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INTRODUCTION

• Federated Learning (FL) allows training ML models with data distributed across
multiple devices;

• Malicious agents may attempt to disturb the training procedure in order to obtain
certain benefits (e.g., a biased result or a reduction in computational load);

• To address this problem, there is recently growing interest in developing verifiable
protocols, where one can check that parties do not deviate from the procedure;

• In this paper,

– we conduct an analysis of verifiable FL protocols while studying specific chal-
lenges of the cross-silo setting;

– we propose a new taxonomy of existing verifiable cross-silo FL protocols while
analyzing their efficiency and threat models;

– we discuss future challenges and identify research gaps.
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BACKGROUND

Cross-silo FL properties
While analyzing the suitability of various algorithms for the cross-silo FL setting, we rely on the assumption that the
setting possesses the following properties:

1. the number of participants is moderate (almost several thousands);

2. all participants have an incentive to care about their reputation;

3. all participants agree on the model to be trained (type of calculations to be executed);

4. DOs possess computationally sufficiently powerful equipment;

Verifiable FL
In the scope of this paper, we rely on a definition of Verifiable FL inspired by [1]:

Definition (Verifiable FL). FL is verifiable if selected parties are able to verify that the tasks of all participants are
correctly performed without deviation.

Threat models
In order to thoroughly analyze miscellaneous flavors of the applied threat models we distinguish the following four
categories:

• honest (or trusted): always follows the protocol correctly and is trusted with sensitive information;

• honest-but-curious: always follows the protocol correctly, but is not trusted with sensitive information;

• forger: may try to forge different data, but otherwise follows the protocol, is not trusted with sensitive information;

• malicious: can arbitrary deviate from the protocol and is not trusted with sensitive information.

ANALYSIS OF EXISTING APPROACHES
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Figure 1: A taxonomy of verifiable cross-silo FL protocols. The red color corresponds to approaches
focused on the verification of clients’ computations, the yellow color is used for approaches focused
on the aggregation verification.

Approach Computational cost Communication cost Threat model Server-Client
collusion TAclient server client server client server

VerSA [2] O(D) O(CD) O(D) O(CD) h-b-c [forger] ✗ ✗

SVeriFL [3] O(D) O(CD) O(D) O(CD) h-b-c forger ✗ ✓

Zhang et al. [4] O(D) O(C) O(1) O(C) [hon] forger [✗] ✗

DEVA [5] O(CD) O(CD) O(CD) O(CD) h-b-c forger ✗ ✗

NIVA [6] O(CD) O(CD) O(CD) O(CD) [h-b-c] [forger] [✗] ✗

SVFL [7] O(D) O(C) O(1) O(C) h-b-c [forger] ✗ ✗

Madi et al. [8] O(D) O(C) O(1) O(D) hon [forger] ✗ ✗

VerifyNet [9] O(D) O(CD) O(D) O(CD) h-b-c forger ✗ ✗

BytoChain [10] O(C +D) O(1) O(C) O(1) mal [mal] [✗] ✗

Fang et al. [11] O(C +D) O(1) O(C) O(1) [hon] [forger*] [✗] ✗

VeriFL [12] O(C + D
E ) O(1) O(C) O(1) h-b-c forger ✗ CRS

FedTrust [13] O(CD) O(1) O(CD) O(1) hon mal [✗] ✗

zkDFL [14] O(D) O(CD) O(C) O(C) hon [forger*] [✗] CRS
GOPA [15] O(DlogC) N/A O(DlogC) N/A mal* N/A N/A ✗

zkFL [16] O(CD) O(CD) O(1) O(C log(CD)) [hon] [forger] [✗] ✗

VFL [17] O(D) O(1) O(1) O(1) h-b-c [forger] [✗] ✗

PVD-FL [18] O(D) N/A O(D) N/A [forger*] N/A N/A ✗

Table 1: Asymptotic complexity per epoch and threat models comparison of verifiable FL protocols
with verifiable aggregation. Sections correspond to taxonomy categories (Figure 1). Notations: E
– a number of epochs, C – a number of clients, D – a number of vector dimensions.

Approach Computational cost Communication cost Threat model Server-Client
collusion TAclient server client server client server

Rückel et al. [19] O(D) N/A O(C) N/A [forger] N/A N/A CRS
Heiss et al. [20] O(D) N/A O(C) N/A [forger] N/A N/A CRS

Federify [21] O(D) N/A O(C) N/A [forger] N/A N/A CRS
PVD-FL [18] O(D) N/A O(D) N/A [forger*] N/A N/A ✗

Table 2: Asymptotic complexity per epoch and threat models comparison of verifiable FL protocols
with verification of local models computation. Sections correspond to taxonomy categories (Figure

1). Notations: C – a number of clients, D – a number of vector dimensions.

Impact of a cross-silo setting on verification:
• Since the number of participants in cross-silo settings is moderate while ML models typically have large sizes, a

dependence on D is less desirable. Taking into account that clients anyway must send their local models to a server
with O(D) communication cost, the overall FL complexity would become asymptotically worse only in cases when
the verification overhead is larger than D.

• Many approaches rely on a blockchain infrastructure [10, 11, 14, 19, 20], however within the context of cross-silo FL,
such infrastructure leads to a significant computational overhead. All miners have to execute identical calculations,
resulting in a tremendous total computational burden across all participants.

• In approaches that rely on cryptographic signature schemes, a verifier is only capable of checking that server has
not omitted values from other clients and has not inserted additional values in the sum. Nevertheless, a malicious
server still may aggregate arbitrary signed values and successfully pass the verification.

RESEARCH GAPS AND FUTURE CHALLENGES

• There are currently no verifiable FL protocols that fully support verification of both computations performed by clients
and server at the same time;

• The verifiable aggregation is primarily studied for the most popular type of aggregation – averaging of vectors pos-
sessed by DOs. Nevertheless, other U-statistics with a kernel of the degree two or larger (e.g. Kendall rank correla-
tion coefficient) could be applied;

• There are no protocols that are robust to a collusion between client and server to bypass the verification;
• The repetitive nature of FL training is usually overlooked while developing a verifiable protocol. However, we believe

that leveraging this characteristic can lead to optimizations;
• There are no works exploring the applicability of recursive ZKP schemes and Incrementally Verifiable Computation

(IVC) in the context of FL.

As future work, we plan to analyze the impact of various ZKP schemes on the complexities of FL settings.

Scheme Parameters size Proving Verification Proof Size
Dory O(|C|) O(|C|) O(log|C|) O(log|C|)

Gemini (time-efficient) O(|C|) O(|C|) O(log|C|) O(log|C|)
SuperSonic, DARK-fix O(1) O(|C|log|C|) O(log|C|) O(log|C|)

Bulletproofs O(|C|) O(|C|) O(|C|) O(log|C|)
Compressed
Σ-protocol O(|C|) O(|C|) O(|N |) O(log(|C|))

Groth16 O(|C|) O(|C|log|C|) O(|N |) O(1)
Sonic O(|C|) O(|C|log|C|) O(N) O(1)
Dew O(1) O(|C|2) O(log|C|) O(1)

Table 3: Asymptotic comparison of ZKP schemes with logarithmic and constant proof size complex-
ity. C – computation expressed as a circuit, |C| – number of gates, |N | – length of inputs.
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