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Abstract

Neuromuscular electrical stimulation (NMES) can improve physical function in different pop-

ulations. NMES-related outcomes may be influenced by muscle length (i.e., joint angle), a

modulator of the force generation capacity of muscle fibers. Nevertheless, to date, there is

no comprehensive synthesis of the available scientific evidence regarding the optimal joint

angle for maximizing the effectiveness of NMES. We performed a systematic review to

investigate the effect of muscle length on NMES-induced torque, discomfort, contraction

fatigue, and strength training adaptations in healthy and clinical adult populations (PROS-

PERO: CRD42022332965). We conducted searches across seven electronic databases:

PUBMED, Web of Science, EMBASE, PEDro, BIREME, SCIELO, and Cochrane, over the

period from June 2022 to October 2023, without restricting the publication year. We included

cross-sectional and longitudinal studies that used NMES as an intervention or assessment

tool for comparing muscle lengths in adult populations. We excluded studies on vocalization,

respiratory, or pelvic floor muscles. Data extraction was performed via a standardized form

to gather information on participants, interventions, and outcomes. Risk of bias was

assessed using the Revised Cochrane risk-of-bias tool for cross-over trials and the Physio-

therapy Evidence Database scale. Out of the 1185 articles retrieved through our search

strategy, we included 36 studies in our analysis, that included 448 healthy young partici-

pants (age: 19–40 years) in order to investigate maximum evoked torque (n = 268), contrac-

tion fatigability (n = 87), discomfort (n = 82), and muscle strengthening (n = 22), as well as

six participants with spinal cord injuries, and 15 healthy older participants. Meta-analyses
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were possible for comparing maximal evoked torque according to quadriceps muscle length

through knee joint angle. At optimal muscle length 50˚ - 70˚ of knee flexion, where 0˚ is full

extension), there was greater evoked torque during nerve stimulation compared to very

short (0 – 30˚) (p<0.001, CI 95%: -2.03, -1.15 for muscle belly stimulation, and -3.54, -1.16

for femoral nerve stimulation), short (31˚ - 49˚) (p = 0.007, CI 95%: -1.58, -0.25), and long

(71˚ - 90˚) (p<0.001, CI 95%: 0.29, 1.02) muscle lengths. At long muscle lengths, NMES

evoked greater torque than very short (p<0.001, CI 95%: -2.50, -0.67) and short (p = 0.04,

CI 95%: -2.22, -0.06) lengths. The shortest quadriceps length generated the highest per-

ceived discomfort for a given current amplitude. The amount of contraction fatigability was

greater when muscle length allowed greater torque generation in the pre-fatigue condition.

Strength gains were greater for a protocol at the optimal muscle length than for short muscle

length. The quality of evidence was very high for most comparisons for evoked torque. How-

ever, further studies are necessary to achieve certainty for the other outcomes. Optimal

muscle length should be considered the primary choice during NMES interventions, as it

promotes higher levels of force production and may facilitate the preservation/gain in muscle

force and mass, with reduced discomfort. However, a longer than optimal muscle length

may also be used, due to possible muscle lengthening at high evoked tension. Thorough

understanding of these physiological principles is imperative for the appropriate prescription

of NMES for healthy and clinical populations.

Introduction

Neuromuscular electrical stimulation (NMES) can improve neuromuscular function in differ-

ent populations [1–3]. NMES-related outcomes may be influenced by several parameters, such

as device-derived parameters (e.g., current type, current amplitude, stimulation frequency,

pulse duration) [3–8], the device-human interface (e.g., electrode type, size, and configuration;

nerve or muscle stimulation) [9,10], and human-derived parameters (e.g., type of contraction,

target muscle, muscle-tendon unit length, health status) [11–17]. These factors should interact

to produce greater evoked force, and speed up strengthening/hypertrophy while attenuating

the perceived discomfort and contraction fatigability. Accordingly, muscle length is a widely

recognized modulator of the force generation capacity of muscle fibers and the stimulus for

strengthening and hypertrophy when it comes to voluntary exercise [18–20]. As such, the opti-

mal muscle length for NMES, would be at the plateau region of the force-length relationship,

obtained by manipulating joint angle [21–23]. However, to date, there are no summaries of the

scientific data on how the NMES effects can be optimized by the “best joint angle”, which may

limit standardization of NMES-based programs and novel approaches to improve perfor-

mance during NMES delivery, in addition to the long-term results.

The muscle force-length relationship of single muscle fibers in vitro is classically known to

display an ascending and a descending limb, with a plateau in between, where the maximal

tension is achieved [21], also supported by recent research [24]. In vivo, the joint angle-torque

relationship becomes the practical translation of the force-length relationship for assessing

human performance, taking into account that different moment arms, muscle-tendon unit

architecture, and joint characteristics yield different shapes of the torque curve as the joint

angle changes [11,15,22,25]. As such, the early study by Marsh et al. [26] brings relevant data

showing the different shapes of the torque-angle relationship of the dorsiflexors according to
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the type of activation (maximal voluntary contraction [MVC] or stimulated at different fre-

quencies). However, while the dorsiflexors may show progressively greater evoked torque as

the ankle angle moves towards plantar flexion [26], for the quadriceps muscle, the torque is

usually greater closer to 60˚ of knee flexion [16], and for the biceps brachialis, the torque is

usually greater close to 90˚ of elbow flexion [25]. These discrepancies in the torque-angle rela-

tionship for different joints reveal that this branch of knowledge must be broadened (for more

joint angles and joint types) and systematically compiled so that researchers and clinicians can

make evidence-based decisions when prescribing NMES.

When applying NMES, it is essential not only to consider torque generation but also to

minimize the level of perceived discomfort. Forceful contractions at short muscle lengths (e.g.,

extended knee for knee extensor stimulation) can cause painful muscle cramps [1,27]. There-

fore, during the application of NMES, in addition to biomechanical considerations, alterations

in muscle length may contribute to varying levels of perceived discomfort. Thus, whenever

possible, it is recommended that the NMES training be started at the ’ideal’ muscle length (i.e.,

the joint angle that allows the greatest evoked torque generation) and that it subsequently pro-

gresses to isometric evoked contractions at longer muscle lengths. Despite the absence of evi-

dence indicating that this approach diminishes discomfort during NMES sessions, it may

mitigate the heightened risk of early muscle damage associated with training at longer muscle

lengths [6,28].

A previous study found that NMES-induced quadriceps fatigability, i.e., the reduction in

force generating capacity [29], depends on muscle length changes due to hip and knee joint

angles [14], where fatigue is greater at a knee flexion of 60˚ compared to 20˚. In the case of a

60˚ knee flexion, a supine position leads to earlier fatigue, which means greater performance

fatigability [30], while with a 20˚ knee flexion, a supine position delays fatigue (here defined as

a decline in an objective measure of performance over a discrete period of time) [11,30]. It has

also been claimed that NMES at a shortened position (full knee extension) for strengthening

the quadriceps promotes greater joint soft tissue protection after anterior cruciate ligament

repair [31]. However, according to the authors, the strength gains observed were lower than

expected, considering previous studies that used a knee flexion angle of 60˚ [31,32]. These

results corroborate those of a pioneering study [33] that reported a greater strengthening effect

for an elongated position (65˚ of knee flexion) compared to a shortened position (full knee

extension). While abundant and emerging data exist to address the influence of muscle length

on the benefits of NMES training programs, to date, no systematic reviews have identified the

optimal muscle lengths for the generation of higher evoked torque with lower discomfort and

contraction fatigability, and a greater strengthening/hypertrophy effect during NMES rehabili-

tation and training programs.

The current review, therefore, was developed to summarize the research comparing differ-

ent muscle length settings during NMES, following the Cochrane collaboration recommenda-

tions [34] to assess the effects of these interventions on outcomes important for NMES-based

programs. Specifically, we compared the effects of muscle length on NMES-evoked isometric

torque, contraction fatigability, discomfort, and strength training adaptations in healthy and

clinical adult populations. We hypothesized that the optimal muscle length, according to the

preferable joint angle for maximum force development, would induce greater contraction

fatigue, mainly due to the greater absolute muscle force (and torque) in the fresh (pre-fatigue)

state. We also hypothesized that the discomfort would be lower at the optimal muscle length

during NMES contractions. Finally, we hypothesized that strength gains would be more pro-

nounced at the optimal muscle length, while greater hypertrophy could potentially be attained

through more elongated positions in comparison to the optimal muscle length.

PLOS ONE Effect of muscle length during electrical stimulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0304205 June 10, 2024 3 / 28

https://doi.org/10.1371/journal.pone.0304205


Material and methods

This systematic review followed the recommendations proposed by the Cochrane Collabora-

tion and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Statement

(PRISMA) [34,35], and was registered at PROSPERO (CRD42022332965). S1 File.

Search strategy

We searched seven electronic databases: PUBMED, Web Of Science, EMBASE, PEDro,

BIREME, SCIELO, and Cochrane, from June 2022 to October 2023. The search strategy was

established following the PICO strategy (Population, Intervention, Control, Outcome) for any

adult population (� 18 years old, healthy or clinical) submitted to electrical stimulation

applied at different muscle lengths (according to joint angle) and that evaluated its effects on

maximum evoked torque, contraction fatigability, perceived discomfort, or strength training

adaptations.

