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Model-based learning for multi-antenna
multi-frequency location-to-channel mapping

Baptiste Chatelier, Vincent Corlay, Matthieu Crussière, Luc Le Magoarou

Abstract—Years of study of the propagation channel
showed a close relation between a location and the associated
communication channel response. The use of a neural network
to learn the location-to-channel mapping can therefore be
envisioned. The Implicit Neural Representation (INR) literature
showed that classical neural architecture are biased towards
learning low-frequency content, making the location-to-channel
mapping learning a non-trivial problem. Indeed, it is well known
that this mapping is a function rapidly varying with the location,
on the order of the wavelength. This paper leverages the model-
based machine learning paradigm to derive a problem-specific
neural architecture from a propagation channel model. The
resulting architecture efficiently overcomes the spectral-bias
issue. It only learns low-frequency sparse correction terms
activating a dictionary of high-frequency components. The
proposed architecture is evaluated against classical INR
architectures on realistic synthetic data, showing much better
accuracy. Its mapping learning performance is explained
based on the approximated channel model, highlighting the
explainability of the model-based machine learning paradigm.

Index Terms—Model-based machine learning, Implicit Neural
Representations, Spectral bias, Sparse representation, MIMO

I. INTRODUCTION

FOR the past decades, signal processing methods have
been used to improve communication systems. Such

methods are model-based: they can present a high bias but
benefit from a reasonable complexity. With the emergence of
easily accessible computational power, artificial intelligence
(AI)/machine learning (ML) has emerged as a promising
alternative to signal processing methods in many communi-
cation problems. By essence, AI/ML methods are data-based:
they consequently present a low bias due to their intrinsic
adaptability capabilities. However, the training prerequisites
of such methods entail substantial computational and sample
complexities. Recently, researchers have focused on bridging
the gap between those two paradigms using a hybrid approach:
model-based machine learning [1]. This approach proposes to
use models from signal processing, to structure, initialize, and
train learning methods from AI/ML. The underlying goal is
to reduce the bias of signal processing methods by making
models more flexible, while guiding AI/ML methods to reduce
their complexity.
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In the past few years, model-based machine learning have
showed great results in channel estimation problems [2]–[5],
angle of arrival estimation [6], channel charting [7]–[9], but
also in integrated sensing and communication scenarios [10].
It is proposed to further explore this paradigm by studying
the location-to-channel mapping learning: as the propagation
channel coefficients are closely related to the user’s location,
one can use a neural network to learn this specific mapping.
Upon training completion, one only has to input a location
to the neural network to acquire the channel coefficients at
the given location. In order to do so, one can use a physical
propagation model to derive a model-based (MB) neural
architecture specifically adapted for the location-to-channel
mapping learning.

This approach would be beneficial in many applications:
channel estimation, secure communication mechanisms,
resource allocation, interference management, and also radio-
environment compression. Indeed, if one achieves near perfect
learning of the location-to-channel mapping, it could be more
efficient to only store the weights of the trained neural
network rather than directly storing the channel coefficients.

Learning continuous mappings with neural networks is
known as the Implicit Neural Representation (INR) problem.
After its great success in the resolution of image processing
problems such as novel view synthesis [11], researchers have
started to establish theoretical results on the INRs mapping
learning capabilities [12]–[17]. While classical architectures,
such as multi-layer perceptrons (MLPs), are universal function
approximators [18], [19], it has been shown that they exhibit a
bias towards learning low-frequency functions, a phenomenon
known as spectral bias [20]–[22]. This makes classical
architectures unsuitable for the learning of rapidly varying
functions. To address this limitation, specialized architectures
have been developed: random Fourier features (RFFs) [23],
[24], sinusoidal representation networks (SIRENs) [25] or
Gaussian activated radiance fields (GARFs) [26]. Theoretical
results in [14] characterized the expression power of both
RFFs and SIRENs: such architectures can only represent
functions being linear combinations of specific harmonics of
their input mapping. This demonstrates the high-frequency
learning capability of those architectures. The location-
to-channel mapping presents a high-frequency spatial
dependence, on the order of the operating wavelength,
making its learning a remarkably complex problem. One
may then pose the subsequent inquiries: Are classical INR
architectures able to learn the location-to-channel mapping?
Is a model-based approach able to learn this mapping? Does
the model-based approach outperform INR architectures in
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terms of learning performance and complexity?
Contributions. It is proposed to leverage the capabilities of
model-based machine learning for the location-to-channel
mapping learning. To maintain generality, this mapping
learning problem is examined over multiple antennas
and multiple frequencies. The following contributions are
presented in this paper:

• A theoretical study of a physics-based channel model,
using Taylor expansions, allows to clearly separate
low and high-frequency spatial contents (Lemma 1,
Proposition 1, Proposition 2).

• A sparse signal processing approach, using sparse
representations of the channel, is presented to ensure the
validity of the obtained channel approximation across
the entire R3 space (Theorem 1).

• A model-based neural architecture is derived from
the approximated channel model. It is shown that the
obtained structure shares common features with classical
INR architectures, such as a spectral separation stage
with a high-frequency embedding, allowing to bypass
the spectral-bias issue.

• Experiments are conducted on realistic channels, showing
the great potential of the proposed approach, both in
terms of learning performance and computational effi-
ciency. Moreover, some experiments clearly show that the
proposed approach successfully learns the underlaying
physical models, enabling efficient generalization.

Related work. Learning continuous mappings through neural
networks has been extensively studied by the image processing
community. For instance, it has been used for image recon-
struction problems [25], [27], [28], for 3D scene reconstruction
from 2D images [11], [29], [30] but also for dynamic 3D
scene reconstruction from 2D images [31]–[35]. In the signal
processing community, machine learning capabilities have
been recently leveraged for various problems: e.g. ML-based
channel estimation [36]–[39]. There also exist works about
mapping learning in communication problems: specifically, the
location/pseudo-location-to-beamformer mapping learning has
been studied in [40] and [41], as well as the pseudo-location-
to-best-codebook-index mapping learning in [8]. Additionally,
our previous work in [42] studied the location-to-channel map-
ping learning in a simplified scenario: only a single antenna
and frequency were considered. In this paper, the scenario
is extended to multiple antennas and multiple frequencies,
making the proposed approach better suited to more realistic
scenarios. In [43], the authors propose to adapt the neural radi-
ance fields concept of [11] from optical to radio-frequency sig-
nals. However, the proposed model requires complex learning
strategies and long training times. Additionally, the proposed
model is used for downlink channel estimation in a frequency
division duplex setting, but requires the uplink channel knowl-
edge. In this paper, the proposed approach only requires the re-
ceiver location knowledge and possesses relatively low sample
complexity. Finally, in [44], the authors proposed to calibrate
electromagnetic properties of a scene, e.g. material permittivity
and conductivity, scattering and reflection coefficients, using
a differentiable ray-tracing approach. Upon completion of the

calibration process, accessing the scene properties in different
configurations becomes feasible. Among other applications,
using the calibrated scene enables the accurate computation
of the propagation channel response at different locations,
through ray-tracing. The primary distinction between this
differentiable ray-tracing method and the suggested approach
is that the former emphasizes on calibrating a specific scene at
the electromagnetic property level while considering the scene
topology known. Conversely, the latter proposes a straightfor-
ward approach for the continuous location-to-channel mapping
learning using a model-based neural network with no prior
information about the scene topology.

