Let f : (C2, p0) → (C, 0) be a local submersion defined on an open set Up0 at p0, such
that ω ∧ df ≡ 0. Then, f is a minimal first integral of F at p0: any other first integral
of F on Up0 is written in the form φ ◦ f, where φ is a function in one variable such that
φ(0) = 0. Furthermore, f can be extended analytically along any path in the horizontal
separatrix C. Hence, we have:

Definition 1.18. The holonomy of the foliation along the loop γ, (γ(0) = γ(1) = p0)
defined inside C \ {0}, is the unique germ of diffeomorphism h0γ : (C, 0) → (C, 0) such
that the germ of analytic continuation of f along the loop γ is given by

fγ = h0γ ◦ f.

Remark 1.19. Note that the holonomy depends only on the homotopy class of the loop.
In addition, if g : (C2, p0) → (C, 0) is an another minimal first integral at the point p0,
then there exists a diffeomorphism φ ∈ Diff(C, 0) such that g = φ ◦ f and such that the
germ of analytic continuation of g along the loop γ is given by

gγ =
(
φ ◦ h0γ ◦ φ−1

)
◦ g.

Hence, the germ of holonomy h0γ : (C, 0) → (C, 0) of the foliation F along the loop γ
is well-defined modulo conjugation by an element of Diff(C, 0). Finally, if we denote

by Diff(C, 0)/ ∼ the group of germs of diffeomorphisms modulo conjugation, we have the
following representation associated to the foliation.{

π1 (C, p0) → Diff(C, 0)/ ∼
γ → h0γ

The image of this representation is called the holonomy group of the horizontal separatrix
C. We denote it by hF.

By definition, the holonomy group of a germ of foliation is well-defined and it is an
analytic invariant in the sense that if two germs of foliations at 0 are conjugated by a germ
of diffeomorphism which preserves the curve C, then their holomomies groups related to
C are conjugated.
These invariants are not always complete, i.e. do not classify the foliation, in fact, it
depends on the complexity of the singularity. However, there exists a kind of singularities
for which the classification by means these invariants of foliations is well-understood.

Definition 1.20. Let F be a foliation on (C2, 0). The singularity 0 is said to be reduced
in Seidenberg sense if for every one-form ω with an isolated singularity at 0 defining F,
one of the following case necessarily occurs:

• Non-degenerate singularity: the linear part of the dual vector field of ω has
two eigenvalues different from zero and the ratio between these eigenvalues is not
a positive rational number. Thus, thanks to Briot-Bouquet, up to analytic change
of coordinates, the foliation is defined by

ω = x[1 + f(x, y)]dy − y[λ+ g(x, y)]dx

with (λ ̸= 0), λ /∈ Q+ and the functions f, g vanish at the origin 0 ∈ C2. The
separatrices are the axes of coordinates {x = 0} and {y = 0} and moreover, in
this case, λ is the camacho-Sad index at 0 along the horizontal separatrix {y = 0}.
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When λ ∈ C∗ \ R−, then we shall say that the singularity is of Poincaré type, if
λ ∈ R∗

−, then the singularity is of Siegel type.
• Saddle-Node singularity: the linear part of the dual vector field of ω has ex-
actly one eigenvalue different from zero. Up to holomorphic change of coordinates,
the foliation is defined by

ω = [x(1 + µyk) + yR(x, y)]dy − yk+1dx

with µ ∈ C, k ∈ N and R(0, 0) = 0 and such that the function R(0, y) has order
up to k at 0. The curve {y = 0} is invariant by the foliation and it is called the
strong separatrix. In addition, there also exists a formal separatrix which may or
may not correspond to an analytic separatrix, i.e. it can be divergent.

These two kind of singularities are considered as the most simple singularities of a
foliation: they are said reduced and the class of reduced singular points is stable under
blow-up. In dimension 2, Seidenberg states that every isolated singularity of a foliation
becomes reduced after a finite number of blow-ups. Details and proofs can be found in
[13].

In the sequel, we only consider the germs of reduced foliations on (C2, 0). Let us re-
call the formal normal form of reduced foliations due to Briot-Bouquet, Poincaré-Dulac.
Mainly, the normal forms are determined by the Camacho-Sad index. If there is no reson-
nance between the eigenvalues, then the normal form is linear. However, the linearizing
diffeomorphism can be formal. Siegel and Brjuno showed that if the eigenvalues verify a
certain diophantian condition, then the linearizing diffemorphism is analytic. For more
details about the analytic and formal normalization, we refer the reader to [1].

The following proposition is the most important result about normal forms, futher-
more, in [4], we showed that each normalizing diffeomorphism can be constructed as a
transversely formal diffeomorphism along the horizontal separatrix. We have:

Proposition 1.21. Let F =< xdy − λydx+ h.o.t > be of reduced foliation on (C2, 0).

(1) If λ ∈ R− \Q−, then there exists Φ̂ ∈ Diff(C × (̂C, 0)) such that:

Φ̂∗F =< xdy − λydx > .

(2) λ = −p
q
∈ Q∗

−, then there exists Φ̂ ∈ Diff(C × (̂C, 0)) such that either:

Φ̂∗F =< qxdy + pydx >

or

Φ̂∗F =< q(1 + αuk)xdy + p(1 + (α− 1)uk)ydx >,

where u = xpyq. The integer k > 0 and the complex number α are formal invari-
ants.

(3) If λ ∈ C\{R−∪Q+}, then there exists an analytic diffeomorphism Φ ∈ Diff(C2, 0)
such that

Φ∗F =< xdy − λydx > .

(4) If λ = 0, then there exists Φ̂ ∈ Diff(C × (̂C, 0)) such that

Φ̂∗F =< yk+1dx− y(1 + µxk)dx >,

where k ∈ N∗, and the function f is holomorphic. Moreover, k and µ are formal
invariants.

Thanks to the above Proposition, reduced foliations are transversely formally classified
by formal invariants which are λ, α, µ and k.
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1.4. Analytic classification of reduced foliations. Now, we are going to recall the
analytic classification of the reduced foliations around the neighborhood of the origin
0 ∈ C2. Thanks to J.F. Mattei, R. Moussu and Martinet-Ramis (see [10] and [9] for more
details), a foliation in the Siegel domain (resp. a foliation in the saddle-node domain) is
entirely determined by their holonomies. More precisely, we have:

Theorem 1.22. Let

Fi = ⟨x[1 + fi(x, y)]dy − y[λ+ gi(x, y)]dx⟩ ,
(i = 1, 2) be two germs of non-degenerate foliations at 0 ∈ C2, such that λ ∈ R−.
Denote by h1 (resp. h2) the holomony map of the foliation F1 (resp.F2) with respect to
the horizontal separatrix {y = 0}. Then, the holonomy maps are analytically conjugated
by a germ in Diff(C, 0) if and only if the foliations F1 and F2 are conjuguated by a germ
of an analytic diffeomorphism Φ: (C2, 0) → (C2, 0) preserving the horizontal separatrix.