We used the following descriptors in our search strategy, without restrictions on language

or date of publication: “healthy”, “adults”, “participants”, “volunteers”. “muscle weakness”,

“muscle atrophy”, “cachexia”, “elderly”, “muscle diseases”, “muscle paralysis”, “Parkinson”,

“neuromuscular disease”, “stroke”, “multiple sclerosis”, “anterior cruciate ligament recon-

struction”, “chronic obstructive pulmonary disease”, “lung disease”, “cardiac disease”, “obese”,

“vascular disease”, “diabetes”, “orthopedic patients”, “nephrology patients”, “electric stimula-

tion”, “functional electrical stimulation”, “neuromuscular electrical stimulation”, “muscle

length”, “joint angle”, “joint position”, “torque”, “force”, “fatigue”, “discomfort”, “pain”. The

searches were adapted for each database to identify all relevant articles. Additional articles

were screened in the reference lists of included studies. The search strategy for each database is

described in S2 File. The grey literature (available literature not published under a rigorous,

peer-reviewed, independent scientific review system) was not searched, in order to avoid

introducing bias and low-quality designs that could reduce the validity of our results.

The inclusion criteria were: i) cross-sectional, repeated measures, or randomized controlled

trials; ii) comparisons of different muscle lengths (i.e., joint angles) during or after electrically

induced muscle contraction as an intervention to generate maximum torque, contraction fati-

gability, perceived discomfort, or strength training adaptations; iii) healthy or clinical adult

populations (� 18 years old). Studies were excluded if they investigated the vocalization, respi-

ratory, or pelvic floor muscles.

Data extraction

Two researchers (J.G.T.C and V.H.R) independently evaluated the titles of all articles found

using the search strategy. If the title was clearly on a topic not relevant for the present review,

the article was excluded. In the case of uncertainty, the article was selected for abstract reading,

along with those that could possibly be included. The same procedure was performed during

abstract reading, i.e., studies whose abstracts did not provide sufficient information regarding

the inclusion and exclusion criteria were selected for full-text evaluation. Disagreements

among reviewers were resolved by consensus, and if conflict persisted, a third reviewer (J.L.Q.

D.) was consulted. The data extraction was performed independently by the same two review-

ers via a standardized form to gather information on participants (health status, age, anthropo-

metrics), interventions (joint angle comparisons, electrode characteristics and placement,

electrical current parameters), and outcomes. No automation tools were used.

For meta-analyses, when multiple data were available for maximum evoked torque mea-

surements, we always chose the data expected to produce greater torque (e.g., doublet instead

of twitch-evoked torque, or 50 Hz instead of 20 Hz of stimulation frequency), and we always
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chose data not explicitly affected by previous stimulus (e.g., non-potentiated instead of potenti-

ated). For contraction fatigue, we were interested in the evoked torque decline during a fatigu-

ing protocol, as well as the evoked and or voluntary torque obtained before and after the

fatiguing protocol. When the study results were only available in graphs, we extracted the data

using ImageJ software (v. 1.46; National Institutes of Health, Bethesda, Maryland, USA).

Risk of bias assessment

Risk of bias was assessed using the Revised Cochrane risk-of-bias tool for cross-over trials

(RoB-CO) and the Physiotherapy Evidence Database (PEDro) scale. The RoB-CO assesses six

domains: Bias arising from the randomization process; Bias arising from period and carryover

effects; Bias due to deviations from intended intervention; Bias due to missing outcome data;

Bias in measurement of the outcome; and Bias in selection of the reported result. The PEDro

scale contains 11 items that involve: 1) eligibility criteria (not used to calculate score); 2) ran-

dom allocation; 3) concealed allocation; 4) baseline comparability; 5) blinded subjects; 6)

blinded therapists; 7) blinded assessors; 8) adequate follow-up; 9) intention-to-treat analysis;

10) between-group statistical comparisons; 11) point estimate and variability. Each item was

marked as "yes (1/0)" or "no (0/0)" and scored on a 0 to 10 scale.

Quality of evidence

The Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) was

used to assess the overall quality of evidence. The GRADE contains 5 domains: Study design

and risk of bias; Inconsistency; Indirectness; Imprecision; and Other factors (e.g., reporting

bias, publication bias). Regarding classification, high-quality of evidence means consistent

results in at least 75% of the clinical trials of good methodological quality, presenting consis-

tent, direct, and precise data, with no suspicious or known publication bias, and further

research is unlikely to alter the estimate or the confidence in the results. Moderate quality of

evidence means that at least one domain is not met, and new research is likely to significantly

impact the confidence in the effect estimate. Low-quality evidence means that two of the

domains are not met, and further research is expected to significantly impact the confidence in

the effect estimate and is likely to alter the estimate. Very low-quality evidence means that

three domains are not met, and the results are highly uncertain [36].

Data analysis

Meta-analyses were performed using Software Review Manager 5.4.1 (The Cochrane Collabo-

ration) if the available data were sufficient and at least two studies could be fairly compared,

i.e., by matching the main characteristics: population, muscle involved, and muscle length.

Considering these basic rules, there was compatibility for meta-analyses only for the evoked

torque, and not for perceived discomfort, contraction fatigue, and strength training adapta-

tions. The continuous values (mean and standard deviation) of maximum evoked torque, and

the number of participants for each group comparison were extracted to estimate the stan-

dardized mean difference (SMD) of the intervention and its 95% confidence interval (CI)

using a random-effects model with inverse variance as a statistical method. The test for overall

effect (Z-test) provided the p-value. The level of significance was set at p< 0.05.

The reference to joint angle in the included studies can change; for example, the full knee

extension is more commonly cited as 0˚, although it may also be considered as 180˚. Therefore,

we defined full extension as 0˚ for the knee and hip joints. When discussing other joints, we

provide the reference angle as needed. To enhance study compatibility for meta-analysis, we

categorized the quadriceps muscle length (with a fixed hip angle set between 70˚ and 90˚)
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based on the knee angle, as follows: very short (0˚ - 30˚), short (31˚ - 49˚), optimal (50˚ - 70˚),

long (71˚ - 90˚), and very long (> 90˚). Most studies used round numbers to specify knee joint

angles, although some studies involving the ankle and elbow joints employed specific angles

(e.g., 16˚, 48˚, 104˚) [25,37].

A gold standard for classifying quadriceps muscle length is currently lacking. However, a

range between 50˚ and 70˚, with 60˚ being the common midpoint, may be considered as opti-

mal or intermediate length [38–41]. The terms ’short’ and ’long’ are typically defined within

the context of the specific joint angles being compared. For instance, Skurvydas et al. [42]

defined ’short’ as a knee flexion angle of 50˚ and ’long’ as 90˚, while Place et al. [43] used

’short’ for 35˚ and ’long’ for 75˚ of knee flexion. In contrast, Rassier [39] described ’optimal’ as

60˚, ’shorter than optimal’ as 30˚, and ’longer than optimal’ as 90˚. When performing a meta-

analysis, we ensured that the stimulated muscles, participant groups (comprising healthy

young individuals), and methodology for torque generation (nerve or motor point stimula-

tion) were consistent across the studies.

Results

Search findings

Our search strategy retrieved 1185 records. After removing 277 duplicates and 82 clinical trial

registries, 826 studies were screened, together with six additional studies: one study found on a

reference list [44], two found through a manual search on Google [45,46], two published by

some of the authors of this systematic review [14,38], and one provided by an author upon

request [47], totalizing 832 for title screening. Titles that were not eligible were excluded

(n = 761). Thereafter, 71 studies were screened through the abstracts, with 42 studies remain-

ing for full-text screening. After full-text reading, six studies were excluded; one standardized

the same percentage of MVC during evoked torque (not allowing any comparison of maxi-

mum evoked torque), one did not assess isometric torque (torque values were obtained as the

knee was moved through a range of motion that was not stated), one did not specify joint

angles, one did not show any result that could allow joint angle/muscle length comparison,

one contained the same variable and sample of another study by the same authors, and one

was in the Japanese language. Consequently, the current review includes a total of 36 studies.

The PRISMA flowchart of study identification and selection is presented in Fig 1.

Quality of evidence

The results of the RoB-CO assessment can be found in S3 File. In brief, none of the studies

exhibited bias resulting from deviations in the intended intervention, missing outcome data,

outcome measurement issues, or selective result reporting. While one study drew attention to

potential carryover effects, three studies did not provide clear reporting on their randomiza-

tion process. Moreover, ten studies raised concerns as they presented a high risk or potential

issues related to carryover effects. The GRADE assessments are provided along with the

description of the meta-analyses results.

The results of the PEDro scale are shown in Table 1. Three studies scored ‘7’, 22 studies

scored ‘6’, eight studies scored ‘5’, and three studies scored ‘4’.