Organization. The rest of the paper is organized as follows.
Section II properly presents the location-to-channel mapping
learning problem, Section III exposes the classical INR
approaches as well as the theoretical contributions. Then,
Section IV presents the translation of the proposed model
into a neural architecture. Section V proposes to evaluate
the developed architecture against several baselines on
realistic synthetic data. Finally, Section VI introduces some
conclusions and perspectives for future work.

Notations. Lowercase bold letters represent vectors while
uppercase bold letters represent matrices. R and C respectively
denotes the real and complex fields. o denotes the small-o
Bachman-Landau notation. ·T denotes the transpose matrix
operator. diag (·) denotes the matrix operator constructing a di-
agonal matrix from a vector and vec (·) denotes the vectoriza-
tion operator. IdN ∈ RN×N denotes the identity matrix, while
0N ∈ RN×N denotes the null matrix. ⊙ denotes the Hadamard
product, and ⊗ denotes the Kronecker product. ∇af (a,b)
denotes the gradient operator wrt. a. |·| denotes the absolute
value for real numbers, modulus for complex numbers and
cardinal for sets. ∥·∥p , p ∈ N denotes the ℓp norm, and ∥·∥F
denotes the ℓF (Frobenius) norm. S1 denotes the unit sphere
while C1 denotes the unit circle. δ (t) denotes the Dirac im-
pulse. Re {·} and Im {·} denotes the real and imaginary parts.

II. PROBLEM FORMULATION

In this section, the physical propagation channel model is
presented, and the mapping-learning problem is defined.

Let us consider a communication system where a base sta-
tion (BS) transmits information through Na antennas and Ns

distinct frequencies to mono-antenna user equipments (UEs).
In the time domain, the propagation channel defines the filter
operating on the electromagnetic waves transmitted between
an emitting and receiving antenna. This filter impulse response
is classically known as the channel impulse response (CIR).
Considering the propagation channel over Lp specular propa-
gation paths between the jth BS antenna and a mono-antenna
receiver located at x ∈ R3 yields the following CIR definition:

hj (t,x) =

Lp∑
l=1

αl (x) δ (t− τl (x)) , (1)

where αl (x) ∈ R, resp. τl (x) ∈ R, is the attenuation
coefficient, resp. propagation delay, for the lth path.
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Applying the Fourier transform on the CIR yields the fre-
quency channel response. For a given frequency fk, this gives:

hj (fk,x) =

Lp∑
l=1

αl (x) e
−j2πfkτl(x)

=

Lp∑
l=1

γl
dl (x)

e
−j 2π

λk
dl(x), (2)

where λk ≜ c/fk ∈ R is the wavelength associated to
frequency fk and dl (x) ∈ R represents the propagation
distance for the lth path. In further developments, the
frequency dependence in Eq. (2) is dropped and the notation
hj,k (x) is used. In Eq. (2), it is assumed that the attenuation
is proportional to dl (x) and that the delay is such that:

τl (x) ≜

{
dl(x)

c , l = 1
dl(x)

c − νl, l ̸= 1
, (3)

where νl ∈ R accounts for a supplementary delay induced
by wave-matter interactions. As a result, the attenuation
coefficient γl becomes complex: ∀l > 1, Re {γl} and
Im {γl} represent the small-scale attenuation and phase shift
introduced along the lth path. Note that Re {γ1} = 1 and
Im {γ1} = 0 when considering a Line of Sight (LoS) path,
as this path does not present any wave-matter interaction.

Then, using the virtual source theory [45, Chapter 1,
pp.47-49] to model the propagation distance dl (x) yields:

hj,k (x) =

Lp∑
l=1

γl
∥x− al,j∥2

e
−j 2π

λk
∥x−al,j∥2 , (4)

where al,j ∈ R3 denotes the location of the lth virtual
antenna, so that 1/ ∥x− al,j∥2 represents the large scale
fading of the lth path.

Remark. Note that Eq. (4) models a multipath channel,
where the Lp propagation paths are distinguishable paths:
they can result from reflection, diffraction or scattering.
Moreover, while the virtual source theory is classically used
to model reflections, it can also accounts for diffraction [46].

The exponential argument in Eq. (4) reveals a high-
frequency spatial dependence: a small change in the location
x induces a significant change in the channel coefficient
hj,k (x). This arises from the wavelength dependence in
the exponential argument: as the carrier frequency rises,
the wavelength drops, yielding the fast variation of channel
coefficients in the location space. In classical communication
systems (sub-6GHz), λ is on the order of a few centimeters.
5G/6G systems also consider millimeter wavelengths.

Let H (x) ∈ CNa×Ns be the antenna-frequency channel
matrix at location x. This matrix is constructed from the
concatenation of the complex frequency-channel coefficients
hj,k (x) in Eq. (4), across every antenna and frequency. The
goal of this study is to learn:

fθ : R3 −→ CNa×Ns

x −→ H (x) ,
(5)

a neural network f parameterized by a set of learning
parameters θ that learns the continuous mapping between a
location x and complex channel matrix H (x). As mentioned
in the introduction, the high-frequency spatial dependency in
the channel model causes the location-to-channel mapping to
be remarkably hard to learn using classical neural architectures
due to the spectral bias issue. Alternative neural architectures
overcoming this issue are presented in the next section.

III. FROM CLASSICAL
INR ARCHITECTURES TO A MODEL-BASED APPROACH

This section first proposes a brief overview on the recent
INR architecture evolution for the learning of rapidly varying
functions. Then, the proposed model-based approach is
presented, as well as the related theoretical results.

A. Classical INR architectures

Specific architectures have been developed in order to
circumvent the spectral-bias limitation of classical neural
architectures. This limitation occurs in some image processing
applications: e.g. given a specific camera location and orien-
tation, is it possible to use a neural network for the synthesis
of views that have not been captured by the camera? As
variations in pixel color and intensity contain high frequencies
(e.g. on boundaries, in text ...), directly learning the orientation
and location-to-view mapping is not a trivial task. It has been
proposed in [11] to introduce a high-frequency embedding
in the neural architecture, to ease the high-frequency content
learning. This embedding has been known as a positional
embedding: a given location or pseudo-location information
(e.g. 5D coordinates from camera location and orientation)
is projected into a higher dimensional space containing high
frequencies. Such an approach is coherent with earlier work
in [20], where authors showed that introducing a particular
high-frequency embedding allowed to ease the learning of
high-frequency content in the target mapping. Further work on
the development of spectral-bias resistant neural architectures
can be divided into two categories: embedding specialization
in traditional ReLU-MLP and embedding replacement.
Embedding specialization. This approach consists in the
design of a well adapted embedding layer for the target
mapping learning, while the rest of the neural architecture is
a traditional ReLU-MLP. This approach, known as positional
embedding, has been used in [11], [24], [31], [32], [34].
Embedding replacement. On the other hand, this approach
proposes to drop the initial high-frequency embedding and to
specialize the activation functions of the MLP. This recently
gained a lot of interest: in [25], authors proposed to replace
ReLU non-linearities by sine functions, achieving high
performance in high-frequency mapping learning. However
using sine non-linearities has been shown to cause a high
sensitivity to network parameters initialization. In [26], authors
proposed to replace this sine non-linearities by Gaussian
ones, showing good performance in image reconstruction
without complex network parameters initialization schemes.
Additionally, in [12], authors showed that sine non-linearities
were part of a broad class of non-linearities that permitted
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MLPs to learn high-frequency content. They also showed
that using non-periodic non-linearities allowed to obtain
good performance in novel view synthesis problems. Finally,
it has recently been shown in [47] that complex Gabor
wavelets could be used as activation functions, yielding good
performance in a wide range of image processing problems.

