Reductions of path structures and classification of homogeneous structures in dimension three - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

Reductions of path structures and classification of homogeneous structures in dimension three

Résumé

In this paper we show that if a path structure has non-vanishing curvature at a point then it has a canonical reduction to a Z/2Z-structure at a neighbourhood of that point (in many cases it has a canonical parallelism). A simple implication of this result is that the automorphism group of a non-flat path structure is of maximal dimension three (a result by Tresse of 1896). We also classify the invariant path structures on three-dimensional Lie groups.
Fichier principal
Vignette du fichier
reduction-final.pdf (359.21 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04612815 , version 1 (14-06-2024)

Licence

Identifiants

  • HAL Id : hal-04612815 , version 1

Citer

Elisha Falbel, Martin Mion-Mouton, Jose M. Veloso. Reductions of path structures and classification of homogeneous structures in dimension three. 2024. ⟨hal-04612815⟩
71 Consultations
19 Téléchargements

Partager

More