Main characteristics of the included studies

Table 2 outlines the key characteristics of the studies included in our analysis. The studies were

published between 1981 and 2022, written in English, and were categorized as employing a

repeated measure design (crossover), randomized clinical trial, or self-control (where opposite
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limbs were compared) approach. A total of 448 healthy young participants, ranging in age

from 19 to 40 years, were enrolled across these studies. Their contributions were aimed at

assessing various aspects, including maximum evoked torque (n = 268), contraction fatigabil-

ity (n = 87), discomfort (n = 82), and muscle strengthening (n = 22). Moreover, six patients

with spinal cord injuries were included and paired with an able-bodied sample [16], and one

study dealt only with a healthy older sample of 15 participants [48]. In addition, 23 studies

reported a measure of maximal electrically induced torque (peak twitch, supramaximal triplet

stimulation, tetanic torque, or evoked torque), eight studies applied an NMES-fatiguing proto-

col, five studies reported the perceived discomfort, one study assessed strength gains [33], and

two studies assessed other strength outcomes (without reporting only torque): the rate of tor-

que development [49] and the extra forces with preceding activity, i.e., NMES-induced con-

tractions through central pathways that lead to an increase in force increments that is

disproportionate to the input/electrical current applied [50]. In this case, a 25 Hz-10 0Hz-25

Hz stimulation was applied at different ankle joints and the ratio of the torque generated in the

second over the first 25 Hz stimuli was calculated.

Fig 1. Flowchart for identifying and selecting articles for final inclusion (based on the Prisma flowchart

template).

https://doi.org/10.1371/journal.pone.0304205.g001
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Table 1. Methodological quality of the included articles (PEDro scale).

Author (Year) Random

allocation

Concealed

allocation

Similar

groups

baseline

Subject

blinding

Therapist

blinding

Assessor

blinding

Adequate

follow-up

Intention-to-

treat analysis

Between-group

comparisons

Point

estimate &

variability

Total

Cavalcante

et al., 2022

[14]

Y Y Y Y N N Y N Y Y 7

Cavalcante

et al., 2021

[11]

Y Y Y Y N N Y N Y Y 7

Harnie et al.,

2020 [57]

Y Y Y N N N Y N Y Y 6

Hali et al.,
2021 [74]

Y Y Y N N N N N Y Y 5

Fouré et al.,

2020 [28]

Y Y Y N N N N N Y Y 5

Debenham &

Power, 2019

[49]

N N Y N N N Y N Y Y 4

Scott et al.,

2019 [53]

Y Y Y Y N N Y N Y Y 7

Gavin et al.,

2018 [48]

Y Y Y N N N Y N Y Y 6

Merlet et al.,

2018 [76]

Y Y Y N N N Y N Y Y 6

Yanase et al.,

2017 [62]

Y Y Y N N N Y N Y Y 6

Visscher et al.,

2017 [71]

Y Y Y N N N Y N Y Y 6

Bampouras

et al., 2017

[65]

Y Y Y N N N N N Y Y 5

Ando et al.,

2018 [58]

Y Y Y N N N Y N Y Y 6

Bremner et al.,

2015a [45]

Y Y Y N N N Y N Y Y 6

Bremner et al.,

2015b [47]

Y Y Y N N N Y N Y Y 6

Frigon et al.,

2011 [50]

Y Y Y N N N Y N Y Y 6

Skurvydas

et al., 2010

[42]

Y Y Y N N N N N Y Y 5

Marion et al.,

2009 [60]

Y Y Y N N N Y N Y Y 6

Ruiter et al.,

2008 [52]

Y Y Y N N N Y N Y Y 6

Kooistra et al.,

2007 [54]

Y Y Y N N N Y N Y Y 6

Lee et al., 2007

[59]

Y Y Y N N N Y N Y Y 6

Gerrits et al.,

2005 [16]

Y Y Y N N N Y N Y Y 6

Miyamoto &

Oda, 2005 [78]

Y Y Y N N N N N Y Y 5

(Continued)
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Physical parameters of the electrical stimulation protocols

All parameters used in the interventions are presented in Table 3. The current type and wave-

form were generally not fully described, and only two studies reported both parameters. Pulse

duration ranged between 50 and 1000 μs, although 2 studies did not report pulse duration.

When a tetanic contraction was applied in the evaluation and/or intervention, studies (n = 4)

used stimulation ranging from 75 Hz to 300 Hz, with a pulse duration ranging from 200 μs to

600 μs. The exceptions were the two studies by Bremner et al. [45,47] that used a median fre-

quency current (2500 Hz delivered in bursts of 50 Hz, also known as Russian current).

The stimulated muscles and joint angles are presented in Table 2. The quadriceps femoris

muscle was the most commonly studied muscle, followed by the ankle plantar flexors and dor-

siflexors, and the elbow flexors. Only one study investigated the external rotators (infraspina-

tus) of the shoulder.

Evoked torque

Meta-analyses were only possible for this outcome. In total, 23 studies reported a measure of

maximum evoked contraction through motor point stimulation (tetanic contraction or twitch)

Table 1. (Continued)

Author (Year) Random

allocation

Concealed

allocation

Similar

groups

baseline

Subject

blinding

Therapist

blinding

Assessor

blinding

Adequate

follow-up

Intention-to-

treat analysis

Between-group

comparisons

Point

estimate &

variability

Total

Kooistra et al.,

2005 [56]

Y Y Y N N N N N Y Y 5

Place et al.,

2005 [43]

Y Y Y N N N Y N Y Y 6

Ruiter et al.,

2004 [55]

Y Y Y N N N Y N Y Y 6

Babault et al.,

2003 [38]

Y Y Y N N N Y N Y Y 6

Maffiuletti

et al., 2003

[72]

Y Y Y N N N Y N Y Y 6

Hansen et al.,

2003 [25]

Y Y Y N N N N N Y Y 5

Mela et al.,

2001 [37]

Y Y Y N N N N N Y Y 5

Rassier, 2000

[39]

Y Y Y N N N Y N Y Y 6

Sacco et al.,

1994 [61]

N N Y N N N Y N Y Y 4

McNeal &

Bake, 1988

[46]

N N Y N N N Y N Y Y 4

Fitch &

McComas,

1985 [44]

Y Y Y N N N Y N Y Y 6

Fahey et al.,

1985 [33]

Y Y Y N N N Y N Y Y 6

Marsh et al.,

1981 [26]

Y Y Y N N N Y N Y Y 6

Y and grey marked: Yes; N and White marked: No.

https://doi.org/10.1371/journal.pone.0304205.t001
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Table 2. Characteristics of the included studies.

Authors Sample

Size/ %

male

Sample Characteristics Electrode number (size),

and type

Electrode Positions Joint angles Outcomes

Cavalcante

et al., 2022

[14]

20/100% Healthy; age: 24±4.6 y; body

mass: 77±9.3 kg; height: 177.6

±6.3 cm

4 (5x5 cm) self-adhesive Right quadriceps muscle

bellies

Hip: 0˚ or 85˚

Knee: 20˚ or 60˚

Contraction

fatigue

Cavalcante

et al., 2021

[11]

20/100% Healthy; age: 24±4.6 y; body

mass: 77±9.3 kg; height: 177.6

±6.3 cm

4 (5x5 cm) self-adhesive Right quadriceps muscle

bellies

Hip: 0˚ or 85˚

Knee: 20˚ or 60˚

Evoked torque

Discomfort

Harnie et al.,

2020 [57]

32/72% Healthy; age: 22.1±3.2 y; body

mass: 67.5±10.3 kg; height:

174.7±8.2 cm

cathode (0.5 cm

diameter)

1 (5x9 cm)

Right leg; femoral triangle,

3–5 cm

below the inguinal

ligament and gluteal fold

Hip:

Knee: 90˚ or 30˚

Peak twitch

torque

Hali et al.,
2021 [74]

10/100% Healthy; age: 24±3 y; weight:

81±7 kg; height: 181±5 cm

Not informed Non-dominant leg (left),

tibial nerve

Hip: 90˚

Knee: 90˚

Ankle: 20˚ DF or 20˚ PF

Peak twitch

torque

Fouré et al.,

2020 [28]

10/60% Healthy; age: 27±4 y; body

mass: 63.5±9.2 kg; height: 173

±10 cm

1 (5x10 cm)

2 (5x5 cm)

Proximal thigh: ~5cm

below inguinal ligament)

VL and VM muscle bellies

Hip: ~90˚

Knee: 50˚ or 100˚

Contraction

fatigue

Debenham &

Power, 2019

[49]

8/100% Healthy; 24 ± 3 y; body mass:

72±11kg; height: 177±9 cm

Anode: ECG electrode

Cathode: (6–8x8–10 cm)

aluminum electrode pad

wrapped in a damp paper

towel covered in

conductive gel

Anode: inguinal triangle

Cathode: inferior gluteal

fold.