B. Model-based approach

In this paper, it is proposed to use knowledge from the
physics-based propagation model presented in Eq. (4) to derive
a model-based neural architecture that would overcome the
spectral-bias issue. As the high-frequency spatial dependency
originates from ∥x− al,j∥2 /λk in Eq. (4), it is proposed
to develop this term using a Taylor expansion. It will be
shown that it allows to separate the high-frequency from the
low-frequency spatial content. This approach, known as the
plane wave approximation, is used to obtain the well-known
steering vector model [48, Chapter 7], [49].

Lemma 1. Let xr ∈ R3 be a reference location and Dx ⊂ R3

be a local validity domain such that ∀x ∈ Dx, ∥x− xr∥2 ≤
ϵx. Let al,r ∈ R3 be a reference antenna location and
Da ⊂ R3 be local validity domain such that ∀al,j ∈
Da, ∥al,j − al,r∥2 ≤ ϵa. One has, ∀ (x,al,j) ∈ Dx ×Da :

∥x− al,j∥2 ≃∥xr − al,r∥2 + ul,j (xr)
T
(x− xr) (6)

− ul,r (xr)
T
(al,j − al,r) ,

with ul,j (xr) = (xr − al,j) / ∥xr − al,j∥2.

Proof. See Appendix A.

Fig. 1. Taylor expansion on locations only: (a) location x far from reference
xr , (b) location x close to reference xr .

Fig. 1 illustrates the Taylor expansion on locations. One
can remark the direct link between the approximation error
and the distance to reference: when the considered location
is far from the reference, the approximation error is high,
while on the other hand, when the distance to the reference
is small, the approximation error decreases. This emphasizes
the local validity of Lemma 1. A similar analysis can be
made for the Taylor expansion on antennas.

Corollary 1 proposes to analytically characterize the
approximation error in Lemma 1.

Corollary 1. Let xr ∈ R3 and al,r ∈ R3 be a reference
location and a reference antenna location respectively. The
approximation error in Eq. (6) can be approximated using
the second order of the Taylor expansions as:

e ≃ 1

2

(
∥x− xr∥22
∥xr − al,j∥2

− o

(
1

∥xr − al,j∥22

)
(7)

+
∥al,j − al,r∥22
∥xr − al,r∥2

− o

(
1

∥xr − al,r∥22

))

Proof. See Appendix B.

One can remark in Corollary 1 that the approximation error
is mostly dependent on the ratios ∥x− xr∥22 / ∥xr − al,j∥2
and ∥al,j − al,r∥22 / ∥xr − al,r∥2. In other words, when the
distance between the reference location and current/reference
antenna is important, the approximation error decreases.
Indeed, in such scenario, the common far field approximation
is valid, making the planar approximation of spherical
wavefronts realistic. In Eq. (6), the planar wavefront term is
represented by the first line projection term: this term is null
when the location (x− xr) is orthogonal to the direction
ul,j (xr). Once introduced in a complex exponential, it yields
periodic parallel level sets in the ul,j (xr) direction. Such
phenomenon constitutes the definition of planar wavefronts.
On the other hand, when the reference distances are small,
the far field approximation does not hold, making the
approximation error being directly dependent on the distances
to the references ∥x− xr∥2 and ∥al,j − al,r∥2.

Proposition 1 presents the injection of the approximated
propagation distance in the channel model in Eq. (4). This
allows to obtain an approximated channel coefficient around
a reference location and a reference antenna.

Proposition 1. Let xr ∈ R3 and al,r ∈ R3 be a reference
location and reference antenna location. Let dl,r ≜
∥xr − al,r∥2, τl,r ≜ dl,r/c, and hl,r (xr) ≜ e−j 2πλr

dl,r/dl,r.
Let fr ∈ R be a reference frequency such that ∀fk ∈
R, fk = (fk − fr) + fr. One has, ∀ (x,al,j) ∈ Dx ×Da :

hj,k (x) ≃
Lp∑
l=1

γlhl,r (xr)︸ ︷︷ ︸
Reference channel

e−j 2πλr
ul,r(xr)

T(x−xr)︸ ︷︷ ︸
Location correction

(8)

· e−j2π(fk−fr)τl,r︸ ︷︷ ︸
Frequency correction

ej
2π
λr

ul,r(xr)
T(al,j−al,r)︸ ︷︷ ︸

Antenna correction

,

Proof. See Appendix C.

It can be seen in Eq. (8) that hj,k (x) is a sum of reference
channels around a reference location at a reference frequency
multiplied by location, frequency, and antenna correction
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terms. Letting wl,r (xr) ≜ γlhl,r (xr) e
j 2πλr

ul,r(xr)
Txr ∈ C,

Eq. (8) can be further rearranged as, ∀ (x,al,j) ∈ Dx ×Da:

hj,k (xr) ≃
Lp∑
l=1

wl,r (x) e
−j2π(fk−fr)τl,rej

2π
λr

ul,r(xr)
T(al,j−al,r)︸ ︷︷ ︸

Slowly varying

· e−j 2πλr
ul,r(xr)

Tx︸ ︷︷ ︸
Fastly varying

. (9)

Remark. One can observe in Eq. (9) that the channel
coefficient hj,k (x) can be viewed as a linear combination of
planar wavefronts. The directions of said planar wavefronts
are defined by the spatial frequencies ul,r (xr). Furthermore,
Eq. (9) presents a spectral separation stage: the planar
wavefronts present high-frequency spatial content because of
their wavelength dependency in the exponential argument,
while the weights, multiplied by the location and antenna-
correction terms, present low-frequency spatial content (order
of the Taylor-expansions validity domain).

Proposition 2 presents the expansion of the obtained
approximation to every antenna and frequency, i.e. expresses
the channel matrix H (x) as a function of the location x.