Remark 1.23. Likewise, if we consider

Fi =
〈
[x(1 + µiy

ki) + yRi(x, y)]dy − yki+1dx
〉
,

(i = 1, 2) two germs of saddles nodes at 0 ∈ C2. Then the same result follows.

In short, these previous result state that a convergent separatrix and the holonomy
related to it are complete invariants for reduced singularities.
The case of a foliation of Poincaré type is more accurate. Indeed, the only complete invari-
ant is the Camacho-Sad index, due to the fact that such foliations are always analytically
linearizable.

From now on, we want to generalize the classification of foliations to that of pairs of
foliations on (C2, 0). Using the same spirit, we want to classify the pairs of foliations by
developing a complete set of invariants.

Definition 1.24. Let (F1,F2) be a germ of a pair of singular foliations on (C2, 0). Let us
consider the one-forms ωi (i = 1, 2) which are representatives of the germs Fi on (C2, 0).
We shall denote it by Fi :=< ωi >. If we assume that ω1 ∧ ω2 = f(x, y)dx∧ dy, then the
tangency divisor of the pair (F1,F2) is a germ at the origin of a divisor defined as

Tang(F1,F2) := {div(f)} .
Remark 1.25. Note that up to a multiplicative non-zero coefficient, the tangency divisor
does not depend on the chosen coordinates. In the sequel, we denote the tangency divisor
by T.
Motivated by the result in [4], we are interested in the case where the foliations Fi,
(i = 1, 2) are reduced with common separatrices {xy = 0} and such that T = div(xk1yk2).
In this case, k1 (resp k2) is the order of contact of the pair (F1,F2) along the separatrix
{x = 0} (resp. {y = 0}). In particular, if k1 = k2 = 1, then we shall say that the
tangency is simple.

Definition 1.26. Let (F1,F2) and (G1,G2) be two germs of pairs of foliations on (C2, 0)
and having the same tangency divisor T.We shall say that the pair (F1,F2) is analytically
conjugated to the (G1,G2) if there exists a germ of an analytic diffeomorphism Φ ∈
Diff(C2, 0) such that

Φ∗Gi = Fi, ∀i = 1, 2 and Φ|T = Id.

More precisely, if Fi :=< ωi > and Gi :=< αi >, i = 1, 2, then there exists a germ of
analytic diffeomorphism defined as

Φ(x, y) = (x+ xyΦ1(x, y), y + xyΦ2(x, y))
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and such that

Φ∗αi ∧ ωi = 0, ∀ i = 1, 2.

Remark 1.27. In particular, if we have Φ∗Fi = Fi and Φ|T = Id, we shall say that
the Φ preserves (or Φ is a symmetry of) the pair of foliations (F1,F2). We denote by

Diff(C2, T, 0) (resp. D̂iff(C2, T, 0) ) the germs of analytic (resp. formal) diffeomorphisms
which are tangent to identity along T.

2. Local analytic classification of pairs of foliations: Path method

Let us first consider the problem of the conjugation of the pairs of foliations (F1,F2)
and (G1,G2) when F1 and G1 as well as F2 and G2 are independently conjugated.

Theorem 2.1. Let (F1,F2) and (G1,G2) be the germs of pairs of foliations defined on
(C2, 0) by:

Fi =< xdy − λiy(1 + fi(x, y))dx >, Gi < xdy − λiy(1 + gi(x, y))dx >,

i = 1, 2, with λ1 ̸= λ2. Note that, λ1 ̸= λ2 ⇐⇒ T := {xy = 0}.
Assume that F1 and G1 (resp. F2 and G2) are conjugated by a germ of an analytic dif-
feomorphism Φ1 : (C2, 0) → (C2, 0) (resp.Φ2 : (C2, 0) → (C2, 0)) tangent to identity along
the tangency divisor T := {xy = 0}. Then, there exists a germ of an analytic diffeo-
morphism Φ: (C2, 0) → (C2, 0) ∈ Diff(C2, T, 0) which conjugates (F1,F2) to (G1,G2), i.e.
Φ∗G1 = F1 and Φ∗G2 = F2.

Proof. Let us assume that the germs of foliations Fi and Gi, i = 1, 2, are defined by the
germs of one-forms ωi = xdy − λiy(1 + fi(x, y))dx and αi = xdy − λiy(1 + gi(x, y))dx
respectively.

By assumption, there exist germs of invertible functions F,G such that Φ∗
1α1 = Fω1

and Φ∗
2α2 = Gω2. Thus, without loss of generality, by replacing the generators ω1 and ω2

by Fω1 and Gω2 respectively, we can assume that Φ∗
1α1 = ω1 and Φ∗

2α2 = ω2.
In the same way, even if we conjugate the germs of one-forms α1 and α2 by Φ−1

2 ,
we can suppose that ϕ2 = Id and so α2 = ω2 = α. Therefore, to conjugate the pairs
(F1,F2) and (G1,G2) simultaneously is amount to conjugate the pairs (F1,G) and (G1,G)
simultaneously, where G =< α >. In addition, we can assume that

Φ1(x, y) = (x, y(1 + u(x, y))) , u(0, 0) = 0.

Now, let us consider the one parameter family of the germs of analytic diffeomorphisms
(Φt)t∈[0,1] defined by

Φt(x, y) = (x, y (1 + tu(x, y))),

the projection map

π : C2 × [0, 1] → C2, π(x, y, t) = (x, y),

and the map Φ: (C2, 0)× [0, 1] → (C2, 0) defined as

Φ(x, y, t) = Φt(x, y) = (x, y (1 + tu(x, y))).

If we can pull back the foliation G1 defined by α1 on (C2, 0) to a foliation of codimension
1 on (C2, 0)× [0, 1] by Φ, then this previous is defined as:

Ω := Φ∗α1 = A(x, y, t)dx+B(x, y, t)dy + C(x, y, t)dt

where:
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A(x, y, t) = y (xt∂xu(x, y)− λ1(1 + tu(x, y))(1 + g1 ◦ Φt(x, y, t)))
B(x, y, t) = x (1 + t(u(x, y) + y∂yu(x, y)))
C(x, y, t) = xyu(x, y)

Furthermore, we have:

Ω|C2×{0} = α1 and Ω|C2×{1} = ω1.