Hip: Not informed

Knee: 35˚ and 100˚

Rate of Torque

Development

Scott et al.,

2019 [53]

18/50% Healthy; age: 24.7±5.9 y; body

mass: 78.5±13.2 kg; height:

173.3±11 cm

2 (7.62x12.7 cm) Right proximal and distal

quadriceps muscles

Hip: Seated

Knee: 30, 60 or 90

Evoked torque

Gavin et al.,

2018 [48]

15/46.7% Healthy old; 66 ± 8 y; body

mass: 73.0 ± 14.1; height:

168.3 ± 8.2 cm

Single device Common peroneal nerve

(muscles: peroneus longus

and tibialis

anterior)

Hip: ~90˚

Knee: 0˚, 45˚, 90˚

Discomfort

Merlet et al.,

2018 [76]

12/58% Healthy; age: 22.5±1.2 y; body

mass: 63.5±9.2 kg; height:

172.5±9.7 cm

1 (1.0 cm diameter)

1 (5x10 cm)

Right posterior tibial nerve Hip: 70˚

Knee: 0˚, 30˚, 90˚

ankle: 90˚

Peak twitch

torque

Yanase et al.,

2017 [62]

40/100% Healthy; age 24.4 ± 3.6 y; body

mass: 67.3 ± 7.6; height:

172.1 ± 5.6 cm

Bipolar electrodes, 5x5

cm

Right or left shoulder; one

electrode over the motor

point of the infraspinatus,

other over the muscle belly.

Maximal internal rotation

(IR; 82.5˚ ± 9.6˚); neutral

rotation (NEUT); max

external rotation (ER; 86.1˚

± 13.5˚),

Muscle swelling

and soreness

Visscher

et al., 2017

[71]

16/100% Healthy; age: 26±4 y; body

mass: 78±6 kg; height: 182±5

cm

1 (5 cm diameter)

1 (5x10 cm)

Femoral nerve trunk

(individual muscle belly

stimulation omitted)

Hip: 90˚

Knee: 30˚, 65˚, 90˚

Peak twitch

torque

Bampouras

et al., 2017

[65]

9/100% Healthy; age: 30.2±7.7 y; body

mass: 81.7±11.2 kg; height:

178±0.09 cm

2 (7x12.5 cm) Proximal and distal regions

of the quadriceps muscle

group

with the cathode being the

proximal electrode.

Hip: 90˚ or 160˚

Knee: 90˚

Tetanic torque

Ando et al.,

2018 [58]

8/100% Healthy; age: 24±2 y; body

mass: 63.5±9.2 kg; height:

172.5±9.7 cm

1 cathode (2.0x3.5 cm)

and 2 anodes (7x10 cm)

Femoral nerve Hips: 70˚ of flexion (0˚ is

anatomical position)

Knee: 60˚ (extended) and

110˚ (flexed)

Contraction

fatigue

Bremner

et al., 2015a

[45]

16/0% Healthy; age: 21.5±2.4 y; body

mass: 67.7±7.7 kg; height:

162.4±5.3 cm

4 (5x9 cm) Right leg; electrodes were

placed over the femoral

nerve and the motor points

of each of the superficial

quadriceps muscles

Hip: 85˚

Knee: 15˚ or 60˚

Normalized peak

torque

(Continued)
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Table 2. (Continued)

Authors Sample

Size/ %

male

Sample Characteristics Electrode number (size),

and type

Electrode Positions Joint angles Outcomes

Bremner

et al., 2015b

[47]

20/50% Healthy; age: 21.3 ± 2.1 y;

body mass: 75.6 ± 15.3; height:

167.4 ± 8.5 cm

4 (5x9 cm) Over the proximal and

distal VL, proximal RF, and

distal VM motor points.

Hip: 85˚

Knee: 15˚ or 60˚

Discomfort

Frigon et al.,

2011 [50]

14/

64.28%

Healthy; no other data

available

TA: 5 cm, rounded;

GM: 7x13 cm

Proximal and distal TA;

and proximal and distal

GM

Hip: 90˚

Knee: 170 – 180˚ (full

extension)

Ankle:

Extra forces

Skurvydas

et al., 2010

[42]

11/100% Healthy; 24.8 ± 3.7 y; body

mass: 78.2 ± 4.7kg; height:

179.9 ± 3.6 cm

2 carbonized rubber

electrodes covered gel:

6x11 cm (proximal) and

6x20 cm (distal)

Right quadriceps;

transversely across the

width of the proximal

and the distal

portion of the quadriceps.

Hip: seated

Knee: not informed

Ankle: 9˚ dorsiflexion, 16˚

plantar flexion, and 44˚

plantar flexion

Evoked torque

Marion et al.,

2009 [60]

8/70% Healthy; age: 28.2±3.63 y 2 (7.5x12.5 cm) Right quadriceps muscle Hips: 15˚

Knee: 20˚, 40˚, 65˚, and 90˚

Contraction

fatigue

Ruiter et al.,

2008 [52]

10/100% Healthy; age: 26.0±7.1 y; body

mass: 73.0±5.2 kg; height:

181.9±8.3 cm

Cathode: 5x5 cm

Anode: 13x8 cm

Cathode: femoral nerve

Anode: gluteal fold

Hip: 70˚

Knee: 30˚, 60˚, 90˚

Triplet torque

Kooistra

et al., 2007

[54]

7/100% Healthy; age: 23–32 y; body

mass: 69–83 kg; height: 173–

193 cm

Cathode: 5x5 cm

Anode: 13x8 cm

Cathode: femoral nerve

Anode: gluteal fold

Hip: 70˚

Knee: 30˚, 60˚, 90˚

Triplet torque

Lee et al.,

2007 [59]

5/60% Healthy; age: 22.5±1.2 y; body

mass: 70.2±12 kg; height:

172.9±7.3

- Right quadriceps muscle Hips:75˚ of flexion

Knee: 15˚ and 90˚

Contraction

fatigue

Gerrits et al.,

2005 [16]

8/- Healthy; age: 37±4 y; body

mass: 78±3 kg; height: 183±2

cm

1 (5x5 cm)

1 (8x13 cm)

Femoral nerve (cathode)

and medial part of the

quadriceps muscle (anode)

Hip: 70˚

Knee: 30 to 90 (10˚ step)

Triplet torque

Miyamoto &

Oda, 2005

[78]

9/100% Healthy; age: 24.5±1.1 y; body

mass: 68.1±2.6 kg; height:

171.3±2.8 cm

Carbon-impregnated

rubber electrodes (3.5x2

cm) with conductive gel

and secured to the right

upper arm with adhesive

tape.

One electrode was placed

on the motor point of the

biceps brachii, and the

other was placed on the

distal portion of the biceps

brachii.

Elbow: 75, 90, 105, 120,

135, and 150 (full

extension = 180).

30 Hz Tetanic

torque;

Peak Twitch

torque

Kooistra

et al., 2005

[56]

8/100% Healthy; age: 25.0±3.7 Cathode: 5 x 5 cm

Anode: 13 x 8 cm

Cathode: femoral nerve

Anode: gluteal fold

Hip: 70˚

Knee: 30˚, 60˚, and 90˚

Triplet torque

Place et al.,

2005 [43]

11/100% Healthy; age: 24±4 y; body

mass: 67±7 kg; height: 177±6

cm

Cathode: monopolar ball

electrode 0.5 cm diameter

Anode: 10x5 cm

Cathode: femoral nerve

Anode: gluteal fold

Hip: 90˚

Knee: 35˚, 75˚

Peak twitch

torque

Ruiter et al.,

2004 [55]

7/100% Healthy; age: 19–40 y; body

mass: 79–85 kg; height: 172–

194 cm

Cathode: 5 x 5 cm

Anode: 13 x 8 cm (?)

Cathode: femoral nerve

Anode: gluteal fold

Hip: 70˚ (?)

Knee: 30˚, 60˚, 90˚

Octet

Babault et al.,

2003 [38]

9/100% Healthy; age: 20.6±1.6 y; body

mass: 73.8±6.3 kg; height:

177.3±5.7 cm

Cathode: ball probe (100

mm diameter)

Anode: 10 x 5 cm

Cathode: femoral nerve

Anode: between the greater

trochanter and the inferior

iliac crest.

Hip: 90˚

Knee: 35˚, 55˚, 75˚

Peak twitch

torque

Maffiuletti

et al., 2003

[72]

11/100% Healthy; age: 26.4±5.4 y; body

mass t: 71.4±8.8 kg; height:

177.5±6.8 cm

1 (0.5 cm diameter)

1 (5 x 10 cm)

Right leg; femoral triangle,

3–5 cm

below the inguinal

ligament and gluteal fold

Hip: 0˚ or 90˚

Knee: 90˚

Peak twitch

torque

Hansen et al.,

2003 [25]

13/

53.8%

Healthy; 26.1±3.2 y; weight:

68.57±0.6 kg; height: 173.9

±8.7 cm

2 electrodes; size not

mentioned

Biceps brachialis motor

point

Shoulder: not informed

Elbow: 48, 62, 76,

90, 104, 118, 132, 146, and

160

Doublet twitch

torque

(Continued)
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or nerve stimulation (twitch, doublet, triplet, or octet) comparing the value reached at different

muscle lengths. Of these, 17 were conducted on the knee extensors, two on the ankle plantar

flexors, two on the ankle dorsiflexors, and two on the biceps brachialis muscle.