Proposition 2. Let ψa,l (x) ∈ CNa be a steering vector
(SV) and ψf ,l (x) ∈ CNs be a frequency response vector
(FRV). Let ψx,l (x) ≜ e−j 2πλr

ul,r(xr)
Tx ∈ C be a planar

wavefront. The multi-antenna multi-frequency channel can
be expressed as, ∀ (x,al,j) ∈ Dx ×Da :

H (x) ≃
Lp∑
l=1

wl,r (x)ψx,l (x)ψa,l (xr)ψf ,l (xr)
T (10)

where

ψa,l (xr) =


ej

2π
λr

ul,r(xr)
T(al,1−al,r)

...
ej

2π
λr

ul,r(xr)
T(al,Na−al,r)

 ∈ CNa , (11)

and

ψf ,l (xr) =

 e−j2π(f1−fr)τl,r

...
e−j2π(fNs−fr)τl,r

 ∈ CNs . (12)

Proof. Direct derivation from Eq. (9) by defining SVs and
FRVs.

The previously obtained results can be summarized as follows:
• Eq. (6) presents the Taylor expansion of the propagation

distance around a reference location and reference
antenna location.

• Eq. (9) presents how the Taylor expansions introduce a
spectral separation stage in the propagation channel.

• Eq. (10) presents the expansion of the previous results
over every antenna and frequencies.

One can remark that the approximation proposed in Eq. (10)
is only valid in local neighborhoods of the reference antenna
location al,r and reference location xr, namely Da and Dx.
Theorem 1 presents the expansion of the approximation

validity domain to the entire R3 space. The idea is to partition
R3 into location and antenna local validity domains, and
then aggregate the needed planar wavefronts, SVs, and FRVs
into dictionaries for each location and antenna local validity
domain pair. Additionally, proof of Theorem 1 introduces the
Direction of Departure (DoD) ũi so that the SV dictionary is
constructed with only the physical antenna locations a1,j .

Theorem 1. Let us consider the tiling of the location subset
Sx ⊂ R3 into Ωx local validity domains Dx. A second
tiling is applied for the antenna subset Sa ⊂ R3 with Ωa

local validity domains Da. Let D ∈ N∗ st. D ≤ LpΩxΩa.
Let Ψ̃a ∈ CNa×D be a dictionary of SVs, defined as:

Ψ̃a =
{
ψ̃a,i

}D

i=1
=



ej

2π
λr

ũT
i(a1,1−a1,r)

...
ej

2π
λr

ũT
i(a1,Na−a1,r)




D

i=1

, (13)

where ũi ∈ R3 is a DoD. Let Ψ̃f ∈ CNs×D be a dictionary
of FRVs, defined as:

Ψ̃f =
{
ψ̃f ,i

}D

i=1
=


 e−j2π(f1−fr)τi

...
e−j2π(fNs−fr)τi




D

i=1

, (14)

where τi ∈ R+ is a propagation delay. Let ψ̃x (x) ∈ CD

be a dictionary of planar wavefronts, defined as:

ψ̃x (x) =
{
ψ̃x,i

}D

i=1
=
{
e−j 2πλr

uT
ix
}D

i=1
, (15)

where ui ∈ R3 a spatial frequency. Finally, let w (x) ∈ CD

be an activation vector such that: ϖ (x) = w (x)⊙ ψ̃x (x).
Then, ∀x ∈ R3:

H (x) ≃
D∑
i=1

ϖi (x) ψ̃a,iψ̃
T

f ,i (16)

with ∥ϖ (x)∥0 = Lp,

Proof. See Appendix D.

One can see that Theorem 1 proposes a sparse continuous
interpolation of the channel matrix. The composite dictionary
consists of all possible combinations of the required SVs
and FRVs, while the activation vector presents spectral
separation: it is defined with a low-frequency term w (x),
and a high-frequency term ψ̃x (x).

Remark. While Theorem 1 extends the validity expansion of
Eq. (10) to the entire R3 space, the number of atoms D in each
dictionary is intractable due to its dependence on the number
of local validity domains Ωx and Ωa. A way to overcome this
issue is to construct each dictionary by discretizing its gener-
ating subspace, i.e. the DoD subspace, unit sphere S1, for the
SV dictionary, the delay subspace R+ for the FRV dictionary
and the spatial frequency subspace S1 for the planar wavefront
dictionary. This approach is at the center of the model-based
neural network architecture presented in Section IV.
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C. Discussion: a sparse recovery approach

As Eq. (16) can be viewed as a sparse reconstruction
problem, one could think of finding the correct activation
coefficients using sparse recovery techniques. Indeed, using
matching pursuit (MP)/orthogonal matching pursuit (OMP)
algorithms [50], [51], one could find a sparse representation
of H (x) in a composite dictionary of FRVs/SVs. Obtaining
a channel estimate Ĥ (x) at a wanted location x could be
separated into two stages. Firstly, one would have to solve:

min
w

∥∥∥∥∥H (xr)−
D∑
i=1

wiψ̃x,i (xr) ψ̃a,iψ̃
T

f ,i

∥∥∥∥∥
2

F

,

s.t. ∥w∥0 = Lp,

(17)

∀xr ∈ Hr ⊂ R3, Hr being a set of reference locations.
Then, for the wanted location x, one could obtain the channel
estimate as:

Ĥ (x) =
D∑
i=1

wx⋆
r ,i
ψ̃x,i (x) ψ̃a,iψ̃

T

f ,i, (18)

where wx⋆
r

∈ C is the activation coefficient obtained by
solving Eq. (17) for x⋆

r = argminxr∈Hr
∥x− xr∥2, i.e. the

closest reference location to the wanted location.
However this approach presents an intractable complexity

induced by the high-frequency nature of the propagation
channel and the composite dictionary size. Indeed, as the
propagation channel is a function rapidly varying with the
location, one would have to consider spatially close reference
locations, i.e. with spacing between reference locations under
the wavelength. This introduces a high cardinality in Hr,
which increases the time complexity for achieving the first
step of this estimation scheme. Additionally, as the composite
dictionary is composed of every pair of FRVs/SVs, it results
in a prohibitive dictionary size, further increasing the time
complexity of the first estimation step.

The next section proposes to transform the obtained
channel approximation in Eq. (16) into a neural architecture,
following the model-based machine learning paradigm.

IV. MODEL-BASED NEURAL ARCHITECTURE

As it has been shown that classical signal processing
methods are unsuited for solving the sparse reconstruction
problem in Theorem 1, it is proposed to leverage the learning
capabilities of neural networks for the location-to-channel
mapping learning. This section presents a model-based neural
architecture from Eq. (16).

The approximation in Eq. (16) can be rewritten using the
vectorization operator, clearly displaying the sparse represen-
tation structure of the approximated channel. ∀x ∈ R3:

vec (H (x)) ≃
(
Ψ̃f (x)⊗ Ψ̃a (x)

)
vec (diag (ϖ (x))) (19)

with ∥ϖ (x)∥0 = Lp,

As shown in Eq. (19), the location-to-channel mapping
learning problem can be partitioned into four subproblems:
the planar wavefronts, FRV, SV dictionaries, and the complex
weights coefficients learning.

Fig. 2. Proposed model-based neural architecture.