Note that the notation Ω|C2×{0} = α1 (resp. Ω|C2×{1} = ω1) means the intersections of
the leaves of the codimension one foliation defined by Ω with the plane C2 × {0} (resp.
C2 × {1}) is given by the leaves of the one dimensional foliation defined by the one-form
α1 (resp. ω1).

Next, we want to find out an analytic diffeomorphism on (C2, 0) × [0, 1], of the form
h(x, y, t) = (h1(x, y, t), h2(x, y, t), t) such that:

• the foliation defined by Ω is conjugated by h to the foliation defined by the one-
form π∗α1;

• the foliation defined by π∗α is invariant by h.

It amounts to construct a vector field

Z = U(x, y, t)∂x + V (x, y, t)∂y + ∂t such that α(Z) = 0 and Ω(Z) = 0.

Therefore, we have to solve the following system of equations:{
AU +BV = −xyu(x, y)

−λ2y(1 + g2)U + xV = 0

As λ1 ̸= λ2, the discriminant ∆(x, y) = xA(x, y) + λ2yB(x, y)(1 + g2(x, y)) of the
previous system can be seen as

∆(x, y) = xy∆′(x, y), with ∆′(0, 0) ̸= 0.

Hence, the solutions of the system are

U(x, y, t) = −xu(x, y)
∆′(x, y)

and V (x, y, t) = −λ2yu(x, y)(1 + g2(x, y))

∆′(x, y)

which are holomorphic on (C2, 0)× [0, 1].
Finally, by integrating the holomorphic vector field Z, we obtain a germ of an analytic

diffeomorphism h = h(x, y, 1) which verifies:

h∗ω1 = α1 and h∗α = α.

□

One direct consequence of the previous theorem is the following:

Corollary 2.2. Any pair of foliations of Poincaré type with simple tangency is simulta-
neously linearizable.

Proof. Let

F1 =< xdy − λ1y(1 + f1(x, y))dx >, and F2 =< xdy − λ2y(1 + f2(x, y))dx >,

with λ1 ̸= λ2 ∈ C \ {R− ∪ Q+}. Thanks to the Proposition 1.21 and the Theorem 2.1,
there exists Φ ∈ Diff(C2, T, 0) such that:

Φ∗F1 =< xdy − λ1ydx > and Φ∗F2 =< xdy − λ2ydx > .

□

Another result that follows to the previous is the following generalization of the theorem
of Mattei-Moussu for the pairs of foliations.
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Theorem 2.3. Let

Fi = ⟨xdy − λiy[1 + fi(x, y)]dx⟩ ,
and

Gi = ⟨xdy − λiy[1 + gi(x, y)]dx⟩ ,
(i = 1, 2), be two germs of pairs of foliations such that λi ∈ R∗

− and λ1 ̸= λ2. Denote
by hFi

(resp. hGi
) the holomony map of the foliation Fi (resp. Gi) with respect to the

horizontal separatrix {y = 0}. Then, the pair of foliations (F1,F2) is conjugated to the
pair of foliations (G1,G2) by an element of Diff(C2, T, 0) (with T = {xy = 0}) if and only
if there exists analytic diffeomorphisms φi ∈ Diff(C, 0) such that for any i = 1, 2 we have:

hG1 = φ1 ◦ hF1 ◦ φ−1
1 and hG2 = φ2 ◦ hF2 ◦ φ−1

2 .

The proof of this previous theorem follows from Theorem 2.1 combined with Mattei-
Moussu theorem. Finally, pairs of non-degenerate foliations with simple tangency have
only the Camacho-Sad indices and the corresponding holonomies with respect to the
horizontal separatrix as complete invariants.

To find the complete invariants of the pairs of foliations in the case where the tangency
divisor is no longer reduced (for example if λ1 = λ2), is more complicated. However, as in
the simple tangency case, if the conjugating diffeomorphisms Φi are sufficiently tangent
to the identity along T, we have the same result:

Theorem 2.4. Let (F1,F2) and (G1,G2) be two germs of pairs of foliations having the
tangency divisor T = T1 ∪ T2. Assume that the order of contact of the pairs along the
common separatrix Ti is equal to ki, (i = 1, 2). If there exists germs of analytic diffeomor-
phisms tangent to the identity up to order k1 (resp. up to order k2) along T1 (resp.T2),
Φi : (C2, 0) → (C2, 0), i = 1, 2 and such that Φ∗

iGi = Fi, then the pairs (F1,F2) and
(G1,G2) are conjugated by a germ of an analytic diffeomorphism which is tangent to the
identity along T .

Proof. The proof is the same as in the case of simple tangency (i.e. when Camacho-Sad
indices of the foliations were different.)

Without loss of generality, we can set that F2 = G2 and so Φ2 = id. Let us consider
ω1 = A1(x, y)dx+B1(x, y)dy, α1 = a1(x, y)dx+b1(x, y)dy and α =M(x, y)dx+N(x, y)dy,
the germs of one-forms at 0 ∈ C2 which define respectively the foliations F1, G1 and
F2 = G2 = G. Assume that

Φ1(x, y) =
(
x+ xk1+1yk2+1ϕ(x, y), y + xk1+1yk2+1ψ(x, y)

)
, ψ(0, 0) ̸= 0, ϕ(0, 0) ̸= 0.

Now, we can pull back the foliation G1 =< α1 > to a foliation of codimension 1 on
(C2, 0)× [0, 1] by the germ of map

Φ̃(x, y, t) =
(
x+ t

(
xk1+1yk2+1ϕ(x, y)

)
, y + t

(
xk1+1yk2+1ψ(x, y)

))
.

Thus, we have:

Ω̃ = Φ̃∗α1 = ã1(x, y, t)dx+ b̃1(x, y, t)dy + c̃1(x, y, t)dt

where

ã1(x, y, t) = a1(Φ̃) + t
[
a1(Φ̃)∂x(x

k1+1yk2+1ϕ(x, y)) + b1(Φ̃)∂x(x
k1+1yk2+1ψ(x, y))

]
b̃1(x, y, t) = b1(Φ̃) + t

[
a1(Φ̃)∂y(x

k1+1yk2+1ϕ(x, y)) + b1(Φ̃)∂y(x
k1+1yk2+1ψ(x, y))

]
and
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c̃1(x, y, t) = a1(Φ̃)x
k1+1yk2+1ϕ(x, y) + b1(Φ̃)x

k1+1yk2+1ψ(x, y).