A total of seven meta-analyses were conducted, involving data from 13 studies (Fig 2A–2G)

that applied NMES to the quadriceps femoris muscles (there were no matching studies for

other muscle groups). Although the study by Gerrits et al. [16] met the criteria for inclusion in

the meta-analyses, only the data from their able-bodied participants were used, as their sample

also encompassed individuals with spinal cord injuries. Furthermore, according to the

Cochrane recommendations [51], triplet torque data (sample, mean, and standard deviation)

for knee flexion angles of 50˚, 60˚, and 70˚ were combined/collapsed to represent optimal

(mid-range) muscle length, while the data for angles of 80˚ and 90˚ were combined to repre-

sent long muscle length. Collapsing data was also necessary in the study by Ruiter et al. [52],

which compared the quadriceps triplet torque produced at 10˚, 30˚ 60˚, and 90˚ of knee flex-

ion. In this case, 10˚ and 30˚ were collapsed to represent short muscle length. Notably, there

was a significant effect (SMD: -1.59, CI 95%: -2.03, -1.15, p< 0.001) that favored optimal mus-

cle length over very short muscle length during muscle belly stimulation (Fig 2A). This obser-

vation was drawn from three studies characterized by high-quality evidence [11,45,53].

Table 2. (Continued)

Authors Sample

Size/ %

male

Sample Characteristics Electrode number (size),

and type

Electrode Positions Joint angles Outcomes

Mela et al.,

2001 [37]

6/66.6% Healthy; age: 30.3±6.8 y Cathode: circular (1.5-cm

radius); indifferent: 5x9

cm

Cathode on deep peroneal

nerve; indifferent electrode

on distal bony part of the

shank

Hip: seated

Knee: not informed

Ankle: 9˚ dorsiflexion, 16˚

plantar flexion, and 44˚

plantar flexion

Peak twitch

torque

Rassier, 2000

[39]

10/- Healthy; no other data

available

2 (13 x 12 cm) Right quadriceps muscle

(proximally and distally)

Hip: seated

Knee: 30˚, 60˚, 90˚”

Twitch torque

Fatigue

Sacco et al.,

1994 [61]

14/- Healthy; age: 34 (25–59 y) 2 (4-cm-diam) Tibialis anterior Knee: Not informed

Ankle: 100˚ (optimum) and

80˚ (short)

Contraction

fatigue

McNeal &

Bake, 1988

[46]

10/50% Healthy; age: 23–33 y 1 (4x5 cm)

1 (4x9 cm)

Left quadriceps muscle

bellies

Hip: 60

Knee: 15˚, 45˚, 75˚

Evoked torque

Fitch &

McComas,

1985 [44]

10/- Healthy; age: 31.1 ± 8.5 rectangular pieces of

aluminum foil (2x4 cm);

Cathode over peroneal

nerve; anode over the

anterior-superior aspect of

tibialis anterior

15˚ and 25˚ of dorsiflexion Contraction

fatigue

Fahey et al.,

1985 [33]

55/

50.90%

Healthy; females: age:

26.9 ± 4.27; body mass:

54.66 ± 5.19; height:

161.68 ± 6.21; males: age:

26.73 ± 3.52; body mass:

77.56 ± 7.24; height:

177.6 ± 7.06

2 (5.1x10.2 cm) Quadriceps muscle bellies Hip: unclear

Knee: 0˚ or 65˚

Strengthening for

isometric and

isokinetic torque

Marsh et al.,

1981 [26]

5/100% Healthy; age 19–37 y Cathode: oval lead plate

5x2 cm, covered by

saline-soaked cloth);

anode: cloth pad soaked

in saline and mounted on

a steel plate (8x8 cm)

Cathode: upper part of TA;

Anode: the lower third of

TA.

11 angles (from 30˚ PF to

20˚ DF), in steps of 5˚

Tetanic

stimulation at 40

Hz

DF: Dorsiflexion; PF: Plantar flexion; (?) presumed considering other articles by the authors; *.

https://doi.org/10.1371/journal.pone.0304205.t002
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Table 3. NMES parameters used in the included studies.

Author Current Type Waveform Pulse Frequency

(Hz)

Phase

Duration

(μs)

Time ON/OFF

(sec) or Duty

Cycle

Additional

parameters

Fatigue protocol

duration

Intensity

Cavalcante

et al., 2022

[14]

Bipolar - 100 500 10 s / 120 s - Does not apply MEIC (VAS 8/10)

Cavalcante

et al., 2021

[11]

Bipolar - 100 500 10 s / 120 s - 12 contractions MEIC (VAS 8/10)

Harnie et al.,

2020 [57]

Constant Rectangular Single pulse 1000 Does not apply 400 V Does not apply 120% supramaximal (84.4

±15.7 mA)

Hali et al.,

2021 [74]

- Square Single pulse 200 Does not apply 400 V Does not apply 20% supramaximal

stimulation

Fouré et al.,

2020 [28]

Biphasic

symmetric

Rectangular 100 400 5 s / 35 s - 40 contractions MEIC

Debenham &

Power, 2019

[49]

- Square 300 (Octet) Single pulse:

1000; octet:

200

- 400 V Does not apply Single pulse: 15% above

plateau

Octet: plateau (maximum

torque)

Scott et al.,

2019 [53]

- Square 75 600 4 s / 60 s - Does not apply MEIC (VAS 7/10)

Gavin et al.,

2018 [48]

- - Single pulse 400* - - Does not apply 27 mA

Merlet et al.,

2018 [76]

- Rectangular Single pulse 1000 - 400 V Does not apply 120% twitch force

Yanase et al.,

2017 [62]

- - 20 250 5 s / 2 s - 20 min (fatigue

not assessed)

Maximum tolerated

Visscher et al.,

2017 [71]

- Rectangular Single pulse 1000 - - Does not apply 100 mA

Bampouras

et al., 2017

[65]

Bipolar - 100 200 1 s/- 10 ms IPI Does not apply Supramaximal (512±124.6

mA)

Ando et al.,

2018 [58]

Constant - 20 200 70 s / 0 s 400 V 1 contraction 120% twitch force (36–134

mA)

Bremner

et al., 2015a

[45]

Russian Carrier

frequency:2500

Not

informed

/ 120 s Burst

frequency: 50

bursts/s

Does not apply Not clear

Bremner

et al., 2015b

[47]

Russian - Carrier

frequency: 2500

Not

informed

15 s (single

contraction)

Burst

frequency: 50

bursts/s

Does not apply 30% - 40% MVC

Frigon et al.,

2011 [50]

- - 25 and 100 1000 - - Does not apply 10–15% of Maximal evoked

twitch at an ankle joint of 90˚

for plantar flexors, and at

120˚ for dorsiflexors

Skurvydas

et al., 2010

[42]

- Square 100* 500 1 s / 10 s - Does not apply 10% supramaximal

Marion et al.,

2009 [60]

Constant - 33 600 1 s / 1 s - 78 contractions 20% MVC at 90˚ of knee

flexion

Ruiter et al.,

2008 [52]

Constant - 300 (triplet) 200 Does not apply Does not apply Does not apply 50 mA over maximum at 90˚

of knee flexion (250–400

mA).

Kooistra et al.,

2007 [54]

- Rectangular 300 (triplet) 100 Does not apply Does not apply Does not apply 50 mA over maximum at

each angle

Lee et al., 2007

[59]

- - 40 600 Not clear - 120 contractions 20% MVC

(Continued)
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However, there was no significant effect (SMD: 1.48, CI 95%: -0.56, 3.53, p = 0.16) when com-

paring optimal and long muscle lengths during muscle belly stimulation (Fig 2B), drawn from

a low-risk study [53] and a study that presented concerns, as the authors did not mention an

adequate rest period between joint angle comparisons [42], yielding a moderate quality of evi-

dence according to GRADE. For this stimulation type, no corresponding article was available

for comparing other muscle lengths.

For the femoral nerve stimulation, all outcomes were graded as high-quality evidence.

There was a significant effect of greater evoked torque favoring the optimal muscle length vs.

Table 3. (Continued)

Author Current Type Waveform Pulse Frequency

(Hz)

Phase

Duration

(μs)

Time ON/OFF

(sec) or Duty

Cycle

Additional

parameters

Fatigue protocol

duration

Intensity

Gerrits et al.,

2005 [16]

- Square 300 (triplet) 200 / 120 s - Does not apply Supramaximal

Miyamoto &

Oda, 2005

[78]

- Rectangular 30* 100 - - Does not apply maximal twitch contraction

Kooistra et al.,

2005 [56]

- Rectangular 300 (triplet) 100 - - Does not apply 50 mA over maximum torque

(procedure at 60˚, but used

for the other positions. i.e.,

same amplitude for all

positions.