A. Planar wavefront dictionary

As exposed by the previous analysis, the planar wavefronts
take the form ψ̃x (x) = {e−j 2πλr

uT
ix}Di=1 ∈ CD. Such dictio-

nary can be constructed from the spatial frequencies ui ∈ R3,
which by definition, are unit vectors representing the planar
wavefronts direction. As a result, every spatial frequency
belongs to a two-dimensional manifold: the unit sphere S1.
Sampling S1 with D points yields the spatial frequency
dictionary U ≜ {ui}Di=1 ∈ R3×D that is used to compute
the planar wavefront dictionary. The dictionary ψ̃x (x) is then
constructed using the Fourier feature (FF) layer, defined as:

FF : x →
[
e−j 2πλr

uT
1x, · · · , e−j 2πλr

uT
Dx
]
. (20)

Note that this FF layer is just a complex implementation of
the cos/sin embedding layer used in RFF networks [23], [24].
Also note that spatial frequencies could be learned either
by gradient descent or directly through a neural network,
however, they are kept fixed for this study.

B. FRV dictionary

It has been presented in Eq. (14) that the FRV dictionary
Ψ̃f (x) ∈ CNs×D only depends on the system frequencies fk,
the reference frequency fr, and propagation delays τi. The
system and reference frequencies are assumed to be known:
such assumption is typically made in classical communication
systems. In this study, the reference frequency is computed
as fr = 1

Ns

∑Ns

k=1 fk. The FRV dictionary can then be
constructed by sampling the propagation delay subspace, i.e.
R+. In order to optimize the performance of the proposed ap-
proach, it is suggested to learn the discretization for every lo-
cation. As such, it is proposed to use a MLP that learns a prop-
agation delay vector τ (x) ∈ RD for every location x. Indeed,
as the propagation delay vector exhibits slow variations in the
location space, the MLP will not suffer from the spectral bias.
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C. SV dictionary

As presented in Eq. (13), the SV dictionary Ψ̃a (x) ∈
CNa×D only depends on the reference frequency wavelength
λr, on the true antenna locations a1,j , on the true reference
antenna location a1,r, and on DoDs ũi. The reference
frequency wavelength is assumed to be known, as well as
the antenna locations. The true reference antenna location is
computed as the barycenter of the true antenna locations. In
order to construct the SV dictionary, one could discretize the
DoD subspace S1. Similarly than for the FRV dictionary, it is
proposed to optimize performance by learning the discretiza-
tion for every location. As such, it is proposed to learn Ũ (x)
using a MLP, a method referred to as MB-ũ learning. On
the other hand, it is proposed to directly learn the entire SV
dictionary for each location using a MLP, without assuming
any dictionary structure. This approach, referred to as MB-Ψ̃a

learning releases constraints on the antenna correction terms
at the expense of an increased learning-parameter complexity.

D. Complex weights learning

The complex activation weights w (x) ∈ CD are learned
following the same approach as in [42]. A MLP is used to
learned the complex weight vector, w (x) ∈ CD, introducing
the sparsity constraint with a softmax ponderation.

E. Global architecture

The proposed model-based neural network architecture
for the location-to-channel mapping learning is presented in
Fig. 2. Note that this architecture only presents the MB-ũ
approach. During experiments, the used approach will be
explicitly specified. Also note that MLPC,T represents a 3-
layer ReLUC-MLP 1 with complex weights and biases, where
each layer width is T . MLPR,T represents the same MLP but
with real weights/biases and ReLU activation functions.

The following remark emphasizes that the use of
hypernetworks is a key feature of the proposed model.

Remark. The proposed architecture shares common features
with classical INR networks. Indeed, the FF layer can be seen
as a positional-embedding stage, where the low dimensional
location information is projected on a higher dimensional
space containing high spatial frequencies. Nevertheless,
the proposed architecture stands out from classical INR
networks with the introduction of hypernetworks [52], [53],
i.e. parallel neural networks learning parameters of the main
network. Four hypernetworks are used in Fig. 2, in order
to constitute the complex activation vector and the planar
wavefront/SV/FRV dictionaries.

V. EXPERIMENTS

In this section, the mapping-learning performance of the
proposed approach are evaluated on realistic synthetic data.
Additionally, its performance is compared against classical
architecture from the INR literature.

1Note that ∀z1 ∈ C, ∀z2 ∈ CN , ReLUC (z1) = ReLU (Re {z1}) +
jReLU (Im {z1}) and softmaxC (z2) = softmax (|z2|).

Fig. 3. Ray-tracing scenes in Sionna: the red plane represents the possible
train/test locations and the blue dot represents the BS. (a): scene used for
D1 and D2. (b): scene used for D3.

A. Learning framework

The dataset generation can be divided into two phases: lo-
cation generation and channel computation at those locations.
System parameters. For all datasets, the central frequency
(i.e. the reference frequency fr) is set to 3.5GHz and
the considered bandwidth is 50MHz. The BS is equipped
with a uniform linear array (ULA) with half reference
wavelength spacing. The number of considered antennas Na

and frequencies Ns is presented for each experiment.
Location generation. For all datasets, a 10m by 10m square
scene is considered as the location space. Inside this scene,
train locations are uniformly sampled with a certain location
density. Test locations consists of a uniform grid with λ/4
sampling in both directions. In the considered scene and at the
considered reference frequency, this grid yields around 210k
locations, enabling a thorough assessment of the mapping
learning capabilities. Additionally, the spatial proximity of
test locations allows to assess the learning performance of
small scale channel fading.

Remark. Note that while all previous theoretical
developments are proven in the R3 scenario, the following
simulations of the location-to-channel mapping learning are
obtained in R2 due to computational complexity. Hence,
for all datasets, the locations are considered on the same
elevation plane as the BS, i.e. considering 2D locations and
azimuth DoDs. Consequently, spatial frequencies are sampled
from the C1 unit circle.

Channel generation. Realistic synthetic channels are
generated using the Sionna ray-tracing library [54]. For each
train/test location, ray-tracing techniques find the propagation
paths and compute the channel coefficients. Four different
datasets are considered:

• D1: complex dataset with variable number of propagation
paths regarding the considered location in the scene.

• D2: D1 with no LoS path.
• D3: LoS dataset.

As depicted in Fig. 3, D1 and D2 are generated in the Etoile
Sionna scene in Paris, while D3 is generated in an empty
scene. For all datasets, diffraction and scattering are not
considered. In D1 and D2, each propagation path can present
at most two consecutive reflections.
Training loss and evaluation metric. All networks are
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trained using the classical ℓF loss, defined as:

L =
1

|B|
∑
x∈B

∥H (x)− fθ (x)∥2F , (21)

where fθ (x) = Ĥ (x) is the output of the neural network,
and B ⊂ R2 is the current batch set for the considered scene.
The evaluation metric is the Normalized Mean Squared Error
(NMSE) in dB over the test grid, defined as:

NMSE(dB) = 10 log10

(
1

|T |
∑
x∈T

∥H (x)− fθ (x)∥2F
∥H (x)∥2F

)
, (22)

where T ⊂ R2 is the test location set for the considered scene.

B. Baselines

It is proposed to assess the performance of the proposed
architecture against baseline models from the INR literature.
As such, several baselines are proposed in Fig.4: 1. is a
classical complex MLP while 2. and 3. are complex RFFs.
Additionally, in 2., the spatial frequencies are drawn from
a gaussian distribution, while 3. considers the same spatial
frequencies as in the model-based architecture, i.e. sampled
from the C1 circle. All MLPs output a vector of dimension
NaNs which is then reshaped to obtain the estimated channel
matrix Ĥ (x) ∈ CNa×Ns .