Moreover, Ω̃|C2×{0} = α1 and Ω̃|C2×{1} = ω1.
Using the path method, the theorem follows if there exists a holomorphic vector field

Z = U(x, y, t)∂x + V (x, y, t)∂y + ∂t such that α(Z) = 0 and Ω̃(Z) = 0.

Therefore, we have to solve the following system of equations:{
ã1U + b̃1V + c̃1 = 0
MU +NV = 0

As the order ordTi
(α1 ∧ α) = ki, i = 1, 2, the function a1N − b1M = xk1yk2R(x, y)

where R(0, 0) ̸= 0. Thus, we obtain that the determinant can be defined as

∆̃ = ã1N − b̃1M = xk1yk2∆̃′(x, y), with ∆̃′(0, 0) ̸= 0.

Hence, if we set that c̃1(x, y) = xk1+1yk2+1 c̃′1(x, y), we obtain that:

U = −xyNc̃
′
1

∆̃′
and V = xy

Mc̃′1

∆̃′

which are the holomorphic solutions of the system. And the theorem follows. □

A direct inspection yields this following result:

Corollary 2.5. Let

Fi =< xdy + y(λ+ fi(x, y))dx >, i = 1, 2,

and

G =< xdy + λydx >, λ =
p

q
, (p, q) ∈ N∗ × N∗,

be germs of foliations on (C2, 0) such that for any i = 1, 2, Tang(Fi,G) = div(xpyq). As-
sume that there exist germs of analytic diffeomorphisms Φi(x, y) = (x, y+xp+1yq+1ui(x, y)),
i = 1, 2, and ui(0, 0) ̸= 0, such that Φ∗

1F2 = F1 and Φ∗
2G = G. Then, there exists a germ

of an analytic diffeomorphism

Φ(x, y) = (x, y(1 + xpyqu(x, y))) ∈ Diff(C2, 0) such that Φ∗F2 = F1 and Φ∗G = G.

Proof. The proof of this corollary is based on the previous Theorem 2.4. Indeed, if
λ = p

q
∈ Q∗

+, then, any analytic diffeomorphism which preserves the foliation generated

by xdy + λydx and which preserves each separatrix is of the form

Φ(x, y) = (x, y(1 + xpyqU(x, y))

where U(x, y) = apq +
∑
k>1

akx
kpykq, with apq ∈ C. □

3. Transversely formal classification of pairs of foliations

From now on, we will establish new techniques that make it possible to classify the pairs
of foliations according to their associated invariants. This classification is rather in the
sense of generalizing the Mattei-Moussu theorem for the pairs of foliations. Furthermore,
this method has been used in [8].

First of all, we want to find the formal normal form of pair of foliations at the neigh-
borhood of 0 ∈ C2. Unless otherwise mentioned, we rule out the saddle-node case.
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Lemma 3.1. (Decomposition of a formal logarithmic vector field.)

Let X̂ = xk1 f̂∂x + yk2 ĝ∂y, with ki > 0, i = 1, 2, be a formal logarithmic vector field along

T := {xy = 0}. Assume that X̂ is transversely formal along the divisor {y = 0}, then
there exists F̂ and Ĝ, transversely formal power series along {y = 0} such that:

exp(X̂) = exp(F̂ v1) ◦ exp(Ĝv2),
where v1 = x∂x + λ1y(1 + f1(x, y))∂y, v2 = x∂x + λ2y(1 + f2(x, y))∂y, and λ1 ̸= λ2.

Proof. As λ1 ̸= λ2, both non-zero, the vector fields v1 and v2 form a basis of the formal
logarithmic vector fields along T (see Proposition 1.8). Thus, there exists transversely
formal power series F and G along the divisor {y = 0}, such that

X̂ = Fv1 +Gv2.

Now, let Fi and Gi be the homogeneous components of degree i of the functions F and
G respectively. Consider the sequence of transversely formal power series defined as:

Un = exp(−Fnv1) ◦ ... ◦ exp(−F1v1).

We claim that there exists a transversely formal series F̂ such that the sequence (Un)

converges to exp(−F̂ v1) in the sense of Krull topology.
First, using Baker-Campbell-Hausdorff formula, we can deduce that for any integer

n ⩾ 1, there exists transversely formal power series F̂ (n) along {y = 0}, such that:

exp(−Fnv1) ◦ ... ◦ exp(−F1v1) = exp
(
−F̂ (n)v1

)
.

Next, thanks to Baker-Campbell-Hausdorff formula, we can see that for any k > 1,
there exists n0 = k such that for all n ⩾ n0, we have

Jk(F̂ (n)) = Jk( ̂F (n+ 1)),

(where Jk is the jet of order k).

As a consequence, we can construct a transversely formal series F̂ such that

for any k > 1, Jk(F̂ ) = Jk(F̂ (k)).

Lastly, it is well-known that modulus the terms of orders greater than k + 1, two
homogeneous vector fields of degree greater than k + 1, necessarily commute, thus, we
can find an integer N = N(k) ⩾ k such that for any n > N, we have:

Jk (Un) = Jk (exp(−Fkv1) ◦ ... ◦ exp(−F1v1))

= Jk
(
exp

(
−F̂ (k)v1

))
= Jk

(
exp

(
−F̂ v1

))
Hence, in the sense of Krull topology, we conclude that the sequence (Un) converge to

exp(−F̂ v1).
Likewise, using the same reasoning, we obtain that the sequence

Vn = exp(−G1v2) ◦ ... ◦ exp(−Gnv2)

converges to exp(−Ĝv2), where Ĝ is a transversely formal power series along {y = 0}.
From another side, due to the Baker-Campbell-Hausdorff formula, we can see by re-

currence the following property Pn⩾1 :

”Un = exp(−Fnv1) ◦ ... ◦ exp(−F1v1) and Vn = exp(−G1v2) ◦ ... ◦ exp(−Gnv2)
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verify

Jn+1
(
exp(−Fnv1) ◦ ... ◦ exp(−F1v1) ◦ exp(X̂) ◦ exp(−G1v2) ◦ ... ◦ exp(−Gnv2)

)
= Id”

Finally, if n→ +∞, we obtain:

exp(X̂) = exp(F̂ v1) ◦ exp(Ĝv2),
and the lemma follows. □

This previous Lemma can be reformulated in the sense of transversely formal diffeo-
morphisms along {y = 0.} We have:

Lemma 3.2. (Decomposition of a transversely formal diffeomorphism.)

Consider v1 = x∂x + λ1y(1 + f1(x, y))∂y and v2 = x∂x + λ2y(1 + f2(x, y))∂y two vector
fields such that λ1 ̸= λ2.