Place et al.,

2005 [43]

Constant - Does not apply 1000 Does not apply 400 V Does not apply Maximum (300–500 mA)

Ruiter et al.,

2004 [55]

Constant - 300 100 Does not apply Does not apply Does not apply Maximum

Babault et al.,

2003 [38]

- Square-

wave

Does not apply 1000 Does not apply 400 V Does not apply 10% supramaximal (60–130

mA)

Maffiuletti

et al., 2003

[72]

- Rectangular Single pulse - - 400 V Does not apply Supramaximal (50–80 mA)

Hansen et al.,

2003 [25]

- Square - 800 - 8 ms inter-

twitch interval

Does not apply Doublet

Mela et al.,

2001 [37]

- Rectangular 50* 300 2 s/ not clear - Does not apply Beneath the subject’s pain

threshold

Rassier, 2000

[39]

- Square 50 50 5 s / 5 s - 9 contractions 50% MVC

Sacco et al.,

1994 [61]

- Rectangular 30 - 15 s / 5 s - 6 contractions 20% MVC

McNeal &

Bake, 1988

[46]

- Single pulse - - - Does not apply 60 mA

Fitch &

McComas,

1985 [44]

- Rectangular 20 50 90s/0s - Single

contraction

Supramaximal stimulus

intensities

Fahey et al.,

1985 [33]

asymmetrical

bi-phasic

Square 50 Not

informed

10s/35s 25 V; Pulse

time to peak

stimulus: 2 s

60 contractions

(15 min); fatigue

not assessed

42.6±4.4 mA (slowly

increased to the highest level

comfortably tolerated)

Marsh et al.,

1981 [26]

- Rectangular 40* 100 - - Does not apply 20% supramaximal

IPI: Interpulse interval; bps: Bursts per second; MEIC: Maximal electrically induced contraction; VAS: Visual Analogue Scale; MVC: Maximal voluntary contraction;

*maximum frequency/pulse width chosen among two or more options.

https://doi.org/10.1371/journal.pone.0304205.t003
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very short muscle length (SMD: -2.20, CI 95%: -3.42, -0.99, p< 0.001, Fig 2C) (16, 39, 52, 54–

56), vs. short muscle length (SMD: -0.72, CI 95%: -1.43, -0.02, p = 0.04, Fig 2F) (16, 38), and vs.

long muscle length (SMD: 0.63, CI 95%: 0.24, 1.02, p = 0.002, Fig 2E) (16, 38, 39, 52, 54–56).

Moreover, there was a significant effect of greater evoked torque favoring the long muscle

length vs. very short muscle length (SMD: -1.49, CI 95%: -2.40, -0.58, p< 0.001, Fig 2D)

[16,39,52,54–57], and vs. short muscle length (SMD: -1.14, CI 95%: -2.22, -0.06, p = 0.04, Fig

2G) [16,38,43].

NMES-induced contraction fatigue

Eight studies conducted an NMES-fatiguing protocol, six on the quadriceps femoris muscle

(one of them through femoral nerve stimulation), and two on the tibialis anterior muscle.

More highly flexed knee joint angles were more fatiguing for the quadriceps in five out of the

six studies: 20˚ vs. 60˚ [14], 50˚ vs. 100˚ [28], 60˚ vs. 110˚ [58], 15˚ vs. 90˚ [59], and 30˚ vs 60˚

vs 90˚ [39], while in the investigation by Marion et al. [60], contraction fatigue was notably

pronounced at the joint angle that exhibited the highest pre-fatigue force and the least contrac-

tion fatigue was observed at the joint angle characterized by a lower pre-fatigue force. In this

instance, 65˚ of knee flexion demonstrated a greater pre-fatigue force compared to angles of

20˚ and 90˚. However, Rassier [39] exhibited contradictory outcomes and reporting. The

authors indicated a more substantial relative decline in torque at the most elongated position

(90˚ compared to 60˚ and 30˚ of knee flexion), but the textual content consistently referred to

greater contraction fatigue occurring at the most shortened muscle length. Regarding the tibia-

lis anterior, findings suggested that NMES-induced contraction fatigue was more prominent

at the optimal muscle length in contrast to the shortened position [44,61].

Fig 2. Meta-analyses of (A) very short muscle length vs. optimal muscle length for maximum evoked torque produced during quadriceps muscle motor point

stimulation, (B) optimal muscle length vs. long muscle length for maximum evoked torque produced during quadriceps muscle motor point stimulation, (C)

very short muscle length vs. optimal muscle length for maximum evoked torque produced during femoral nerve stimulation, (D) very short muscle length vs.

long muscle length for maximum evoked torque produced during femoral nerve stimulation, (E) optimal muscle length vs. long muscle length for maximum

evoked torque produced during femoral nerve stimulation, (F) short muscle length vs. optimal muscle length for maximum evoked torque produced during

femoral nerve stimulation, and (G) short muscle length vs. long muscle length for maximum evoked torque produced during femoral nerve stimulation.

https://doi.org/10.1371/journal.pone.0304205.g002
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Perceived discomfort

Six studies reported the perceived discomfort through a numeric scale. These studies used the

Visual Analogue Scale (VAS), while one study also used the Verbal Rating Scale (VRS) [48].

Three studies utilized a VAS fixed value to achieve the maximum evoked contraction during

quadriceps NMES: 7 out of 10 [53] and 8 out of 10 [11,14]. One study [47] found the current

amplitude required to achieve 30% to 40% of the MVC at the more extended knee angle (15˚),

and used the same current amplitude for the knee at 60˚ (which would produce a much lower

percentage of the MVC for this angle) and compared the VAS. The authors found that, for 15˚

and 60˚, the VAS values were 32.42 mm (CI upper: 42.09; CI lower: 23.02) and 17.11 mm (CI

upper: 27.34; CI lower: 7.09), respectively. One study, with a healthy older population [48],

chose a fixed current amplitude (27 mA) for the stimulation of the common peroneal nerve to

evoke isometric dorsiflexion (ankle angle not mentioned), to compare, among other variables,

the perceived discomfort at three knee angles (0˚, 45˚, and 90˚). Pulse duration was gradually

increased from 50 μs to 400 μs. At the highest pulse duration, no significant difference in per-

ceived discomfort among knee angles was observed, as assessed using both the VAS and the

VRS. In another study [62], a 20-minute NMES protocol was applied to the infraspinatus mus-

cle. The participants were divided into four groups, based on joint angle and type of contrac-

tion (three for isometric and one for concentric contraction), as well as a control group. For

the isometric contractions, three shoulder rotation angles were employed, with participants

lying prone and shoulders abducted at 90˚: maximum internal rotation (82.5˚ ± 9.6˚), neutral

rotation, and maximum external rotation (86.1˚ ± 13.5˚). The initial five minutes of muscle

stimulation were utilized to progressively increase the current amplitude to the highest tolera-

ble level for each subject (initial VAS not reported). This amplitude remained unchanged

throughout the protocol. Following the protocol, no notable disparities were found among the

groups (current amplitude [mA]: 83.5 ± 20.4, 85.0 ± 27.2, and 79.0 ± 20.4; VAS [mm]:

63.1 ± 19.0, 65.9 ± 18.8, and 59.8 ± 19.9 for the internal, neutral, and external rotation groups,

respectively). A limitation of the study was the absence of force output measurement [62].

Regrettably, these studies could not be included in a meta-analysis due to these limitations.

Strengthening NMES training

Among the included studies, only one [33] investigated the impacts of NMES on muscle

strengthening as a function of muscle length. The young participants were trained at two joint

angles: full knee extension (0˚) and a flexed position (65˚), in a supine position (hip angle

unspecified). The outcomes revealed that NMES led to heightened isometric strength, with

increases of 9.5% and 15.4% in the flexed knee group for males and females, respectively, and

increases of 7.3% and 15.5% in the extended knee group for males and females, respectively,

without difference between the groups. Notably, NMES exhibited greater effectiveness in

enhancing isokinetic performance when the knee was flexed during treatment. Specifically, at

the velocity of 30˚�s-1 and 120�s-1 for women, and 120�s-1 for men, there was a greater improve-

ment in the isokinetic torque.

Discussion

This is the first systematic review to assess the effect of muscle length on maximum electrically

induced torque, perceived discomfort, NMES-induced contraction fatigue, and strength fol-

lowing an NMES-strengthening program. We found that, for the quadriceps femoris muscle,

the optimal muscle length for evoked torque was obtained at midrange (50˚-70˚) compared to

short (regardless of stimulation method) and long muscle lengths (during nerve stimulation),

reflecting its force-length relationship. In addition, the long length allowed greater evoked
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torque than the short and very short muscle lengths. According to the GRADE recommenda-

tions [36], the quality of evidence was very high for most muscle length comparisons of the

evoked torque, except optimal vs. long muscle length during muscle belly stimulation, which

presented moderate quality of evidence. Other muscles, such as the ankle dorsiflexors and

biceps brachialis, also exhibit an ideal (intermediate) length. However, for the ankle plantar

flexors, longer lengths (either by manipulating the ankle or the knee joint angles) generated

greater torque compared to short lengths, which also agrees with the torque-angle relationship

for this muscle group that works in the ascending limb of the force-length relation [63].