Fig. 4. Baselines: 1. MLP, 2. and 3. RFFs.

C. Experimental results

For all experiments, the proposed networks and baselines
have the following layer sizes: T1 = 256, T2 = T3 = 64,
T4 = 1024, and T5 = T6 = 64. Additionally, unless stated
otherwise, D = 1000 spatial frequencies are considered. Those
values have been empirically chosen to maximize performance
and minimize overfitting. For RFFs, increasing the number of
learning parameters did not improve performance. Finally, a
training location density of 175locs./m2 ≃ 1.3locs./λ2 is con-
sidered at the exception of the experiment depicted in Fig. 6.
Scene reconstruction. Let Na = 64, Ns = 64. It is
proposed to study the ability of each network to learn the
location-to-channel mapping in different radio-environments.

Table I presents the reconstruction results. One can
remark that the proposed MB-Ψ̃a model outperforms every
baseline and the other MB model in every propagation scene.

TABLE I
NMSE(dB) OVER THE TEST GRID.

MLP RFF RFF (MB init.) MB-Ψ̃a MB-ũ

Params. 10.5M 669k 669k 9.1M 851k

D1 0.01 0.02 2.10−3 −29.23 −14.60

D2 0.01 0.05 3.10−3 −20.19 −10.25

D3 0.01 0.02 2.10−3 −40.67 −11.40

The performance gap observed between the MB-Ψ̃a and
MB-ũ models is due to an hypothesis made in the proof of
Proposition 1 and is explained in a subsequent experiment.
The bad mapping learning capabilities of the baselines can
be explained by the lack of structure of their architecture.

Fig. 5 presents the reconstructed channel after training
for several models. It clearly appears that the MB network
efficiently learns the desired mapping. Additionally, one
can remark that the RFF model presents high-frequency
spatial contents due to its embedding stage, but fails to learn
the complex structure of the propagation channel. Finally,
the reconstructed channel for the MLP model presents
low-frequency spatial contents, illustrating the spectral-bias
issue for this architecture.

Fig. 6 presents the mapping-learning performance evolution
with respect to the training location density on the D1 dataset.
One can remark that the MB-Ψ̃a network outperforms
the baseline in any density configuration. Additionally, the
proposed network presents a failure mode in the low location
density regime. In this regime, the scarcity of spatially close
training locations results in the learning failure of the rapidly
varying spatial content. Note that the proposed method
achieves quasi perfect reconstruction in sub-Shannon-Nyquist
location density, as the 2D Shannon-Nyquist criterion yields
a density of 4locs./λ2.

Fig. 7 presents the ground-truth and estimated
frequency/antenna responses for a given test location in the
D1 dataset. One can see that, due to the multipath nature of
the D1 scene, the frequency response presents rapid variations.
Both the estimated frequency and antenna responses are close
to the ground-truth highlighting the very good reconstruction
performance of the proposed model network.
Generalization capabilities. Fig. 8 presents the frequency
generalization performance of the MB-Ψ̃a model trained on
the D1 dataset with Ns = 32, and evaluated on Ns = 64
frequencies. The dashed line in Fig. 8 represents the train/test
frequency separation. The NMSE, computed over the test
locations, for each frequency at the central antenna, is unsur-
prisingly higher for the frequency unseen during frequency but
still remains low. It highlights the generalization capabilities
of the model-based network: as the FRV hypernetwork learns
propagation delays, it successfully learns the physics of the
propagation scene and is agnostic to the considered frequen-
cies. This is illustrated on the right side of Fig. 8, where the
reconstructed channel for a given location x1 is almost perfect
on the frequencies used during training, and still follows the
ground-truth for frequencies not seen during training.
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Fig. 5. Real part of reconstructed channel over a 2.5m by 2.5m of D1, for the central antenna and frequency (Na = 64, Ns = 64), a: Ground Truth, b:
MB-Ψ̃a, c: RFF, d: MLP.
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Fig. 6. NMSE evolution with the training location density: MB-Ψ̃a learning,
D1 dataset (Na = 64, Ns = 64).
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Fig. 7. Reconstruction performance for a given location x0: MB-Ψ̃a

learning, D1 dataset (Na = 64, Ns = 64).

0 10 20 30 40 50 60

Frequency index

−34

−32

−30

−28

−26

−24

−22

−20

−18

N
M

S
E

(d
B

)

NMSE as a function of the frequency index

0 10 20 30 40 50 60

Frequency index

−14

−13

−12

−11

−10

−9

|h
j 0
,k

( x
1
) |

GT

Est.

Fig. 8. Frequency generalization performance: MB-Ψ̃a learning, D1 dataset
(Na = 64, Ns = 32 for training, Ns = 64 for testing).
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Fig. 9. Learning performance evolution with the compression ratio: MB-Ψ̃a

learning, D1 dataset (Na = 64, Ns = 64).

Radio-environment compression. Let Na = 64, Ns = 64.
Let us consider the transmission (or storage) of the test
dataset: in addition to the location information, one has to
transmit 2NaNsNl real numbers where Nl is the number of
locations. As the test location grid is very dense (Nl ≃ 210k),
it could be more efficient to only transmit the weights of
the trained model-based architecture. Indeed, as the MB-Ψ̃a

model achieves good location-to-channel mapping learning,
one can use this network and the transmitted locations to
reconstruct the channel. As an example, when considering
encoding of variables on 32bits, the channel coefficients

over the test grid weight around 6.9Go while the 9.1M
learning parameters of the MB-Ψ̃a model (with D = 1000)
only weight around 36.4Mo. Let Nb be the number of real
learnable coefficients of the proposed neural architecture, the
compression ratio is then defined as R = 2NaNsNl/Nb.

Fig. 9 presents the evolution of the learning performance
with respect to the compression ratio R for various networks.
It can be shown that the number of sampled spatial frequencies
D is predominant on the learning error for the MB models.
Therefore, it is proposed to only vary this parameter to vary
Nb. The random locs. approach refers to the training on
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random locations with 1.3locs./λ2 spatial density, while the
grid locs. refers to the training on the entire λ/4 uniform
grid. One can remark in Fig. 9 that, even at high compression
ratios, the NMSE of the MB-Ψ̃a model remains significantly
low, highlighting the efficiency of the proposed approach for
radio-environment compression. One can also note that, when
considering the grid locs. approach, the model-based network
reaches very good reconstruction performance, with a NMSE
performance increase by around 10dB in comparison to the
random locs. approach. Therefore, it enables the transmission
of the dataset through the network weights with minimal
reconstruction error, at the expense of a longer training phase.
Finally, one should note that the compression ratio is virtually
infinite. Indeed, as the trained network efficiently learns the
location-to-channel mapping, it is able to infer the channel
matrix for any location in the considered scene with good
performance.
Performance evolution with Na and Ns. Fig. 10 exposes
the performance evolution along the antenna array and system
frequencies for the MB-ũ learning network, trained on the
D1 dataset with Na = 64, Ns = 64. It presents the NMSE
along the antenna indexes, computed over the test grid at the
central frequency, and the NMSE along the frequency indexes,
computed over the test grid at the central antenna. One can
observe that, while the NMSE is almost constant over the dif-
ferent frequencies, it rises on the antenna array sides. This can
be explained through the previous theoretical developments:
the model-based network has been designed with two Taylor
expansions, one on the locations and another on the antennas.
When the considered antenna array is large, the antenna cor-
rection terms fail for the array sides due the local nature of the
Taylor expansion. This results in an increased error response
on the antenna array sides. On the other hand, as the frequency
correction terms do not originate from an approximation (see
Eq. (27) in Appendix A), the error response over the different
system frequencies does not exhibit error spikes. It motivates
the use of the MB-Ψ̃a model which drops the model-based
constraints for the FRV dictionary, overcoming this side effect.
Note that a more extensive comparison between the two
architectures is presented in the following experiment.