Any transversely formal diffeomorphism ϕ̂(x, y) = (x+yxϕ̂1(x, y), y+xyϕ̂2(x, y)) along
the divisor {y = 0} can be decomposed in the form

ϕ̂ = ϕ̂1 ◦ ϕ̂2,

such that:

• for any i = 1, 2, ϕ̂i is a transversely formal diffeomorphism along the divisor
{y = 0};

• if F1 and F2 are the foliations defined by the vector fields v1, v2, respectively, then

ϕ̂∗
1F1 = F1 and ϕ̂∗

2F2 = F2.

Proof. The proof of this Lemma relies heavily on the fact that the Camacho-Sad of the
vector fields vi are different (i.e. the tangency divisor of the pair of foliations (F1,F2)

is simple). As, J1
(0,0)ϕ̂ = Id, where J1

(0,0) is the jet of order 1 at the origin, there exists

a transversely formal vector field X̂ along {y = 0} and logarithmic along the axes of
coordinates such that:

ϕ̂ = exp(X̂).

Moreover, by Lemma 3.1, we have:

ϕ̂ =
(
exp

(
F̂1v1

))
◦
(
exp

(
F̂2v2

))
,

where F̂ 1v1 and F̂ 2v2 are transversely formal power series. Finally, it suffices to set

ϕ̂1 = exp
(
F̂1v1

)
and ϕ̂2 = exp

(
F̂2v2

)
.

□

From now on, we can establish the transversely formal conjugation of the pairs of
foliations with simple tangency.

Theorem 3.3 (Transversely formal conjugacy of pairs of foliations).
Let (F1,F2) and (G1,G2) be two germs of pairs of foliations defined on (C2, 0) by

Fi := ⟨x∂x + λiy(1 + fi(x, y))∂y⟩ ,
Gi := ⟨x∂x + λiy(1 + gi(x, y))∂y⟩ ,

i = 1, 2, and λ1 ̸= λ2.
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Then there exists germs of transversely formal diffeomorphisms ζ̂i ∈ Diff(C2, (̂T, 0))
(with T := {xy = 0}) such that {

ζ̂∗1G1 = F1

ζ̂∗2G2 = F2

if and only if there exists a transversely formal diffeomorphism ζ̂ ∈ Diff(C2, (̂T, 0)) which
conjugates simultaneously the pairs of foliations:{

ζ̂∗G1 = F1

ζ̂∗G2 = F2

Proof. As the transversely formal diffeomorphism ζ̂1 ◦ ζ̂−1
2 is tangent to the identity along

the tangency divisor T := {xy = 0}, by Lemma 3.2, we can find two transversely formal
diffeomorphisms ĝ1 and ĝ2 along the divisor {y = 0} which preserve the foliations G1 and
G2 and such that:

ζ̂1 ◦ ζ̂−1
2 = ĝ1 ◦ ĝ2.

Therefore, if we set that ζ̂ = ĝ−1
1 ◦ ζ̂1, we obtain the transversely formal diffeomorphism

along the divisor {y = 0} which conjugate the pairs. □

Remark 3.4. In the same way, it can be seen that the convergent version of the Lemma
3.2 implies the main result (see Theorem A).

Thanks to the transversely formal classification of reduced foliations (see Proposition
1.21) and Theorem 3.3, we obtain the following Corollary which gives the transversely
formal normal forms of pairs of foliations without a saddle-node singularity.

Corollary 3.5. (Transversely formal normal form) Let

Fi = ⟨ωi = xdy − yλi(1 + fi(x, y)]dx⟩ ,
(i = 1, 2), λ1 ̸= λ2, both non-zero, be a germ of pairs of foliations. Let us denote by F0

i ,
i = 1, 2, the foliation defined by the formal normal form of ωi. Then, the pair (F1,F2) is
transversely formal conjugated to the pair of its normal forms (F0

1,F
0
2).

Remark 3.6.
These previous results work in saddle-node case, when the central manifold, i.e. the
separatrix tangent to the 0-eigendirection, is convergent (see [4]). It is also important
to mention that if the tangency of the pairs of foliations is not simple, then we cannot
use these previous techniques in order to find a normal form of the pair. This is really
another work that deserves to be studied in another paper.

4. Analytic classification of pairs of singular foliations on (C2, 0)

Before giving an analytic classification of the germs of pairs of singular foliations, we
need to better understand the classification of pairs of regular foliations along a common
leaf. More precisely, the invariants that occur in this classification.

4.1. Local classification of the pair of regular foliations with common leaf.
Let us consider (F,G) a pair of regular foliations in the neighborhood of a common leaf
H := {y = 0} \ {0} . Assume that the order of tangency of the pair along H is equal to
k ⩾ 1. Using the flow-box theorem, for any point (x0, 0) ∈ H, we can find a local analytic
diffeomorphism which preserves the common leaf H point-wise and conjugates the pair
(F,G) to the pair (< dy >,< dy + ykB(x, 0)dx >), where B(x, 0) is not identically zero.
Moreover, we can prove that:
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• if k = 1, then the one-form ω = B(x, 0)dx can be extended to a global one-form
on the common leaf H;

• if k > 1, then the one-form ω is well-defined up to a constant term, however, the

local coordinates φ(x, 0) =

∫ x

0

ω, define a global affine structure on H.

Thus, the pair of foliation is related to a one-form ω which measures the discrepancy
at order k between the foliations F and G where the foliation F is straightened as the
foliation defined by the one-form dy. More precisely, if we deal with a pair of foliation
(F,G) with simple tangence, we have the following key lemma due by F.Loray, F.Touzet
and O.Thom (see [[7],page 18] or the reader can also see [5] for more details).

Lemma 4.1. Let us consider (F,G) a pair of regular foliations in the neighborhood of a
common leaf with H := {y = 0} \ {0} . Assume that the order of tangency of the pair
along H is equal to 1 and let ω be the discrepancy one-form of the pair.

Consider (F0, G0) be a pair of local minimal first integrals of the pair (F,G), defined in
the neighborhood of (x0, 0) ∈ H such that on which H := {F0 = 0} = {G0 = 0}. Then,
there exists a unique system of local coordinates (x′, y′) in the neighborhood of (x0, 0)
which fixes H point-wise such that:

F0 ∼ y′ et G0 ∼ exp

(∫ x′

x0

ω

)
y′.