When considering a given current amplitude, a shorter quadriceps muscle length seems to

induce increased discomfort compared to the neutral position, although no definitive conclu-

sions can be drawn regarding other muscle lengths and different muscles. NMES-induced con-

traction fatigue appears to be greater when the muscle length enables greater torque

generation in the pre-fatigue condition. A protocol conducted at the ideal muscle length

yielded greater quadriceps strength gains compared to a very short length, probably due to the

greater mechanical work performed by the muscle at optimal length. Taken together, these

findings suggest that prioritizing the optimal muscle length should be the initial choice for

NMES interventions, avoiding shortened, low-demanding muscle lengths if clinically viable.

However, indirect evidence from the included studies [62,64,65] and voluntary training else-

where [66,67] point to the use of long quadriceps muscle lengths as a means of increasing

mechanical stress during contraction and likely improving muscle force/mass and tendon

properties, while the hamstrings may still benefit from training at shorter lengths [68]. There-

fore, there are still many questions to be answered regarding NMES effects according to mus-

cle length, with further research needed.

Evoked torque

‘Very short’ and ‘short’ vs. ‘optimal’ quadriceps femoris muscle length. While the

force-length relationship is a well-established property of muscles fibers [21], this is the first

meta-analysis confirming force disparities across multiple quadriceps femoris muscle lengths

during electrical stimulation. As expected, an optimal muscle length surpasses very short or

short muscle lengths in its capacity to evoke higher torque during NMES. This has significant

implications for the utilization of NMES in both clinical and athletic contexts. Employing a

shortened muscle length to facilitate a particular limb position (such as a fully extended knee)

may likely constrain the potential benefits of NMES [31]. The selection of muscle length

should be judicious, particularly in specific scenarios, such as cases involving limited/painful

range of motion or with non-strengthening/hypertrophy goals.

‘Very short’ and ‘short’ vs. ‘long’ quadriceps femoris muscle length. In the longmuscle

length, NMES evoked higher torque when compared to both very short and short muscle

lengths during nerve stimulation. It is noteworthy mentioning that the well-established knee

extensor force-length relationship indicates potential alignment in force levels between short

and long muscle lengths along the ascending and descending limbs of the curve [21]. However,

it is important to consider that long muscle lengths tend to induce greater tensile stress [67], a

factor favorable to enhance muscle (serial and parallel sarcomere) growth [66] and improve

tendon mechanical properties [67]. This, in turn, lends support to the idea of choosing longer

muscle lengths to accelerate the recovery of muscle mass. For instance, in the context of volun-

tary isometric knee extension exercises performed at short (43.1˚ ± 4.6˚ of knee flexion) and

long (86.9˚ ± 6.5˚) muscle lengths, the latter (long) can accelerate hypertrophy, while the for-

mer (short) yields greater strength enhancement at the training angle [66].
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‘Optimal’ vs. ‘long’ quadriceps femoris muscle length. Two meta-analysis were con-

ducted comparing optimal and long muscle lengths during two distinct methodologies: muscle

belly and nerve stimulation. The results favored the optimal muscle length during nerve stimu-

lation (seven studies) (Fig 2E), aligning with the expectations derived from the force-length

relationship. Nevertheless, there was no difference during muscle stimulation (2 studies),

which is likely attributed to the small number of studies and their heterogeneity. Consequently,

opting for an optimal muscle length is likely to expedite progress in achieving strength gains.

However, it is important to note that the aforementioned impact of tensile stress may render

long muscle lengths more advantageous for other aspects related to muscle-tendon unit prop-

erties [67]. Moreover, long muscle lengths may lead to both parallel and serial sarcomerogen-

esis, which holds particular value in the treatment of various clinical conditions characterized

by serial sarcomere loss (such as bed-rest periods, post-surgical interventions), followed by

subsequent loss of functionality [66,69,70].

Other muscle length comparisons for the quadriceps femoris. Some studies could not

be meta-analyzed [46,71]. Vissher et al. [71] compared the evoked torque through femoral

nerve stimulation among three knee angles, finding a significantly lower peak twitch torque at

30˚ of knee flexion than at 65˚ and 90˚. However, the authors used a current amplitude of 100

mA for all tests, without mentioning if it evoked a maximal or supramaximal stimulus. Simi-

larly, a pioneering study [46] standardized a 60 mA current amplitude for three different knee

angles: 15˚, 45˚, and 75˚ during quadriceps femoris muscle belly stimulation. While similar

current amplitude offers the advantage of facilitating the comparison of efficiency (i.e., the

ratio of torque by current amplitude) [11], it does not inform about the maximum evoked tor-

que capacity.

Maffiuletti et al. [72], employing femoral nerve stimulation, and Bampouras et al. [65],

using muscle belly stimulation, both observed higher quadriceps evoked torque in the supine

position compared to the seated position when the knee was fixed at 90˚. This suggests that the

supine posture may position the biarticular rectus femoris muscle closer to its optimal length,

a concept in line with the muscle’s functional range [73]. However, when the knee is posi-

tioned at 60˚, this difference becomes less distinct and may or may not manifest [11]. An

underlying explanation for these divergent outcomes might be the greater passive tension

experienced by the knee extensors when the knee is flexed at 90˚, compared to the 60˚ flexion

angle. These disparities could be attributed to the variance in the knee extensor passive tension

under different knee angles. Future investigations hold the potential to elucidate whether

manipulation of hip angles could confer benefits in the application of NMES to knee

extensors.

Care should be taken concerning definitions of short, optimal, and long muscle length. For

example, Fouré et al. [28] suggested that “rehabilitation training programs including electri-

cally induced isometric contractions should be performed at short muscle lengths.” This could

misleadingly imply that short could be better than optimal in any NMES program. However,

in the study, “short” was 50˚ and “long” was 100˚ of knee flexion, and 50˚ is closer to the angle

range commonly reported as optimal (intermediate or midrange): 55˚ - 65˚ of knee flexion

[11,38,71].

Length comparisons for other muscle groups. Our research retrieved studies that used

other muscle length comparisons, which could not be meta-analyzed. Hali et al. [74] compared

a shortened position (20˚ plantar flexed from neutral) and a lengthened position (20˚ dorsi-

flexed from neutral) for the triceps surae muscle and found greater peak twitch torque for the

long muscle length (39.5 ± 12.5 vs 11.9 ± 4.8). While the aforementioned study does not

include a neutral position for comparison, studies focusing on MVC have shown that greater

plantar flexor torque is generated at lengthened muscle lengths compared to neutral positions
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[63,75]. This indicates that the muscle-tendon unit and joint complex being examined differ

from the knee extensor mechanism in terms of their response to muscle length, according to

each muscle’s mechanical properties (i.e., force-length relation). Similarly, the twitch and dou-

blet (as well as the MVC) evoked torques for the plantar flexors increase when the knee is

more extended, which lengthens the biarticular gastrocnemius, although, in their discussion,

the authors seem to state the opposite to the information expressed in their results [76].

Mela et al. [37] stimulated the dorsiflexors through the stimulation of the deep peroneal

nerve, while Marsh et al. [26] applied the stimulation directly over the tibialis anterior muscle

belly. Specifically for Marsh et al. [26], who assessed several joint angles (from 30˚ of plantar

flexion to 20˚ of dorsiflexion in steps of 5˚), the greatest torque was obtained at 10˚ of plantar

flexion. In the Mela et al. ([37] study, nerve stimulation applied to activate all four dorsiflexors

resulted in an average evoked torque of 50% of MVC regardless of ankle joint angle. In healthy

volunteers, evoked torque rarely reaches 100% of MVC [1]. Both authors, despite using differ-

ent stimulation methods, consistently found that torque generation was greater in the plantar

flexed (lengthened) position compared to the dorsiflexed (shortened) position, which also

agrees whti the force-length relationship of the dorsiflexors, whose plateau occurs at 30˚ of

plantar flexion [63]. This agreement emphasizes the influence of joint angle (and therefor mus-

cle length) on torque production, irrespective of the specific details of the stimulation method.

Hansen et al. [25] assessed the force-angle relationship of elbow flexors during isometric

contractions at various angles. The authors found that MVC, double twitch, and single twitch

peak torques occurred at 90˚ (223.6 ± 56.3 N), 104˚ (223.6 ± 56.3 N), and 118˚ (223.6 ± 56.3

N), respectively. This indicated a rightward shift in the curves with submaximal force, possibly

due to increased Ca2+ sensitivity with muscle lengthening during submaximal contractions

[77]. Future studies could the peak region of the force-angle relationship with NMES to more

efficiently enhance elbow flexor strength. Additionally, Miyamoto and Oda [78] observed sim-

ilar findings, with significantly higher torque at 120˚ (or 60˚, considering full elbow extension

as 0˚) compared to more flexed angles. Future studies could also examine the impact of shoul-

der and forearm angles on the elbow flexor force-angle relationship during NMES.