Fig. 11 presents the performance evolution with respect
to the number of frequencies by setting Na = 2 and letting
Ns vary over the fixed 50MHz bandwidth, for the MB-Ψ̃a

model. One can remark that the NMSE curve presents a minor
performance degradation when Ns increases from 1 to 8 and
then remains constant for higher values of Ns. As the FRV
hypernetwork is independent on the number of frequencies,
increasing the number of frequencies is equivalent to
considering a harder learning problem with the same number
of learning parameters. This explains the minor performance
degradation when Ns increases. However note that, even
with Ns = 64, the NMSE performance remains satisfactory.
Additionally, the adaptability of the proposed architecture
is enhanced: in [42], the proposed network was only able
to learn the location-to-channel mapping for a unique
antenna and frequency. Directly transposing the model-based
architecture of [42] for multi-antenna/multi-frequency would
require one parallel model for each wanted antenna/frequency

pair. In this paper, the proposed model-based architecture
directly scales with the number of frequencies: as the FRV
hypernetwork is independent on Ns, one can use the same
network for any wanted Ns with the same learning-parameter
complexity. The only complexity difference comes from
Kronecker product of Eq. (19), which is negligible compared
to the total numbers of operations in the neural network.
MB-Ψ̃a learning vs MB-ũ learning. During the theoretical
developments of Proposition 1, the hypothesis of DoD equality
over the entire antenna array has been made to obtain Eq. (8).
This hypothesis fails in two scenarios, presented in Fig. 12:
when the considered scene is close to the antenna array, and
when the considered scene is far from a large antenna array.

Fig. 13 presents the performance evolution with respect
to the number of antennas for Ns = 2 and both the MB-Ψ̃a

and MB-ũ models trained on the D3 dataset. One can remark
that the NMSE increases with the number of antennas for
the MB-ũ model: this is an immediate consequence of the
aforementioned failure scenarios. As the propagation scene
for the D3 dataset consists of a small zone around the
BS, when one increases the number of antennas, the DoD
equality across antennas does not hold anymore, resulting
in a performance loss. This phenomenon is absent for the
MB-Ψ̃a model: in this architecture, the entire FRV matrix is
learned, overcoming the DoD assumption issue.

VI. CONCLUSION AND FUTURE WORK

This paper presented a study on the location-to-channel
mapping learning problem. Through analytical developments
based on Taylor expansions of the propagation distance,
a model-based neural architecture was proposed. Its
performance have been studied on realistic channels against
several baselines from the Implicit Neural Representation
literature, showing great mapping learning performance in
several realistic propagation scenes. It also showed that
the proposed architecture overcame the spectral bias issue.
Additionally, the use of the proposed network for radio-
environment compression has been exposed. Transmitting
the parameters of the trained model-based model and
reconstructing the channel coefficients at different locations
has been proven to be more efficient than directly transmitting
the channel coefficients, with compression ratio reaching
103 without major performance loss. Finally, the theoretical
developments made to obtain the approximated channel model
have been leveraged to explain the model-based architecture
performance in several scenarios, demonstrating the great
interpretabiliy of the model-based machine learning paradigm.

Future work will consider the optimization of the proposed
architecture learning-parameter number. This could be done
by reducing the number of planar wavefronts and optimizing
them through an update rule or gradient descent. Future work
could also consider the proposed method in a time-varying
scene, i.e. with mobility. It may be possible to train the scene
from channel samples in the static scenario and then use an
online learning strategy to continuously adapt the learned
mapping with channel samples taking into account mobility.
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Fig. 12. Failure scenarios for the DoD equality hypothesis: (a) locations
close to the antenna array, (b): locations far from a large antenna array.
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APPENDIX A
PROOF OF LEMMA 1

Let xr ∈ R3 be a reference location and Dx ⊂ R3 be
a local validity domain such that ∀x ∈ Dx, ∥x− xr∥2 ≤ ϵx.
The same holds true in the antenna subspace with the reference
antenna location al,r ∈ R3 and local validity domain Da ⊂ R3

such that ∀al,j ∈ Da, ∥al,j − al,r∥2 ≤ ϵa. Let ξ (x,al,j) ≜
∥x− al,j∥2. ξ (x,al,j) is differentiable at x = xr. The first or-
der Taylor expansion of ξ (x,al,j) around xr yields, ∀x ∈ Dx:

ξ (x,al,j) ≃ ξ (xr,al,j) + ∇x ∥x− al,j∥2
∣∣T
xr

(x− xr)

= ∥xr − al,j∥2 +
(xr − al,j)

T

∥xr − al,j∥2
(x− xr)

= ∥xr − al,j∥2 + ul,j (xr)
T
(x− xr) . (23)

One has ξ (xr,al,j) = ∥xr − al,j∥2. ξ (xr,al,j) is
differentiable at al,j = al,r. As per the previous development,
the first order Taylor expansion of ξ (xr,al,j) around al,r
yields, ∀al,j ∈ Da:

ξ (xr,al,j) ≃ ∥xr − al,r∥2 − ul,r (xr)
T
(al,j − al,r) . (24)

Finally one has: ∀ (x,al,j) ∈ Dx × Da : ∥x− al,j∥2 ≃
∥xr − al,r∥2 + ul,j (xr)

T
(x− xr)− ul,r (xr)

T
(al,j − al,r).