In addition, using this above key lemma, we can prove that this discrepancy one-form ω,
is a complete invariant to classify locally pairs of regular foliations with simple tangency.
In fact, we have:

Proposition 4.2 (Local simultaneous conjugacy ). Let (F,G) and (F̃, G̃) be two pairs of
regular foliations defined in the neighborhood of a common leaf H with simple tangency
divisor. Let us consider (F0, G0) and (F̃0, G̃0) be two pairs of local minimal first integrals

of the pair (F,G) and (F̃, G̃) respectively, defined in the neighborhood of the point (x0, 0) ∈
H. If we assume that the discrepancy one-forms ω and ω̃ associated to the pairs (F,G)

and (F̃, G̃) respectively are equal, then there exists a neighborhood of a point (x0, 0) ∈ H,
such that the pair of local first integral (F0, G0) and (F̃0, G̃0) are simultaneously conjugated
by a unique analytic diffeomorphism which fixes point-wise the common leaf H. Hence,
the pairs of foliations (F,G) and (F̃, G̃) are locally simultaneously conjugated.

Proof. Let (F0, G0) and (F̃0, G̃0) be two pairs of local minimal first integrals of pairs

(F,G) and (F̃, G̃) respectively, defined in the neighborhood of the point (x0, 0) ∈ H.

Then, thanks to Lemma 4.1, there exist unique local coordinates ϕ(x′, y′) and ϕ̃(x′, y′), in
the neighborhood of (x0, 0), both fixing point-wise the germ of common leaf H and such
that:

F0 ◦ ϕ(x′, y′) = y′

G0 ◦ ϕ(x′, y′) = exp

(∫ x′

x0

ω

)
y′

and


F̃0 ◦ ϕ̃(x′, y′) = y′

G̃0 ◦ ϕ̃(x′, y′) = exp

(∫ x′

x0

ω̃

)
y′

As the pairs of foliations have the same discrepancy one-form, ω = ω̃, then the analytic

diffeomorphism ϕ0 = ϕ̃ ◦ ϕ−1, conjugates the pair of first integrals (F̃0, G̃0) to (F0, G0).
Finally, this conjugation induces a local conjugation of pairs of foliations (F,G) and

(F̃, G̃) □
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4.2. Global classification of pairs of regular foliations along a common leaf.
Now, the natural question is to ask how to construct an analytical extension of this local
conjugation of the pairs of regular foliations along the common leaf. Thus, we will see in
the following, that to have the existence of this analytical extension, it suffices that the
two pairs have the same monodromy. In this case, we can extend local conjugation of the
pairs of foliations in the neighborhood of H.

Proposition 4.3. Let (F,G) and (F̃, G̃) be two pairs of regular foliations defined in the
neighborhood of a common leaf H with simple tangency. Let us consider hF (resp. hF̃) and

hG (resp. hG̃) the holonomies of the foliation F (resp. F̃) and of the foliation G (resp. G̃)
with respect to the common leaf H. If there exist analytic diffeomorphisms φi ∈ Diff(C, 0),
i = 1, 2, such that

hF̃ = φ1 ◦ hF ◦ φ−1
1 and hG̃ = φ2 ◦ hG ◦ φ−1

2 ,

Then, for any corona Cr,R = {(x, 0)/r <| x |< R} inside H, there exist neighborhoods
U, V ⊃ Cr,R and a local analytic diffeomorphism Φ: (U,Cr,R) → (V,Cr,R) fixing the corona
Cr,R point-wise and such that: {

Φ∗F̃ = F

Φ∗G̃ = G

Proof. Let Cr,R = {(x, 0)/r <| x |< R} be a corona inside H and (x0, 0) ∈ Cr,R. Consider,
γ(t) = (x0 exp(2πit), 0) a loop at the point (x0, 0) contained in Cr,R. Assume that there
exists analytic diffeomorphisms φi, i = 1, 2 such that the holonomies of the foliations
along the loop γ verify:

hF̃ = φ1 ◦ hF ◦ φ−1
1 and hG̃ = φ2 ◦ hG ◦ φ−1

2 .

Let us fix (F0, G0) and (F̃0, G̃0) be two pairs of local minimal first integrals of (F,G) and

(F̃, G̃) respectively defined in the neighborhood of (x0, 0).
Without loss of generality, we can suppose that the monodromy of the local first integral
F0 (resp. G0 ) is the same as that of F̃0 (resp. G̃0) along the loop γ. It means that if hF◦F0

and hG ◦G0 are analytic continuations of the local first integrals F0 and G0 respectively
along the loop γ, then hF ◦ F̃0 and hG ◦ G̃0 are respectively those of F̃0 and G̃0. Indeed,
to obtain this, it suffices to replace the local first integrals F̃0, G̃0 to φ1 ◦ F̃0, φ2 ◦ G̃0

respectively. Next, thanks to Proposition 4.2, there exists a unique local of coordinates
ϕ0(x, y) defined in the neighborhood (x0, 0) which conjugates the pairs of first integrals
(F0, G0) and (F̃0, G̃0). Thus, using the uniqueness of this local conjugation between pairs
of first integrals, we can deduce that the local coordinates ϕ0(x, y) admits an analytic
continuation ϕγ along the loop γ which verifies that

hF ◦ F̃0 ◦ ϕγ = hF ◦ F0 and hG ◦ G̃0 ◦ ϕγ = hG ◦G0.

Once more, by the uniqueness of ϕ0(x, y), we have ϕ0 = ϕγ in the neighborhood of
(x0, 0) and the Proposition follows. □

From now on, we are going to extend these previous results to a germ of pairs of
singular foliations.

4.3. Analytic classification of pairs of foliation in the neighborhood of a corona.
For germs of pairs of singular foliations with simple tangency, the discrepancy one-form
ω, is defined as the associated one to the germ of pairs of induced regular foliations.



LOCAL CLASSIFICATION OF PAIRS OF SINGULAR FOLIATIONS IN DIMENSION 2. 19

Furthermore, we can extend it to a meromorphic one form with simple pole along the
germ of the horizontal separatrix {y = 0}. In fact, if we consider

F1 := ⟨v1 = x∂x + λ1y(1 + f1(x, y))∂y⟩ and F2 := ⟨v2 = x∂x + λ2y(1 + f2(x, y))∂y⟩ ,

be a pair of foliations on (C2, 0), such that λ1 ̸= λ2, then the meromorphic discrepancy
one-form along the separatrix {y = 0} can be defined as

ωF = [λ1(1 + f1(x, 0))− λ2(1 + f2(x, 0))]
dx

x
.

By a direct inspection, we notice that the residue of this previous meromorphic one-form

ωF = (λ1(1 + f1(x, 0))− λ2(1 + f2(x, 0)))
dx

x
at 0 is equal to λ1−λ2. Consequently, there

exists a local change of coordinates in the neighborhood of 0 ∈ C (see [page 20, [6] ]) such
that the one-form can be written as:

ωF =

(
(λ1 − λ2)

dx

x

)
.