Contraction fatigability

A meta-analysis for this outcome could not be conducted due to discrepant methodologies

across various studies. NMES-induced contraction fatigue appears to intensify when the mus-

cle length enables greater torque generation in the initial (pre-fatigue) state, which may be

explained by the increased metabolic demand of higher-intensity contractions, related to more

actin-myosin cross-bridge formation [44]. Indeed, this is supported by the reduced oxygen

consumption/metabolic rate at short muscle lengths [79]. However, also at shorter lengths,

activity-dependent muscle fiber potentiation (enhanced submaximal contractility due to prior

activity) is greater and may limit the detection of contraction fatigue [80]. Some studies that

applied voluntary contraction-fatigue protocols are in agreement with these results [41], while

others did not find significant differences in contraction fatigue according to muscle length

[81]. These studies employ varying knee joint angles and contraction fatigue-protocol method-

ologies, limiting generalizability. For example, although the magnitude of force decline (fatigue

itself) from isolated muscle-tendon units of rat medial gastrocnemius was also greater at longer

muscle lengths, the rate of contraction fatigue (fatigability) was greater at short muscle lengths

[82].

Notably, even with the increased contraction fatigue observed after NMES-fatigue proto-

cols, optimal muscle lengths continue to yield greater torque compared to shorter lengths

[14,63]. Therefore, the higher contraction fatigue observed at optimal length should not
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preclude its preferential utilization in NMES strengthening programs, as it may still maintain

the desired high muscle-tendon load [11,15]. However, new studies are needed to explore

long-term outcomes. Additionally, for muscles spanning multiple joints, such as the quadri-

ceps femoris, an added stretch, through hip extension, may also accelerate the onset of contrac-

tion fatigue and modulate strengthening adaptations [14], so this biomechanical aspect should

not be overlooked when positioning the body parts. Finally, while the expectation that shorter

muscle length generates less force, leading to reduced contraction fatigue compared to the

optimal length, holds true for the quadriceps femoris, the same principle does not uniformly

apply to the tibialis anterior muscle [61], opening the field for new studies to explore how dif-

ferent muscles respond acutely according to their fiber length and mechanical properties dur-

ing NMES.

Perceived discomfort

The assessment of perceived discomfort in the context of muscle length manipulation remains

somewhat limited. We could not draw strong conclusions from the available studies. While it

is often reported that shorter muscle lengths can induce painful cramp-like contractions, this

hypothesis has not yet been subjected to rigorous testing [1]. Specifically, we found only one

study evidencing that for the same current amplitude, greater discomfort is reported when

quadriceps NMES is applied at 15˚ of knee flexion compared to 60˚. These results raise consid-

erations for dynamic contractions with NMES, as care must be taken with excessive discomfort

during the final range of motion. Interestingly, studies employing the VAS as a means to

achieve maximum electrically induced contractions [11,53] have consistently yielded the same

percentage of the maximum voluntary contraction. However, this may come at the cost of

greater current amplitude applied at longer muscle lengths compared to shorter positions [11].

Thus, comprehensive understanding of the influence of muscle length on perceived discomfort

leads to unavoidable questions, such as tracking the change in the localization of motor and

sensory nerve branches under the electrodes with changes in joint angle, which may require

meaningful strategies to optimize the clinical outcomes [83].

Finally, the study by Yanase et al. [62] did not include a means of monitoring torque,

thereby restricting the comprehensive interpretation of the reported discomfort data. For com-

prehensive understanding of the impact of muscle length on NMES-induced perceived dis-

comfort, the resulting torque (indicative of contraction intensity) also needs to be taken into

account. Hence, future research should emphasize the development of torque control method-

ologies that are adaptable to diverse clinical settings and muscles, particularly in instances

where dedicated equipment like a dynamometer chair is not readily available [31].

Strengthening by NMES training

The effects of strength training with NMES are not yet fully understood. A solitary study [33]

compared the results of a six-week NMES protocol at different knee joint angles (65˚ and 0˚).

Participants were supine during the treatment protocol, but the hip angle was not mentioned.

The authors found greater strength gains for the protocol at 65˚ of knee flexion during isoki-

netic tests. However, we partially answered our hypothesis because the improvement in muscle

strength was equivalent for both groups during the isometric test at 65˚ (unfortunately, other

angles were not tested), defying the angle-specificity adaptations (i.e., an increase in strength

only in and close to the trained angle), which is not uncommon after isometric or partial range

of motion training [67,68]. Interestingly, the participants [33] trained at full knee extension

(i.e., at short knee extensor length), which would be assumed as being disadvantageous for tor-

que generation and strengthening [11,31]. However, as the authors did not mention the hip
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angle, if participants were fully supine in the full knee extension group, but with hip flexed in

the knee flexed group, this adds a bias that tend to equalize muscle-tendon unit length and

stiffness among positions [11]. No further studies are available for evaluating longer muscle

lengths and hypertrophy. Despite the limited number of studies, a recent review [84] on the

effects of NMES on knee post-surgery rehabilitation recommended positioning the patient at a

60˚ knee flexion angle if medically safe, justifying this advice by the anticipated greater torque

in this position. Additional research on the adaptation of strengthening through NMES train-

ing with different joint positions is important to gain better understanding of its implementa-

tion in clinical settings.

Most NMES protocols primarily involve isometric contractions. While isometric contrac-

tions with a fully extended knee do not require specialized equipment, they may lead to

reduced strength gains [31]. For precise control of joint angle and torque, a dynamometer

chair is the optimal choice. However, access to these resources may be limited, particularly

outside clinical facilities, such as in home care [31]. In resource-constrained clinical settings,

particularly for bed-bound patients, a practical approach to managing joint angles during iso-

metric contractions is by obtaining the desired knee flexion angle using a support under the

lower limb (e.g., triangular wedge pillow) and ankle weights/restraints [85]. This approach,

demonstrated by Toth et al. [86], effectively maintains the knee at a set angle. Another viable

strategy involves seating the patient on a chair and using an adjustable strap to restrict knee

extension, maintaining hip and knee angles at approximately 90˚ [2]. It is essential to note that

to obtain high torque levels and, consequently, the most significant effect with these simple

solutions, the current amplitude must be increased up to the maximum tolerated discomfort

[84]. Additionally, to assess the quality of the contraction and monitor progress during the

NMES program, visual inspection can be used, along with the option of manual resistance if

needed.

Limitations

The scope of our investigation was confined to evoked torque (non-potentiated), contraction

fatigue (torque decline), discomfort, and chronic adaptation measures (strength and muscle

mass gains) in response to NMES. However, certain included studies investigate other vari-

ables that may hold relevance for future reviews, such as the force-frequency relationship, dif-

ferences in anatomical muscle-tendon-length characteristics (such as those seen in the plantar

flexor), potentiated torque, M-wave, and the force-time integral. Moreover, the presence of

multiple outcome measures introduces complexity and makes descriptive comparisons

between studies challenging. Furthermore, the considerable variability across evaluations and

clinical heterogeneity among studies precluded us from conducting more meta-analyses, con-

sequently constraining this review to descriptive rather than quantitative comparisons. In

addition, no previous meta-analyses have compared the different electrical stimulation tech-

niques (e.g., single, doublet, tetanic, nerve vs muscle), and muscle length comparisons may be

influenced by stimulation technique [87]. Lastly, despite conducting a comprehensive litera-

ture search across diverse databases, it is important to recognize that the search primarily tar-

geted English-language journals, potentially overlooking studies in non-English publications

and regional databases.

The included studies exhibited scores ranging from fair to good, and from 4 to 7 points on

the PEDro scale. An assessment combining both the PEDro and RoB-CO frameworks reveals

several concerns, particularly the absence of a clear delineation of methods to eliminate acute

carryover effects, such as potentiation or contraction fatigue [39], since some studies com-

pared joint angles on the same day, without justifying the allowed time for recovery between
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joint angle tests (see “Bias arising from period and carryover effects” in S3 File). This is particu-

larly pertinent when considering outcomes linked to maximum evoked torque. While exam-

ples of insufficient randomization were infrequent, they were evident in three studies

[46,49,61]. Additionally, it is noteworthy that achieving blinding for both participants and

assessors in studies involving joint angles can present inherent challenges. For forthcoming

research endeavors, we suggest participant blinding pertaining to specific outcomes that have

the potential to influence performance. Furthermore, it is essential to highlight that a signifi-

cant number of studies did not incorporate a preliminary familiarization session, despite its

potential to impact participant performance [88].

Conclusion

In conclusion, optimal muscle length is key for maximizing torque generation during NMES.

Longer muscle lengths also contribute to increased torque, while shorter lengths may result in

greater discomfort. Tailoring joint angles to training goals can influence contraction fatigue.

Quadriceps strength gains may be superior at the ideal muscle length compared to short mus-

cle lengths, aiding muscle recovery. However, considering the limited NMES evidence, and

conflicting findings after voluntary training, the use of short or long muscle lengths should be

carefully selected based on diverse clinical factors, such as the available joint range of motion

and the need for improvement in muscle-tendon unit properties. These findings are crucial

for populations populations who present difficulty with volitional muscle contraction. Further

research is needed to comprehensively assess the short- and long-term effects of varying mus-

cle lengths on musculoskeletal adaptations after an NMES-strengthening program.
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