APPENDIX B
PROOF OF COROLLARY 1

Let xr ∈ R3 and al,r ∈ R3 be a reference location
and a reference antenna location respectively. Let Γxr

≜
(xr − al,j) (xr − al,j)

T, and Γar
≜ (al,r − xr) (al,r − xr)

T.
Let ψ (x) be a double differentiable function at x = xr.
The second order of the Taylor expansion of ψ (x) can be
expressed as e = 1

2 (x− xr)
T ∇x∇T

xψ (x)
∣∣
xr

(x− xr).
Letting ψ (x) = ∥x− al,j∥2 and recalling that
∀x ∈ R3,∇x∇T

x ∥x∥2 = Id2/ ∥x∥2 − xxT/ ∥x∥32 yields:

e1 =
1

2

(
∥x− xr∥22
∥xr − al,j∥2

− (x− xr)
T
Γxr (x− xr)

∥xr − al,j∥32

)

=
1

2

(
∥x− xr∥22
∥xr − al,j∥2

− o

(
1

∥xr − al,j∥22

))
, (25)
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when (x− xr)
T
Γxr

(x− xr) / ∥xr − al,j∥2 → 0. The same
approach applied to ψ (al,j) = ∥al,j − xr∥2 yields:

e2 =
1

2

(
∥al,j − al,r∥22
∥xr − al,r∥2

− (al,j − al,r)
T
Γar

(al,j − al,r)

∥xr − al,r∥32

)

=
1

2

(
∥al,j − al,r∥22
∥xr − al,r∥2

− o

(
1

∥xr − al,r∥22

))
, (26)

when (al,j − al,r)
T
Γar

(al,j − al,r) / ∥xr − al,r∥2 → 0.
Considering e = e1 + e2 concludes the proof.

APPENDIX C
PROOF OF PROPOSITION 1

Let fr ∈ R such that ∀fk ∈ R, fk = (fk − fr)+fr. Eq. (4)
can be rewritten as:

hj,k (x) =

Lp∑
l=1

γl
∥x− al,j∥2

e−j 2πλr
∥x−al,j∥2e

−j 2π
λk−r

∥x−al,j∥2 ,

(27)
where λr, resp. λk−r, is the wavelength associated to
frequency fr, resp. fk − fr. Let δx ≜ x − xr and
δa ≜ al,j − al,r. Introducing Eq. (6) of Lemma 1 in Eq. (27)
yields ∀ (x,al,j) ∈ Dx ×Da:

hj,k (x) ≃
Lp∑
l=1

γl
∥x− al,j∥2

e
−j 2π

λk−r
∥xr−al,r∥2 (28)

· e−j 2π
λk−r

ul,j(xr)
Tδx

e
j 2π
λk−r

ul,r(xr)
Tδa

· e−j 2πλr
∥xr−al,r∥2e−j 2πλr

ul,j(xr)
Tδx

· ej 2πλr
ul,r(xr)

Tδa .

Considering that the reference frequency fr is on the same
order than the current frequency fk gives: fk − fr ≪ fr ⇒
λr/λk−r ≪ 1. By definition of the validity domains, one has
∀al,j ∈ Da, ∥δa∥2 ≤ ϵa and ∀x ∈ Dx, ∥δx∥2 ≤ ϵx. Thus, the
location and antenna differences δa and δx can be expressed as
a small number of the reference wavelength in both directions,
i.e. ∃ (ma,mx) ∈ R3 ×R3 st. δa ≃ maλr, δx ≃ mxλr with
∥ma∥2 and ∥mx∥2 small. Then, ∀ (x,al,j) ∈ Dx ×Da:

{
δa ≃ maλr

δx ≃ mxλr
⇒



∣∣∣∣∣ul,r (xr)
T
δa

λk−r

∣∣∣∣∣≪ 1∣∣∣∣∣ul,j (xr)
T
δx

λk−r

∣∣∣∣∣≪ 1

. (29)

Furthermore, as in classical communication systems the inter-
antenna spacing is on the order of the wavelength, one can use
the following approximation: ∀xr ∈ R3,ul,j (xr) ≃ ul,r (xr).
Namely that the DoD towards the reference location xr,
for each antenna, can be approximated as the DoD of the
reference antenna. The limitations of this approximation are
discussed in this paper. Introducing dl,r ≜ ∥xr − al,r∥2, one
then obtain, ∀ (x,al,j) ∈ Dx ×Da:

hj,k (x) ≃
Lp∑
l=1

γl
∥x− al,j∥2

e−j 2πλr
dl,re−j 2πλr

ul,r(xr)
Tδx (30)

· e−j 2π
λk−r

dl,r
ej

2π
λr

ul,r(xr)
Tδa .

Additionally, as ∥x− al,j∥2 is a slowly varying term, one
can approximate it as dl,r without suffering from a significant
approximation error. One can then simplify the first two terms
of Eq. (30) as hl,r (xr) ≜ e−j 2πλr

dl,r/dl,r. Finally, letting
τl,r ≜ dl,r/c yields 2πdl,r/λk−r = 2π (fk − fr) τl,r. One
finally obtains: ∀ (x,al,j) ∈ Dx ×Da:

hj,k (x) ≃
Lp∑
l=1

γlhl,r (xr) e
−j 2πλr

ul,r(xr)
T(x−xr) (31)

· e−j2π(fk−fr)τl,rej
2π
λr

ul,r(xr)
T(al,j−al,r).

APPENDIX D
PROOF OF THEOREM 1

Let us consider the tiling of the location subset Sx ⊂ R3

into Ωx location validity domains Dx,i with the Voronoi
region of any given lattice. Note that for any subset of R3,
the optimal lattice is the D3-lattice. The same approach is
applied for the antenna location subset Sa ⊂ R3, yielding Ωa

local validity domains Da,i. By definition of the local validity
domains and of the Taylor expansion, one has, ∀ (Dx,i,Da,i):

∀ (x,al,j) ∈ Dx,i ×Da,i,
∥∥∥H (x)− Ĥ (x)

∥∥∥
F
< ϵ, (32)

where Ĥ (x) is the Taylor-approximated channel matrix
computed using Eq. (10). For each local validity domain
(Dx,i,Da,i) pair, Eq. (10) shows that the channel can be ap-
proximated using only Lp planar wavefronts, SVs, and FRVs.
Thus, one can construct a dictionary of planar wavefronts
ψ̃x ∈ CD, a dictionary of SVs Ψ̃a ∈ CNa×D, and a dictionary
of FRVs Ψ̃f ∈ CNs×D containing the needed atoms for every
local validity domain pair. This yields D ≤ LpΩxΩa.

While the FRV dictionary atoms follow Eq. (12), the SV
dictionary atoms can’t be constituted from Eq. (11), as only
the true antenna locations a1,j are known. However, every
virtual antenna can be rewritten as a translated and rotated
version of its physical counterpart, i.e. ∀l ̸= 1,∃! (ϵ,Rθ) ∈
R3 × R3×3, s.t. al,j = Rθa1,j + ϵ. One then obtains:

(al,j − al,r) = Rθa1,j + ϵ−Rθa1,r − ϵ
= Rθ (a1,j − a1,r) . (33)

While the antenna difference is not impacted by translations,
it is impacted by rotations. However, one can easily show
that the projection term in the SV is rotation equivariant:

ul,r (xr)
T
(al,j − al,r) = ul,r (xr)

T
Rθ (a1,j − a1,r)

=
(
RT

θul,r (xr)
)T

(a1,j − a1,r)

= ũl,r (xr)
T
(a1,j − a1,r) . (34)

Thus, the dictionary of SVs can be constructed using DoDs
ũi ∈ R3 and the true antenna location difference (a1,j − a1,r).
Using the previously defined dictionaries and introducing an
activation vector w (x) ∈ CD to select the needed Lp atoms
at the current location x, such that ϖ (x) = w (x)⊙ ψ̃x (x),
yields Eq. (16) and concludes the proof.
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