Therefore, without loss of generality, we can always assume that two germs of pairs of
foliations defined as

Fi := ⟨x∂x + λiy(1 + fi(x, y))∂y⟩ ,

Gi := ⟨x∂x + λiy(1 + gi(x, y))∂y⟩ ,
i = 1, 2, and λ1 ̸= λ2, have the same discrepancy one-forms.
We have the following:

Theorem 4.4 (Analytic classification in the neighborhood of a corona). Let (F1,F2) and
(G1,G2) be two pairs of foliations on (C2, 0) defined by

Fi := ⟨x∂x + λiy(1 + fi(x, y))∂y⟩ ,

Gi := ⟨x∂x + λiy(1 + gi(x, y))∂y⟩ ,
i = 1, 2, and λ1 ̸= λ2. If there exist germs of analytic diffeomorphisms φi ∈ Diff(C, 0)
such that for any i = 1, 2 we have:

hG1 = φ1 ◦ hF1 ◦ φ−1
1 and hG2 = φ2 ◦ hF2 ◦ φ−1

2 ,

then for any corona Cr,R = {(x, 0)/r <| x |< R} inside C := {y = 0}, there exist neigh-
borhoods U, V ⊃ Cr,R and a germ of analytic diffeomorphism Φ: (U,Cr,R) → (V,Cr,R)
fixing the corona Cr,R point-wise and such that:{

Φ∗G1 = F1

Φ∗G2 = F2

Proof. According to the previous remark, modulo conjugation, two pairs of foliations
(F1,F2) and (G1,G2) with the same pair of Camacho-Sad indices always have the same
discrepancy one- form. Then, we can assume that ωF = ωG. Therefore, thanks to Proposi-
tion 4.2, if we fix two pairs of minimal local first integrals of the pairs of foliations (F1,F2)
and (G1,G2), we obtain a local conjugation of the pairs of foliations in the neighborhood
of any point (x0, 0), x0 ̸= 0. Moreover, as the pairs of holonomies of pairs of foliations are
conjugated, the theorem follows thanks to Proposition 4.3. □

Method to construct an analytic conjugation of pairs of foliations on the
disc
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According to what has just been seen, in order to construct a conjugation between
the pairs of foliations on a disk, it suffices to show that any analytic conjugation of the
pairs in the neighborhood of a corona can be extended into an analytic conjugation on
the disk. The main idea to obtain this is the following: Let Φ: (U,Cr,R) → (V,Cr,R)
be an analytic diffeomorphism in the neighborhood of the corona which conjugates the
pair of foliations (F1,F2) to the pair of foliations (G1,G2). Assume that there exists a

transversely formal diffeomorphism ζ̂ : (C2, 0) → (C2, 0) along the horizontal separatrix
{y = 0} which conjugates the pair (F1,F2) to the pair (G1,G2). Then, the diffeomorphism

δ = Φ−1 ◦ ζ̂ : (U,Cr,R) → (U,Cr,R) is a transversely formal symmetry of the pair (F1,F2)
in the neighborhood of the corona, (U,Cr,R) fixing point-wise the corona.

• If δ = Id, i.e. Φ = ζ̂ , then as the diffeomorphism ζ̂ is transversely formal along
the disk {|x| < R, y = 0}, there are no terms in x with a negative index in its

development in Laurent series on (U,Cr,R). Thus, Φ = ζ̂ extends analytically on
a disk containing the origin.

• If δ ̸= Id, as this symmetry is transversely formal on the neighborhood (U,Cr,R),
then its development in Laurent series in the neighborhood (U,Cr,R) is of the
form:

δ(x, y) =

(
x+

∑
n≥1,m∈Z

amnx
myn,

∑
n≥1,m∈Z

bmnx
myn

)
.

Therefore, if δ = Φ−1◦ ζ̂ extends in a transversely formal symmetry along the disk
{|x| < R, y = 0}, then its development in Laurent series does not have terms in x
of negative index, so we have amn = bmn = 0, ∀ m < 0. This property obviously

implies that Φ = ζ̂ ◦ δ−1 is without a negative term in the Laurent expansion (δ
and ζ formally extend on the disk), and so converges in the neighborhood of the
origin.

In addition, as any pair of foliations with simple tangency is transversely formally
conjugated to its pair of normal forms (see the Corollary 3.5), then the transversely formal
symmetries on (U,Cr,R) of the pair (F1,F2) extend as a transversely formal symmetry
along the disk {|x| < R, y = 0} if and only if the transversely formal symmetries on
(U,Cr,R) of the pair of normal forms (F0

1,F
0
2) extend along the disk. Therefore, the

problem of classifying analytically the pairs of foliations (F1,F2) and (G1,G2) on (C2, 0)
can be seen as to that of classifying the symmetries of the pairs of normal forms which
are transversely formal on (U,Cr,R) and which, moreover, fix the corona point-wise.

4.4. On the transversely formal symmetries of pairs of singular foliations. Let

Fi = ⟨ωi = xdy − yλi(1 + fi(x, y)]dx⟩ ,
(i = 1, 2), λ1 ̸= λ2, both non-zero, be a pair of foliations on (C2, 0). Let us denote by F0

i ,
i = 1, 2, the foliation defined by the formal normal form of ωi. We have the following:

Theorem 4.5. Let

δ(x, y) =

(
x+

∑
n≥1

an(x)y
n,
∑
n≥1

bn(x)y
n

)
,

be a transversely formal symmetry on (U,Cr,R) of the pair of formal normal forms (F0
1,F

0
2).

Suppose that neither F0
1 nor F0

2 have no holomorphic first integrals. We have:

• If F0
1 :=< ω1 = xdy − λ1ydx > and F0

2 :=< ω2 = xdy − λ2ydx >, then :

δ(x, y) = (x, by) where b ∈ C∗.
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• If
F0
1 :=< ω1 = xdy − λ1ydx >

and
F0
2 :=< ω2 = p(1 + (α− 1)uk1)ydx+ q(1 + αuk1)xdy >

where (p, q) = 1 and u1 = xpyq then :

δ(x, y) = (x, by) ◦ exp(t2V2) where bkq = 1, t2 ∈ C,
and such that the vector field V2 is holomorphic on (C2, 0).

• If
F0
1 :=< ω1 = p(1 + (α− 1)uk1)ydx+ q(1 + αuk1)xdy >

and

F0
2 :=< ω2 = p′(1 + (β − 1)u2

k′)ydx+ q′(1 + βu2
k′)xdy >

where (p, q) = 1 , (p′, q′) = 1, p
q
̸= p′

q′
, u1 = xpyq, and u2 = xp

′
yq

′
, then

δ(x, y) = (x, by) ◦ exp(t1V1 + t2V2) where bkq = 1, bk
′q′ = 1, ti ∈ C,

and such that the vector fields Vi, (i = 1, 2) are holomorphic on (C2, 0).

Before proving this theorem, we need to establish some key lemmas.

Lemma 4.6. Let Ω1 and Ω2 be two closed meromorphic formal one-forms defined on the
neighborhood of a corona (U,CR,r), and such that their associated foliations are transverse
outside the corona. Let us consider the set

X̂(Ω1,Ω2) = {formal vector fields on (U,CR,r) symmetric both to Ω1 and Ω2} .

Then, there exist two commuting formal vector fields V1 and V2 such that for any X̂ ∈
X̂(Ω1,Ω2), there exist constants t1 and t2 verifying:

X̂ = t1V1 + t2V2.

Proof. The vector fields Vi, (i = 1, 2), are defined as:{
Ω1 (V1) = 1
Ω2 (V1) = 0

et

{
Ω1 (V2) = 0
Ω2 (V2) = 1

Therefore, the vector fields Vi are common Lie symmetries of the one-forms Ωi on (U,CR,r).
Moreover, due to the fact that the one-forms Ωi are closed, a direct inspection shows

that [V1, V2] = 0. Let X̂ ∈ X̂(Ω1,Ω2). Assume that X̂ preserves the divisor of tangency
Tang(Ω1,Ω2). As the vector fields Vi are transverse outside the tangency divisor, there

exists formal meromorphic functions ĥi, i = 1, 2, such that

X̂ = ĥ1V1 + ĥ2V2.

Using the commutativity and the transversality of vector fields V1 and V2, the functions
ĥi = ti become constants. The lemma follows. □

Remark 4.7. According to the normal forms of germs of non-degenerate foliations, for
every i = 1, 2, the germ of normal forms F0

i is generated by a germ of 1-holomorphic form
ωi which has an integrating factor denoted by Fi. Thus, the one-form

Ωi :=
ωi

Fi

is a germ of closed meromorphic 1-form. We shall say that Ωi is the germ of one-closed
meromorphic form associated with the germ of foliations F0

i . For instance, in the Siegel
domain, it is defined as follows :
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• if ω := xdy − λ1ydx, then its associated closed 1-meromorphic form is

Ω :=
dy

y
− λ1

dx

x
;

• if ω := p(1 + (α− 1)uk1)ydx+ q(1 +αuk1)xdy, then pqxyu
k
1 is an integrating factor

of ω and therefore its associated closed meromorphic 1-form is:

Ω :=
1 + (α− 1)uk1

quk1

dx

x
+

1 + αuk1
puk1

dy

y
.

In both cases, any other closed meromorphic 1-form defining the foliation is of the form
c.Ω for a constant c ∈ C∗. Furthermore, if the Camacho-Sad indices of the foliations
generated by the closed one-forms Ωi, i = 1, 2, are different, then the vector fields Vi
defined in the Lemma 4.6, extend holomorphically on (C2, 0).

We also have the following lemma which makes it possible to characterize the symme-
tries of the closed forms associated with the normal forms in the Siegel domain.

Lemma 4.8. Let Fω = ⟨ω = xdy − λy(1 + f(x, y))dx⟩ be a germ of formal normal forms
in the Siegel domain without a non-constant first integral at the origin.
If Υ: (C2, 0) → (C2, 0) is a transversely formal symmetry of Fω along a corona CR,r in
y = 0, then Υ is a (transversely formal) symmetry of the associated closed meromorphic
1-form Ω which additionally verifies :

Υ∗Ω = Ω.

Proof. Since Υ: (C2, 0) → (C2, 0) is a symmetry of the foliation defined by ω = 0, then
it verifies the equation

Υ∗ω ∧ ω = 0 ⇐⇒ Υ∗Ω ∧ Ω = 0.

Therefore, there is a transversely formal function F along CR,r such that

Υ∗Ω = FΩ.

Hence,
dΩ = 0 =⇒ dF ∧ Ω = 0.

Thus, the function F is a first integral of Fω on the corona. Thanks to Mattei-Moussu
(see [10]), F extends at the origin and must therefore be constant by hypotheses. We
then have

Υ∗Ω = csteΩ.

As the symmetry Υ fixes the horizontal separatrix, the residue of the 1-meromorphic
form Ω along the horizontal separatrix is invariant by the symmetry Υ hence the constant
cste = 1. Note that, the case where the residue of Ω is zero, is called a case resonant (see
Proposition 1.21 ,with α = 0). In this case, we can verify that Ω must be invariant by
the centralizer of the holonomy of Fω (in restriction to a transversal) [see [6, Prop 1.3.2
and §5.2.2]); since the Υ commute with the holonomy, it is in the centralizer and must
therefore preserve Ω. □

Now we can give a proof of the Theorem 4.5.

Proof. Let

δ(x, y) =

(
x+

∑
n≥1

an(x)y
n,
∑
n≥1

bn(x)y
n

)
,

be a transversely formal symmetry on (U,Cr,R) of the pair of formal normal forms (F0
1,F

0
2),

and assume that the foliations do not have non-constant holomorphic first integrals.
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Denote by Ω1,Ω2, the closed meromorphic one-forms associated to F0
1 and F0

2 respectively.
Then, by Lemma 4.8, the symmetry δ can be decomposed a:

δ(x, y) = (x, by) ◦ exp(X̂)(x, y),

(b ̸= 0), such that the diffeomorphism (x, y) 7→ (x, by) preserves the pair (F0
1,F

0
2), and

the formal vector fields X̂ ∈ X̂(Ω1,Ω2). Thus, thanks to the Lemma 4.6 and the Remark

4.7, the vector fields X̂ can be written as X̂ = t1V1+ t2V2, where ti, i = 1, 2, are constants
and the vector fields Vi, i = 1, 2, are holomorphic on (C2, 0). □

Remark 4.9. The case where one of the normals forms admits a holomorphic first integral
(i.e. ω = pxdy + qydx) is more complicated due to the existence of infinitely many
symmetries. We need to use other techniques for this particular case. We are currently
working on it and we will publish it very soon in another article.
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phes singuliers. Belin, 2013.
[4] Adjaratou Arame Diaw and Frank Loray. Pairs of foliations and mattei-moussu’s theorem. Bulletin
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